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Variational Calculations of Scattering
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Department of Physics, University of California, Berkeley, California

It has been found that the hehavior of ealculated results using variational
principles for scattering problems is rather different from that previously
known for bound-state problems. As more and more adjustable terms are
added to the trial funetion, the “‘stationary” value for the phase shift does
not converge smoothly, but may on occasion turn out to be grossly inaccurate.
In this paper the phenomenon is displayed and partially analyzed, but not com-
pletely understood. We seem to be stuck with the conclusion that for a given
amount of computational labor, a scattering phase shift may be determined
only to an acceuracy an order of magnitude worse than that of the analogous
eigenvalue problem.

VARIATIONAL PRINCIPLESN

The expression

L= [ym -y (1)

is stationary with respect to variations of the trial function ¢, when ¢ approaches
the correct solution of Schrodinger’s equation. It is necessary only to require that
¥ go to zero at infinity rapidly enough (for example, [¢*¢ = 1), and we have
the Rayleigh-Ritz variational principle for eigenvalues K. The standard pro-
cedure 1s to expand ¢ in terms of some convenient set of functions x; ,

N
‘l/ = Z(’[X[v (:_).)
=1
and variation of the constants ('; gives the well-known (finite) matrix eigenvalue
problem.
det | HY> — ENY || = 0, (3)
where 7,7 = 1, --- | N.

* Supported in part by the Advanced Research Projects Administration through the
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VARIATIONAL CALCULATIONS OF SCATTERING
(N)
H; = fxi*Hx,;

(N
N[j = /Xr'*x./-

As the set of trial functions is augmented the several lowest eigenvalues of
H.} approach the several lowest cigenvalues of the complete operator H mono-
tondcally (1). Thus increased labor msures an improved answer here, although
the rate of convergence is another question.

Let us turn now to the seattering problem. The wave function ¢ is now not
normalizable but may be given a specified asymptotic form, such as

() Y T (sin krkr) 4 tan (cos krihr) (4)

for s waves; 8 is a trial value for the phase shift and will be treated as a varia-
tional parameter, and I = #°4*.2m. We now have Kohn’s variational principle
for A = tan é/k,

] = Zﬁ’f f V(I — H)y dr. (5)
Construct the trial funetion ¢ as follows:
¢=¢+g:l('fxn (Ga)
where
= [(sin krikry 4 Meos kr/m)f(r)]1 (4m)"° (6b)

is the aqymptotie part, and the funections x; die off rapidly as » — = . The fune-
tion f(r) is put in to shield the 17 singularity with the cos kr term at r — 0, and
is not now of particular interest. The distribution of factors & is such that every-
thing is finite at & — 0, A going to minus the scattering length.
Now we look closely at the variational prin(‘ipl(*.
N

=2 ¢ (',Jlu+‘>Z( Ri+ B+

D
Vo= M= ~f'—’3 xi(E — H)x;:
-
(7)
n
R = / (S — H)e
ﬁf
Qm/
B = — H)g
f‘.‘



38 SCHWARTZ

(everything mayv be taken as real). Variation of the constants €'; gives the set

of .V linear equations,

N
STM0 = =R, .
i=1

{8)

At first sight one is tempted to say that scattering calculations are easier than
eigenvalue problems, since 1t is an ecasier job to solve (8) than (3). However, it
ix the erux of this study to realize that the matrix A/,;; may very well he singular,

and when this happens, the entire variational procedure collapses.

Solving (8) is not the end of the problem, since we have still to vary X; but

this is easily done, since the trial funetion is linear in A. We can write
R, = R + \gY,

and since M ;5 ix independent of A, we have
(= (" 4\

The result of varying the (s can then be written

N = I+ A+ MW+ By + ABy + NBy o+ A, (9)
where
Wy o= 2 C0M 00 23 (RY,
Wy =23 M0 4+ 23 CURY 423 0PR®, (10)
i i ;
l‘vg = Z (‘E;Ujll,-j('(fl) _|_ QZ (151'[{51);
~ . ;
and we have finally the stationary result X = — (W, + By 4+ 1200, + Ba)

(minimizing value, “first-order” accurate ), and
A = Wy By — (W, + By =+ 1740 + By

N

(stationary value, “second-order” accurate).

THE PROBLEM OF THE CONTINUOUS SPECTRUM

The Hamiltonian I] has a continuous spectrum of eigenvalues (the scattering
states) of which £ ix one. Thus the operator £ — H with which we are dealing
has a continuum of eigenvalues passing through the value zero. In a calenlation
we represent K — H by a matrix in the subspace of the complete Hilbert space
of H which ix spanned by our N trial funetions. This finite matrix of £ — H,
which we have called 3/ 5‘7), will have N eigenvalues, and, as NV inereases toward
infinity, we expeet to recover o complete representation of £ — H. We should
therefore not be surprised to find that oceasionally the matrix A7 has an eigen-
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value very close to zero. It may be correct to say that the a priori probabhility of
having an exactly zero eigenvalue for some matrix 3/ is zero; but the number
of eigenvalues Jess than some given magnitude has a finite probability, which
must grow as N increases.

Our problem here is analogous to finding the stationary value of the simple
quadratic form

[ = ar’ + 28+ + 7.
When « happens to be zero [ can have an extremum only if 8 also is zero. How-
ever, for finite but very small o the extremum is

b= —t8a) +7,

which varies wildly as e varies near zero, Our many-parameter problem is simi-
larly solved in terms of the eigenvectors of the given matrix J/

‘]I(,\',.Eim — eaglm. (1])

(We have now dropped the Z,=1 notation in favor of a dot to signify matrix
and veetor multiplication.) The solution of (8) is

= —Z (£ R el (12)

and the stationary value of the quadratic form (- 3/ (" 4+ 20" R hecomes
— 2 [E RS e (13)

Now when M hax a zero eigenvalue the solution to (8) is not well defined; or
when some eigenvalue e, of 1/ is very close to zero, one term in (13) may be
exceedingly large in magnitude, and our caleulated phase shift, which is supposed
to be “stationary” (differing from the true value by onlyv “second-order crrors")
will be grossly m error. To understand this better, we must also look at the
numerator £ - R to see if perhaps it goes to zero when e, ix zero and this saves
s, The statement of ¢, = O s

Y
2 M =

J=1
which when expressed in terms of our funetions is
Al (e)
fx,-u;—ll) [Zg“ ] ), (14)
o =1
forall ¢ = 1,2, --- | N, while in the numerator we have

§UR = [ —H) [Z Y ] (15)

=1
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FEquation (14) states that the funetion
v
(E — H) [21 Eﬁ‘mxi
o

1~ orthogonal to each of the x/s; ¢ is, however, a quite independent funetion and
we could conelude that (15) is certainly zero only if the x5 were a complete set
of functions, i.e,, ¥ — =. Nevertheless ax V gets larger, we may expect £ R
to get small at elose to the same place where e, gets small, and we may thus hope
that as the “probability”” of finding poles in the answer (13) increases, the
strength of these poles deereases and some sort of reasonable convergence does
actually occur. We do not have any general theory of the nature of this presumed
convergence; we present instead, in the next section, results of some “‘experi-
mental” (numerical) studies of this process.

[t is interesting to note that problems of the kind we are observing are remi-
niscent of, if not parallel to, earlier discussions of general scattering theory. We
have in mind comparison of Eq. (13) with expressions to he found in the elassic
papers of Wigner (2) on resonance scattering; also see the deseription by Baker
(.3) of scattering as related to the eigenvalue problem in a large box; even the
popular e added to the operator £ — H in the denominator of equations in
“formal scattering theory” (4) is put there solely to remove the singularity in
this operator due to the continuous spectrum. In these formal studies the limit
(e — 0, size of box — =) ix taken analytically and we are given the answer ae-
cording to general formulas. Similarly one may use the variational principle for
seattering to give a correct result (1e., in principle solution) to the problem only
for an infinite number of trial funetions. In doing any specific caleulation with a
finite number of trial functions we will, however, be faced with the probable oe-
currence of the singularities and we must learn to live with them. It is the intent
of this paper to point out and to illustrate the occurrence of this wild behavior;
what is desired, but now lacking, is an analysis telling us how best to handle this

problem.

ILLUSTRATIONS AND DISCUNSION

We have been speaking above of the matrix of £ — H in the basis of some
chosen set of N functions x; as being “nearly” singular and what is now required
is some more specific way of displaying this behavior and its consequences in the
variational caleulations. 'or a given set of x, we could vary the energy £ and
thus expeet to map out these singularities; but we take the problem to be that
of caleulating the phase shift at any given energy, and =0 we choose instead to
ary some nonlinear parameter: the scale factor « in the trial funetions'

3

xi: = x:{xr).

! It is interesting to look at the history of the use of the scale parameter as an independent
variable constant in the trial functions. In the early work of Hylleraas, with only a few
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First we present a simple, solvable problem to show the occurrence of the
singularities. Let us construct the matrix of the s-wave part of the operator

T
in the basis of functions
Xo = 1" w=201--,N =1,

and ask where this matrix i= singular. This is worked out in Appendix I, and we
find that A/, will have a zero eigenvalue whenever

k= 2k tan mr/2(N 4+ 1), we=1,2 ... X,

For the case of large A we can read this result in terms of the eigenvalues A% of
the operator ¥°.

I x [(ku 2N) )]2,
foru =N + 1 — m <N, which looks like th(* spectrum of levels in a spherical
hox of radius £ ~ 2N, . The last trial function used here, # ¢ ™% has its maxi-
mum at just thix point » = R, and =0 we can see some analogy between working
with some finite number of funetions and working in a finite box.”

The actual physical problem we have been studying which will be used here as
llustration s s-wave elastie seattering of electrons from the ground state of hy-
drogen. The trial funetions used here are fashioned after those used so successfully
hy Hylleraas and others to deseribe the bound states of 2-eleetron atoms:

: .
P W SR A N Sy T D
Xime = ¢ 172 SR R (Lmynw = O,

and the asvmptotic part of ¢ is

5 P A i
= [511»/,_51%_)\(05/11(1 — (A“"‘)Ji(l —2),

Y =T =

/2

lengths are in units of #° me”. Groups of trial functions xim., are taken =o that
one always uses all fllll(ll()ll\ \\nh 1 + m-+n < \, and thon we merease WV

fory Al

lmo wr triad functions, variation of « seems to have heen very llll})Oll‘lllt in loducmg the
cigenvalue of the Ritz calculation; and this procedure was followed through the relatively
recent work of Kinoshita (up to 30 parameters). However, Pekeris, in earrving the work
past one thousand parameters, has not tried to vary the scale parameter, saving that so
many linear terms can easily compensate {or it, and he has thereby reduced the amount of
numerical work. At the outset of our program to caleulate electron-hydrogen scattering
with muny trial functions. we decided to adopt Pekeris® approach; but we are now led
bhack to varying x for quite different reasons.

2 (O)ne may consider other busis funetions. For example = has its maximum at
I~ N12/x; thus in an effectively smaller box the (‘1gonvllluen are separated more. Whether
this would be an advantage depends on the particular problem. For if the actual wave-
function has a large structure, it will take more of these Hermite funetions 1o do the work
of fewer Laguerre functions.
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Thus for the triplet (space antisymmetric) state this gives 1, 3, 7, 13, 22, 34, 50,
70 as the dimensions of the matrix for N = 1 through 8, respectively. Figure 1
shows curves put through many points computed for Wy at & = 0.8, ax a fune-
tion of x. Iixcept perhaps for x < 0.5, we believe all the structure of these curves
has been resolved, and the behavior is as predicted by ( 131, The relation between
the number of poles and N is not simple—at lower energies fewer poles develop-
but they are clearly present. If one were asked to determine the extremum value
of Wy, it would appear to be a ridiculous problem. However, when we carry out
the variation of X to get the stationary value [A] things behave bBetter, see Mg, 2.
The poles still exist, probably the same number of them, but. they hecome more
localized; and between poles the values of [A] are not only relatively constant,
but fairly reproducible from one interval to the next.

From a study of IFig. 2, and many other sets of data like it, we draw the follow-
ing “experimental” conclusions about the results of variational caleulations of
seattering.

AL Any xingle ealeulation, although it is based on & variational prineiple and
should give an approximate value of the phase shift accurate to *second order,”
may in fact vield a value anywhere from — = to 4+ =<.

B. By varving some nonlinear parameter we can map out this behavior in
detail and draw conclusions about the “‘probability” of these wild results oe-
curring, namely:

)
¥
'
H
0 0.5 10 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Fra. 1. Results of a varestricted riational caleulation with é = 0
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@
= wn

.. | a.
3.0 3.5 4.0 4.5

Fra. 2. Results of a complete variational caleulation

(. that with a larger number of trial functions, although the number of
singular points increases, they do in fact appear to become less strong; the two
dashed sections in Fig. 2 indicate points where we believe poles do exist but we
have not resolved them,

D. The encouraging fact is that ax N increases the arerage value of the function
[A], as observed between the singularities, appears to become not only smooth,
but flat. and thix is the manner in which we expeet to find our convergence.

We should note that there is no particular significance to be atrached to the
use of x ax a variational parameter to give some “best” value of [A], since the
curves clearly show more than one extremum. It seems that the hest we can do
ix, for each given number of trial funetions, extract from these curves an arerage
value of [A]; and we should also carry along a measure of the fluctuations (neg-
lecting the poles) which measure our uncertainty in this average.

Thus from Fig. 2, the 3 X 3 matrix gives stationary values around A = =21
or — 22, but its poles are quite wide. The 7 X 7 matrix has extrema at (A = =21,

—19.4, —19.0; the 13 X 13 has an extremum near —21 and then has a good flit
region at —18.0 and — 18.6. The few points for the 22 and 34 size matrices are all
between —17 and — 18 and one point for 50 X 50 ix at —17.3. The convergence
appears as a smooth and an upwuard trend. From this data we guess a final value
of [A] = —17.2 4 0.6, Thix looks very inaccurate only because tor thix particular
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example the tangent is so large; converted into phase shift this gives § = 1.642 %
0.003 radians, which may be considered fairly good.

A companion problem ix the rapid growth of numerical round-off errors which
oceurs in the solution of the linear equation (8) when the matrix is close to singu-
lar. This error may be measured simply by comparing the two terms of 1. (10),

—U =2 (iR,

and
Vo= 2 M,
v

after the solution (7; has been obtained by standard numerical procedures. We
have carried out several caleulations at zero energy, where the matrix of /¥ — H
canmot be singular for any finite number of trial functions (given no bound
states), and we expect a smoother, monotonic convergence of the variational
procedure. We do in fact get nice parabolic curves (varving «), but the difficulty
of growing numerical uncertainties ix still present. Thus with 50 parameters for
the triplet state at & = 0, we have not been able to determine the stationary
value of the scattering length to better than about by of one percent aecuracy,
while working with 8 decimal places.

IFrom this and several other sample calculations we have devised an empirical
rule that if the phase shift is not sufficiently well converged by the time one has
gotten to around N = 7, an inereased number of parameters will not improve
the result because the numerical round-off errors will take over. This rule applies,
of course, only to work with 8 sigmficant figures (floating point arithmetie on
IBM 704), and it could be overcome by doing double precision arithmetic; how-
ever, it not only seems indecent to have to use more than 8 figures to get an
answer good to three figures, but it does become quite expensive.

This question of expense, or perhaps we should say efficiency, is really our
central concern. Putting aside temporarily the question of numerical aceuracy,
we =till have the problem; as we see from Fig. 2, of doing the calculation with
any given size matrix many times over, varying «, in order to plot out the singu-
larities carefully. The more points we take, the smoother the curves we can draw
and the greater becomes our confidence in extracting an average value. There is
also clearly a point of diminishing returns: when we =ee the magnitude of the
fluctuations in any one curve after smoothing over the singularities. What we
need most, and now lack completely, is some quantitative theoretical analysis of
the width of the singularities, leading to a preseription of how to get the most
information from the smallest number of computations. There are some phe-
nomen:a which we do not understand at all, such as the extrema in the 13 X 13
case in g, 2 near ] = —22) and all the points at positive values of {A] for
« < LO. In our present state of ignorance we have chosen simply to ignore these
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-alues, mostly on the basis of their minority populations. The hest rationalization

we can give for this treatment is that we are looking for convergence, and we
take our data where we see the best couvergent hehavior.

Further illustrations of curves like Fig. 2 will be given in a separate publication
presenting results of variational ealeulation of the s-wave elastie seattering phase
shifts for electrons on hydrogen atoms at several energies.

ATTEMPTS TO OVERCOMIZ OR AVOID THE PRESENT DIFFICULTIES

We list here several ideas which were considered cither through diseussion or
experimentation for improving the wild nature of the convergence we have dis-
cussed. None hax proved curative, although some may be instructive.

I. Carry out the variation of X first, then solve the linear equations. This is
castlv done and we have a new matrix,

M= M, — (1BORYRY,

which, it might be hoped, is less singular. We tried this very briefly and found no
worthwhile ehange in the results.

II. Our trial funetion is somewhat redundant, since the x; are presumably a
complete set (when we take all of them), but we have also added the asymptotic
function ¢. We might use another baxis x; which are all orthogonal to ¢ with

E — H; this makex all R; = 0, and we have to solve, instead of simultaneous
limear equations (8), an eigenvalue problem:
det | M|} =0,

where A is a funetion of the trial value of A. This looks rather like Hulthén's
first variational principle. But we expeet the usual ditficulties to arise: for any
-alue of X we may be able to satisfy the above equation at suitable values of &,
for the same reason: hecause I — H has a continuous speetrum passing through
zero.

IIT. Consider some other variational prineiple, in particular Schwinger's,
since 1t s often =aid that integral equations are smoother than differential
equations. Aside from the greater practical difficulty of computing integrals
with the Green’s function as compared to the Hamiltonian, we think there is
nothing to ke gained here. What is involved is an operator (I — H) (K — Hy),
and while in the full Hilbert space the zeros of the denominator are cancelled
precizely by those of the numerator, in the finite space of some given numhber of
trial functions this matching will not be exacr, and we will have the same proh-
lem.

Variational prineiples based on the operator (£ — H)® will he free of the
problem of actual singularities. However, in addition to the greater complexity
of computing matrix elements, this will probably behave no befter than the



46 SCHWARTZ

zero-energy calculations we have already deseribed, i.e., the very small eigen-
values will hurt us numerically.

The method of Kato (referred to and diseussed in Ref. 5) gives both upper
and lower bounds for the phase shift of the scattering of u particle by a central
potential. The recent work of Spruch and Rosenberg (5) hax produced rigorous
upper bounds for —tan‘k at zero energy, and at finite chergies in cuse of po-
tentials vanishing bevond some finite distance. That approach relates to the
problem of the ath discrete eigenvalue of some system:; our purpose here is to
learn to face the continuous spectrum squarely and to live with, not avoid, the
concurrent difficulties.

1V. The formal theory of scattering overcomes the problem of the singularity
of 1/(ff — H) by adding an ie in the denominator, and later letting e go to
zero in formal operations. We thought of similarly spreading out the cnergy
definition in our procedure by replacing the matrix equation

M- = —R,
where A7 ix the finite matrix of & — H, by
(M + €)= — R,

This does prevent the occurrence of any extremely wild behavior in our answer,
but the result does depend on e. I'rom o brief trial of this technique it seems
that this is simply one way of getting smooth curves across the singular regions,
but the fluctuations in this smooth curve are essentially the same as hefore.
If one had some a priori prescription for choosing e, this method might be useful,
as one could hope to aceept caleulations at only one value of x, thus saving a
great. deal of labor. The required condition would be that the error introduced
by e should be less than the eyror inherent in the problem given the particular
set of trial functions available at the time. Thix is probably no more than a
restatement of our general need for an understanding of the over-all convergence.

V. Consideration about numerical accuracy. The method we use for solving
{81 1s a good one - elimination with pivotting. This technique, as we have used
it for several bound-state problems, has given solutions correet (by examining
[" — V') to six and seven figures (in our 8-figure machine) with matrices up to
size 80. When we first noticed inacceuracies in the third figure of our zero-energy
aleulation (50 X 50 matrix), we tried many variations of numerieal techniques
to improve the solution of the linear equations; hut the only thing that suc-
ceeded in deereasing {7 — V7 was o complete double-precision (16-figure arith-
metic) solution of the equation (by the original method). However, we then
found that if the input matrix—which is computed in single precision and un-
doubtedly contains rounding errors of a couple of units in the eighth place- was
changed (randomly} by one unit in the eighth place, the new solution, although
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internally accurate to eight figures, differed from the first solution by ax much
as our original error in {7 — T, namely, almost one percent.” Thus, in order to
get better than three-figure accuracy in this caleulation, we have to compute
the matrix to better than eight places. At this point we quit.

SUMMARY

[t has been shown that the concept of »the extremum” in variational principles
for scattering is not well understood when one does actual ealeulations with any
finite number of trial functions. We understand how, beeause of the continuum
of eigenvalues of f for positive energics, the so-called “stationary” value of the
phase =hift obtained from any single variational caleulation may be anywhere
from — =% to 4 =. On the bhasix of purely experimental (numerical) results
displayed in graphs like Iig. 2, we can advise that one may overlook the rough
parts and deal with the smooth parts to get an answer; and in this manner we
have succeeded in obtaining some very accurate results. What we lack i< a quanti-
tative analysis of the convergence problem, which would tell ux how to get the
best answer, most efficiently. Without such further support, it may be necessary,
in the realm of scattering problems, for “variational prineciples” to relinguish
the popularly held title ax the way to get the most output for the least input

APPENDIX 1
Instead of the ximple function #"¢™ % we will ure as our basis some Laguerre
polynomials
(‘- e 2D s (1=x0
w,(r) = coeff. of s 1in - —— (A1)
(I — s
The matrix is then

Mo = (n 4 )y = coefl. of 5" in 1.

] ” 2 S SRR BN B e B 2
= — f rdroe </.' —
(1 - -\')'(1 - [)" 0

.) DI N . ':- .
= o= '-A|:l.'“(1 — (1 =6 — : (1 + )0 + t):l,

M, = -31"5””/ (/.‘L - }) [tn 4+ 1Dn4+2)+ nln + 1]

— <A:2 + :) I 4+ 138, 0 + 10’ + 1)6,,,,,/-111(.

/

# Nee Wilkinson 6) and other papers referred to there. An aualysis is given of vound-off
errors in terms of finding what input matrix will give the results obtained.
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In order to find when the determinant of M/ is zero, we solve the recursion
formula

</\»2 — %) 2n + 1)C, — </\-'-’ + ;) (n 4+ DnC._ + (n 4+ 2)C, ) = 0.
The solution is

C, = const. L sin (n 4+ 1)e,
(n+1)
where cos ¢ = (15 — &/4)/(FF + ¥/4). Applving the boundary condition
('v = 0, we have the eigenvalues determined,
(N 4+ e = wmm, meo=1,23 --- N,

or equivalently

&/ = tan® (N D (r/2)0.

APPENDIX It

We present here a short and very preliminary attempt at discussing the con-
vergence of variational calculations. Consider that the process of adding more
trial funetions serves to remove from a given trial function some of the error,
which error may be deseribed as an admixture of some of the wrong eigenfunc-
tions. It is frequently said that the admixture of an eigenfunetion ¢, to a desired
eigenfunetion ¢, may be measured by (£, — EH7". In bound-ktate problems
this is a finite number, and one generally finds “'good” convergence for many
problems. (By “good” convergence we mean something where the nth step
gives o contribution something like a”, where @ is appreciably less than unity;
a “poor” convergenee would be something like having the nth step contributing
as n -, for example.)

For the scattering problem many (£, — F,) will get very small, more so as
the number of trial functions increases. Compensating for this is the fact that a
state nearby (in energy) will have a phase shift very close to that of the state
heing studied. Just how these two effects compensate ix what we do not under-
stand theoretically; and we give here a model caleulation which suggests that
maybe things do behave quite well.

Consider Kohn’s variational prineciple for the second Born approximation to
the phase shift (i.c., expand everything in powers of the strength of the po-
tential ).

[)\(3’] = +<Xm | O, v 1 X“'} —+ 2)\“)()((“ | S | (cos ko))

9

=2 U | sin krdbry + (N Ccos kr/mf | 87 4 S5 (cos hror)f)

—oAsin ke ke LU (cos brir)f),



VARIATIONAL CALCULATIONS OF SCATTERING 49

where
- 9y
U= (2m 00V o,
and A s a free parameter. Let us take f = 1 — ¢™% *ax usual, then if we set

I = 0, we will be able to have the matrix diagonal with the choice
=

v s etk {1 sy (L-s) 2 .
= > (L, : w, = coeff. of s" ine™* (1 — )11+ &)
.

We then get
N-—1

S 2 ; , o
G :—»Zn+1n+w,,,
l\ n=I}
the terms linear in ' are

N—-1 )\(]v
°Z<”DHN+~~(—1]

n=h

where (7, = [0 dr U(r)u,(r); and the constant terms are
(nz K oy (0 * . -2
-\ =2 rdr U (1 — ¢ ).
4 o
Let us take {7 = que ™ r; then

C,o= (g4 (=D — (e 4+ 208" 4 (e + 1" ™,
where 8 = [(x"2) — u])/[(«'2) + g], and we get, upon varving the (', |

(y K (e :
N =N = N ,,Z“rrl+i><rz+~>

1\4 X + n [1 —n+ 2/”3:1‘1 + (n 4+ l)ﬁnwl}_

IENRLY v__ L/ (1 MK _,,l—}_\
= 1( N”+1>“ zﬁ( N1

i aver ok (1 =80T
“ﬁ[‘ (PRI

. . (1 .
Now, varying A, we get Slnlpl\'

N = (9" 2uil — 8 (A2)
which converges very rapidly, (If we had chosen & 2 = pu, the exaet answer is
obtained from the first term, hur this makes the problem uninteresting. ) ’V()ti<'e
that if we had not varied \'", the error after N terms would be of order A
which is extremely slow conv mgoum. The variation of the trial phase shift is
essential in getting a good fit for the asymptotic part of the wave function, since
the localized variational functions have a hard time getting out to large distances.

In this soluble model ealeulation we have seen that one may in principle
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expect convergence as good ax that found in bound-state problems. The fact
of working here at £ = 0 meant there were no explieit problems of the singu-
larities of £ — H with which the body of thix paper is concerned; we are not
sure just how representative this special result ix.

IFor the purposes of further comparison, we set up this problem on the com-
puter, using the single basix,

no=kr 2
5

r'e , (= 0,1, - .. N — 1 )(with«2u = 1),
and letting the machine do the diagonalization which our Laguerre polyhomial
here did analytically. This is then a test of numerical accuracy: the matrix of
v will not have a zero cigenvalue for any finite .V, but some eigenvalues may
get. quite small as N increases (presumably ~1-N°), and we may expect in-
ereasing maccuracy due to the finite numerical aceuracy of machine operations.
The quantity (A\] — | computed agreed well with (A.2) up to about NV = 10;
and from ¥ = 10 to N = 20 there was essentially no increase in accuracy,
the round-off errors growing to several decimal places larger than the answer
itself.

In these trial caleulations the difference {7 — 17 stayed in the last (eighth)
decimal place up to N = 8, then increased sharply, and from NV = 11 to N = 19
this error fluctuated from less than 10° up as high as 10° in the eighth place.
To compare this with a typical bound-state calculation, we repeated this caleula-
tion hy replacing the matrix of ¥ by that of (V9 — ¢) with u value of e = 0.08,
which keeps the smallest eigenvalue of the matrix always greater than it was
hefore at around N = 5. Now the crror 'y — 17, was no greater than 2 in the
last place with only one exception (then cqual to 4) for all & < 20. However,
the errors in U7y — Vi, although better than one order of magnitude reduced
from the first caleulation, were still very large, growing over four and five decimal
places; but this may be explained by the fact that this caleulation converges in
the worst possible manner (expansion of 1in Laguerre functions).
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