Variational Calculations of Scattering*

Charles Schmartz
Department of Physics, C'niversity of C'alifornia, Berkeley, California

Abstract

It has been found that the behavior of calculated results using variational principles for scattering problems is rather different from that previously known for bound-state problems. As more and more adjustable terms are added to the trial function, the "stationary" vialue for the phase shift does not converge smoothly, but may on occasion turn out to be grossly inaccurate. In this paper the phenomenon is displayed and partially analyzed, but not completely understood. We seem to be stuck with the conclusion that for a given amount of computational labor, a scattering phase shift may be determined only to an accuracy an order of magnitude worse than that of the analogous eigenvalue problem.

VARIATIONAL PRINCIPLEN

The expression

$$
\begin{equation*}
L=\int \psi^{*}(E-H) \psi \tag{1}
\end{equation*}
$$

is stationary with respect to variations of the trial function ψ, when ψ approaches the correct solution of Schrödinger's equation. It is necessary only to require that ψ go to zero at infinity rapidly enough (for example, $\int \psi^{*} \psi=1$), and we have the Rayleigh-Ritz variational principle for eigenvalues E. The standard procedure is to expand ψ in terms of some convenient set of functions χ_{i},

$$
\begin{equation*}
\psi=\sum_{i=1}^{N} C_{i} \chi_{i} \tag{2}
\end{equation*}
$$

and variation of the ronstants C_{i}^{\prime} gives the well-known (finite) matrix cigenvalue problem.

$$
\begin{equation*}
\operatorname{det}\left\|H_{i j}^{(N)}-E N_{i j}^{(N)}\right\|=0 \tag{3}
\end{equation*}
$$

where $i, j=1, \cdots, N$.

* Supported in part by the Advanced Research Projects Administration through the U. S. Office of Naval Research.

$$
\begin{aligned}
& H_{i, j}^{(N)}=\int \chi_{i}^{*} H \chi_{j} \\
& N_{i, i}^{(v)}=\int \chi_{i}^{*} \chi_{i}
\end{aligned}
$$

As the set of trial functions is angmented the several lowest cigenvalues of $H_{i j}^{(N)}$ approach the several lowest cigenvalues of the complete operator H monotonically (1). Thus increased labor insures an improved answer here, although the rate of convergence is another question.

Let us turn now to the scattering problem. The wase function ψ is now not normalizable but may be given a sperified asymptotic form, such as

$$
\begin{equation*}
(f \pi)^{1 \cdot *} \psi \underset{r \rightarrow \infty}{\longrightarrow}(\text { sinkr } k r)+\tan \delta(\cos \operatorname{kr} / \operatorname{li}) \tag{t}
\end{equation*}
$$

for s waves; δ is a trial value for the phase shift and will be treated as a variational parameter, and $E=\hbar^{2} k^{2} \cdot \underline{2} m$. We now have Kohn's variational principle for $\lambda=\tan \delta / h$,

$$
\begin{equation*}
[\lambda]=\lambda+\frac{2 m}{\hbar^{2}} \int \psi^{*}(E-H) \psi d r \tag{5}
\end{equation*}
$$

Construct the trial function ψ as follows:

$$
\begin{equation*}
\psi=\varphi+\sum_{i=1}^{N} C_{i} \chi_{1} \tag{6a}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi=[(\sin k r / k r)+\lambda(\cos k r / r) f(r)] 1(4 \pi)^{1.2} \tag{6b}
\end{equation*}
$$

is the asymptotic part, and the functions χ_{i} die off rapidly as $r \rightarrow \infty$. The function $f(r)$ is put in to shield the $1 r$ singularity with the cos $k r$ term at $r \rightarrow 0$, and is not now of particular interest. The distribution of factors $l i$ is such that everything is finite at $k \rightarrow 0, \lambda$ going to minus the scattering length.

Now we look closely at the rariational principle.

$$
\begin{align*}
{[\lambda] } & =\sum_{i, j=1}^{N} C_{i}\left(C_{j} M_{i j}+2 \sum_{i=1}^{N} C_{i} R_{i}+B+\lambda .\right. \\
M_{j i} & =M_{i j}=\frac{2 m}{\pi^{2}} \int \chi_{i}(E-H) \chi_{j} \\
R_{i} & =\frac{2 m}{\hbar^{2}} \int \chi_{i}(E-H)_{\varphi} \tag{5}\\
B & =\frac{2 m}{\hbar^{2}} \int \varphi(E-H)_{\varphi}
\end{align*}
$$

(everything may be taken as real). Variation of the constants C_{i} gives the set of V linear equations,

$$
\begin{equation*}
\sum_{j=1}^{N} M_{i j} r_{j}=-R_{i} \tag{8}
\end{equation*}
$$

At first sight one is tempted to say that scattering calculations are easier than eigenvalue problems, since it is an casier job to solve (8) than (3). However, it is the crux of this study to realize that the matrix $M_{i j}$ may very well he singular, and when this happens, the entire variational procedure collapses.

Solving (8) is not the end of the problem, since we have still to vary λ; but this is easily done, since the trial function is linear in λ. We can write

$$
R_{i}=R_{i}^{(1)}+\lambda R_{i}^{(1)}
$$

and since $M_{i j}$ is independent of λ, we have

$$
c_{j}=c^{(10)}{ }_{j}+\lambda C_{j}^{(1)} .
$$

The result of varying the ("s can then be written

$$
\begin{equation*}
[\lambda]=W_{11}+\lambda W_{1}+\lambda^{2} W_{2}+B_{0}+\lambda B_{1}+\lambda^{2} B_{2}+\lambda, \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& W_{\|}=\sum_{i, j} C_{i}^{(1)} M M_{i j} C_{j}^{((1))}+2 \sum_{i} r_{i}^{(1)} R_{i}^{(1)}, \\
& W_{1}=2 \sum_{i, j} r_{i}^{(0)} M_{i j} C_{j}^{(1)}+2 \sum_{i} r_{i}^{(i)} R_{i}^{(1)}+2 \sum_{i} r_{i}^{(1)} R_{i}^{(0)}, \tag{10}\\
& W_{2}=\sum_{i, i} r_{i}^{(1)} M_{i j} r_{i}^{(1)}+2 \sum_{i} r_{i}^{(1)} R_{i}^{(1)} ;
\end{align*}
$$

and we have finally the stationary result $\lambda=-\left(W_{1}+B_{1}+1\right) / 2\left(W_{2}+B_{2}\right)$ (minimizing value, "first-order" aceurate), and

$$
\left.|\lambda|=W_{11}+B_{11}-\left(W_{1}+B_{1}+1\right)^{2}+W_{0}+B_{2}\right)
$$

(stationary value, "second-order" aceurate).

THE PROBLEM OF THE CONTINUOLS SPACTREM

The Hamiltonian $I I$ has a continuous spectrum of eigenvalues (the scattering states) of which E is one. Thus the operator $E-H$ with which we are dealing has a continum of eigenvalues passing through the value zero. In at calculation we represent $E-H$ by a matrix in the subspace of the complete Hilbert space of H which is spaned by our N trial functions. This finite matrix of $E-H$, which we have called $M_{i j}^{(\mathcal{N})}$, will have N eigenvalues, and, as N increases toward infinity, we expect to recover a complete representation of $E^{\prime}-H$. Wr should therefore not be surprised to find that onrasionally the matrix $M_{i j}^{(N)}$ has an eigen-
value very close to zero. It may be correct to say that the a priori probability of having an exactly zero eigenvalue for some matrix $J_{i j}^{(A)}$ is zero; but the number of eigenvalues less than some given magnitude has a finite probability, which must grow as N increatses.

Our problem here is analogous to finding the stationary value of the simple quadratic form

$$
t=\alpha x^{2}+2 \beta x+\gamma
$$

When α happens to be zero $/$ can have an extremum only if β also is zero. However, for finite but very small α the extremum is

$$
l_{1}=-\left(\beta^{2} ; \alpha\right)+\gamma,
$$

which varies wildy as α varies near zero. ()ur many-parameter problem is simiLarly solved in terms of the eigenvectors of the given matrix II

$$
\begin{equation*}
M^{(w)} \cdot \xi^{\prime(\alpha)}=\epsilon_{\alpha} \xi^{(\alpha)} . \tag{11}
\end{equation*}
$$

(We have now dropped the $\sum_{i=1}^{x}$ notation in faror of a dot to signify matrix and rector multiplication.) The solution of (8) is

$$
\begin{equation*}
c^{\prime}=-\sum_{\sigma} \xi^{(\alpha)}\left(\xi^{(\alpha)} \cdot R \cdot \epsilon_{\alpha}\right) \tag{19}
\end{equation*}
$$

and the stationary value of the quadratic form $C^{\prime} \cdot M^{(x)} \cdot\left(C^{\prime}+2 C^{\prime} \cdot R\right.$ beecomes

$$
\begin{equation*}
-\sum_{\alpha}\left|\xi^{(\alpha)} \cdot R\right|^{2} \cdot \epsilon_{\alpha} \tag{1;}
\end{equation*}
$$

Now when $l I^{(x)}$ has a zero cigemalue the solution to (8) is not well defined; on when some eigenvalue ϵ_{α} of $M^{(W)}$ is very close to zero, one term in (13) may be exceedingly large in magnitude, and our calculated phase shift, which is supposed to be "stationary" (differing from the true value by only "second-order errore") will be grossly in error. To understand this better, we must also look at the numerator $\left[\xi^{(\alpha)} \cdot R\right]^{2}$ to see if perhaps it goes to zero when ϵ_{α} is zero and thes saves us. The statement of $\epsilon_{\alpha}=0 \mathrm{i} ;$

$$
\sum_{i=1}^{\searrow} M_{i j} \xi_{j}^{(\alpha)}=0
$$

which when expressed in terms of our functions is

$$
\begin{equation*}
\int \chi_{i}(E-H)\left[\sum_{j=1}^{N} \xi_{j}^{(\alpha)} \chi_{j}\right]=0 \tag{1+}
\end{equation*}
$$

for all $i-1,2, \cdots, N$, while in the mmentor we have

$$
\begin{equation*}
\xi^{(\alpha)} \cdot R=\int \varphi(E-H)\left[\sum_{j=1}^{N} \xi_{i}^{(\alpha)} \chi_{j}\right] \tag{15}
\end{equation*}
$$

Equation (14) states that the function

$$
(E-H)\left[\sum_{i=1}^{N} \xi_{j}^{(\alpha)} \chi_{j}\right]
$$

is orthogonal to each of the χ 's; φ is, however, a quite independent function and we could eonclude that (1i)) is certainly zero only if the χ 's were a complete set of functions, i.e., $N \rightarrow x$. Nevertheless as N gets larger, we may expect $\xi^{(\alpha)} \cdot R$ to get small at close to the sume place where ϵ_{α} gets mall, and we may thus hope that as the "probability" of finding poles in the answer (13) increases, the strength of these poles decreases and some sort of reasonable convergence does a tually oreur. We do not have any general theory of the nature of this presumed convergence; we present instead, in the next section, results of some "experimental" (numerical) studies of this process.

It is interesting to note that problems of the kind we are observing are reminisent of, if not parallel to, earlier discuscions of genemal seattering theory. We have in mind comparison of Eq. (1:3) with expressions (o) le found in the classic. papers of Wigner (\boldsymbol{D}^{2}) on resonance seattering; also see the description by Baker (.3) of seattering as related to the eigenvalue problem in a large box; even the popular $i \in$ added to the operator $E-H$ in the denominator of equations in "formal seattering theory" (f) is put there solely to remove the singularity in this operator due to the continuous spectrum. In these formal studies the limit $(\epsilon \rightarrow 0$, size of box $\rightarrow \infty$) is taken analytically and we are given the answer according to gencral formulas. Similarly one may the the variational principle for scattering to give a correct result (i.e., in principle solution) to the problem only for an infinite number of trial functions. In doing any specific calculation with a finite number of trial functions we will, however, be faced with the probable oecurrence of the singularities and we must learn to live with them. It is the intent of this paper to point out and to illustrate the oceurrence of this wild behavior; what is desired, but now larking, is an amalysis telling us how best to handle this problem.

ILICSTRATIONA ANI DINOUSSION

We have been speaking above of the matrix of $E-H$ in the basis of some chosen set of N functions χ_{i} as being "nearly" singular and what is now recuired is some more specific way of displaying this hehavior and its consequences in the variational calculations. For a given set of χ, we could vary the energy E and thus expect to map out these singularities; but we take the problem to be that of calculating the phase shift at any given energy, and so we choose instead to vary some nonlinear parameter: the scale factor κ in the trial functions:

$$
\chi_{i}=\chi_{i}(\kappa \mathbf{r})
$$

[^0]First we present a simple, solvable problem to show the occurrence of the singularities. Let us construct the matrix of the s-wave part of the operator

$$
r^{2}+k^{2}
$$

in the basis of functioms

$$
\chi_{n}=r^{n} r^{-x r, z}, \quad n=0,1, \cdots, r-1
$$

and ask where this matrix is singular. This is worked ont in Appendix I, and we find that $M I_{n, \ldots}$ will have a zero cigenvalue whenever

$$
\kappa=2 k \tan m \pi 2(N+1), \quad m=1, \because, \cdots, N
$$

For the case of large X we can read this result in terms of the eigenvalues l^{2} of the operator Γ^{2}.

$$
l_{i}^{2} \approx[(\kappa \mu 2 N)(\pi / 2)]^{2}
$$

for $\mu=N+1-m \ll \lambda$, which looks like the spectrum of levels in a spherical box of radius $R \sim D^{2} \bar{F}_{j}$. The last trial function used here, $r^{k} e^{-k r}{ }^{2}$, has its maximum at just this point $r=R$, and so we can see some analogy between working with some finite number of functions and working in a finite box. ${ }^{*}$

The actual physical problem we have been studying which will he used here as illustration is s-wave elastic seattering of electrons from the ground state of hydrogen. The trial functions used hete are fashioned after those used so sucerestully hy Hylleratas and others to deseribe the bound states of 2 -electron atoms:
and the asymptotic part of ψ is

$$
\varphi=\frac{2 e^{-r}}{4 \pi \sqrt{2}}\left[\frac{\sin l i r_{1}}{\operatorname{lir}_{1}}+\lambda-\frac{\cos \operatorname{lir} r_{1}}{r_{1}}\left(1-r^{-x r_{1}, 2}\right)\right] \pm(1 \hookrightarrow 2),
$$

lengths are in units of \hbar^{2}, me 2. Groups of trial functions χ lmu are taken so that one always uses all functions with $l+m+n \leqq N$, and then we increase N. linear trial functions, variation of κ seems to have been very important in reducing the cigenvalue of the Ritz calculation; and this procedure was followed through the relatively recent work of Kinoshita (up to 39 parameters). However, Pekeris, in carrying the work past one thousand parameters, has not tried to vary the scale parameter, saying that so many linear terms can easily compensate for it, and he has therely reduced the amount of numerical work. At the outsen of our program to caleulate electron-hydrogen scattering with many trial functions, we decided to adopt Pekeris" approach; but we are now led back to varying k for quite different ratisons.

- One may consider other hasis functions. For example $r^{-x} e^{-\kappa^{2} r^{2} /=}$ has its maximum at R - $N^{1: 2} / \kappa$; thus in an effectively smaller box the cigenvalues are separated more. Whether this would be an advantage depends on the particular problem. For if the actual wavefunction has a large structure, it will take more of these Hermite functions to do the work of fewer Laguerre functions.

Thus for the triplet (space antisymmetric) state this gives $1,3,7,13,22,34,50$, 70 as the dimensions of the matrix for $N=1$ through 8 , respectively. Figure 1 shows rurves put through many points romputed for W_{0} at $k=0.8$, an a function of κ. Except perhaps for $\kappa<0.5$, we believe all the structure of these curves has been resolved, and the behavior is as predicted by (13). The relation between the number of poles and N is not simple--at lower energies fewer poles develop-but they are clearly present. If one were asked to determine the extremum value of W_{a}, it would appear to be a ridiculous problem. However, when we carry out the variation of λ to get the stationary value $[\lambda]$ things behave better, see Fig. 2. The poles still exist, probably the same number of them, but they leecome more localized; and between poles the values of $[\lambda \mid$ are not only relatively constant, but fairly reproducible from one interval to the next.

From a study of Fig. 2 , and many other sets of data like it, we draw the following "experimental" conclusions about the resulte of variational calculations of seattering.
A. Any single calculation, althongh it is based on a variational principle and should give an approximate value of the phase shift arecurate to "serond order," may in fact yield a value anywhere from $-x$ to $+x$.
B. By varying some nonlinear parameter we can map out this behatior in detail and draw conclusions about the "probability" of these wild results ofcurring, namely:

Fig. 1. Results of a varestricted riational calculation with $\delta=0$

Fig. 2. Results of a complete variational calculation
(. that with a larger number of trial functions, although the number of singular points increase's, they do in fact appear to become less strong; the 1 wo
 have not resolved them.
D. The encouraging fact is that as I^{\prime} increases the arerage value of the function [λ], as observed hetween the singulatities, appears to become not only smooth, but flat, and this is the manner in which we expert to find our convergence.

We should note that there is no particular significance to be attached to the use of κ as a variational parameter to give some "best" value of $[\lambda]$, sime the rurves clearly show more than one extremum. It soems that the best we can de is, for each given momber of trial functions, extract from these curves an areroge value of $[\lambda]$; and we should atho carry along a measure of the fluctuations (neglecting the poles) which metsure our uncertainty in this aterage.

Thus from Fig. 2 , the 3×3 matrix gives statiomary values around $\{\lambda \mid=-\underline{2}$ or - 22 , but its poles are quile wide. The 7×7 matrix hatsextremat at $|\lambda|=-21$, $-19.4,-19.0$; the 13×18 has an extremm near -21 and then has a good flat region at -18.0 and -18.6 . The few points for the 22 and 34 size matrices are all between -17 and -18 and one point for 50×50 is at -17.3 . The romvergence appears as a smooth and an upward trend. From this data we guess a final value of $[\lambda]=-17: 2 \pm 0.6$. This looks very inacecurate only because for this particular
example the tangent is so large; converted into phase shift this gives $\delta=1.642 \pm$ 0.003 radians, which may be considered fairly good.

A companion problem is the rapid growth of numerical round-off errors which orcurs in the solution of the linear equation (8) when the matrix is close to singular. This efror may be moasured simply by comparing the two terms of E_{1}. (10),

$$
-U=\sum_{i} C_{i} R_{i}
$$

and

$$
V=\sum_{i j} C_{i,} M_{i j} C_{j}^{\prime}
$$

after the solution C_{i} has been obtained by standard numerieal procedures. We have carried out several calculations at zero energy, where the matrix of $E-H$ cannot be singular for any finite number of trial functions (given no bound states), and we expect a smoother, monotonic convergence of the rariational procedure. We do in fact get nice parabolic curves (varying κ), but the difficulty of growing numerical uncertainties is still present. Thus with 50 parameters for the triplet state at $k=0$, we have not been able to determine the stationary value of the scattering length to better than about ${ }^{1} 2$ of one percent accuracy, while working with 8 decimal places.

From this and several other sample calculations we have devised an empirical rule that if the phase shift is not sufficiently well converged by the time one has gotten to around $N=7$, an increased number of parameters will not improve the result because the numerical round-off errors will take over. This rule applies, of course, only to work with 8 significant figures (floating point arithmetic on IBX 704), and it could be overcome by doing double precision arithmetic; however, it not only seems indecent to have to use more than 8 figures to get. an answer good to three figures, but it does berome guite expensive.

This question of expense, or perhaps we should say efficiency, is really our central concern. Puting aside temporarily the question of munerical areuracy, we still have the problem, as we see from Fig. 2 , of doing the calculation with any given size matrix many times over, varying κ, in order to plot out the singularities carefully. The more points we take, the smoother the curves we can draw and the greater beeomes our confidence in extrarting an werage value. There is also clearly a point of diminishing returns: when we see the magnitade of the fluctuations in any one curve after smoothing over the singularities. What we need most, and now lack completely, is some quantitative theoretical analysis of the width of the singuarities, leading to a preseription of how to get the most information from the smallest number of computations. There are some phenomena which we do not understand at all, such as the extrema in the 13×13 rase in lig. .2 near $[\lambda]=-22$, and all the points at positive values of $[\lambda]$ for $\kappa<1.0$. In our present state of ignorance we have chosen simply to ignore these
values, mostly on the basis of their minority populations. The best rationalization we can give for this treatment is that we are looking for convergence, and we take our data where we see the best convergent behavior.

Further illustrations of curves like lig. 2 will be given in a separate publication presenting results of variational calculation of the s-wave elastic scattering phase shifts for electrons on hydrogen atoms at several energies.

ATTEMPTS TO OVERCOME OR AYOID THE PRENENT DIFFICUATIEN

We list here several ideas which were considered either through discussion or experimentation for improving the wild nature of the convergence we have discussed. None has proved curative, although some may be instructive.
I. Carry out the rariation of λ first, then solve the linear equations. This is easily done and we have a new matrix,

$$
\bar{U}_{i j}=I_{i j}-\left(1 B_{2}\right) R_{i}^{(1)} R_{j}^{(1)}
$$

which, it might be hoped, is less singular. We tried this very briefly and found no worthwhile change in the results.
II. Our trial function is somewhat redundant, since the $\chi_{\text {; }}$ are presumably a complete set (when we take all of them), but we have also added the asymptotic function φ. We might use another basis χ_{i} which are all orthogonal to φ with $E-H$; this makes all $R_{i}=0$, and we have to solve, instead of simultancons linear equations (8), an eigenvalue problem:

$$
\text { det }\|\overline{\bar{M}}\|=0
$$

where $\overline{\bar{M}}$ is a function of the trial value of λ. This looks rather like Hulthen's first variational principle. But we expect the usual diffeculties to arise for any value of λ we may be able to satisfy the above equation at suitable values of κ, for the same reason: hecause $E-H$ has a continuous spectrum passing through zero.
III. Consider some other rariational principle, in particular Schwinger's, since it is often said that integral equations are smoother than differential equations. Aside from the greater practical difficulty of computing integrals with the Green's function as compared to the Hamiltomian, we think there is nothing to be gained here. What is involved is an operator ($E-H$) $\left(E-H_{0}\right)$, and while in the full Hilbert space the zeros of the denominator are cancelled precisely by those of the numerator, in the finite space of some given number of trial functions this matching will not be exact, and we will have the same problem.

Variational principles hased on the operator $(E-H)^{2}$ will be free of the problem of actual singularities. However, in addition to the greater complexity of computing matrix elements, this will probably behave no better than the
zero-energy calculations we have already described, i.e., the rery small eigenvalues will hurt us numerically.

The method of Kato (referred to and discussed in Ref. 5) gives both upper and lower bounds for the phase shift of the seattering of a particle by a central potential. The recent work of Spruch and Rosenberg (5) has produced rigorous upper bounds for -tan k at zero energy, and at finite conergies in case of poteutials vanishing beyond some finite distance. That approarh relates to the problem of the nth discrete eigenvalue of some system; our purpose here is to learn to face the continuous spectrum spuarely and to live with, not aroid, the concurrent difficulties.
IV. The formal theory of scattering overcomes the problem of the singularity of $1 /\left(E^{\prime}-I\right)$ by adding an $i \epsilon$ in the denominator, and later letting ϵ go to zero in formal operations. We thought of similarly spreading out the energy definition in our procedure by replacing the matrix equation

$$
H \cdot C^{\prime}=-R
$$

where M is the finite matrix of $E-H$, by

$$
\left(U^{2}+\epsilon^{\underline{\prime}}\right) \cdot(=-M \cdot R
$$

This does prevent the oreurrence of any extremely wild behavior in our answer, but the result does depend on e. From a brief trial of this technigue it seems that this is simply one way of getting smooth curves across the singular regions, but the fluctuations in this smooth curve are essentially the same as before. If one had some a priori preseription for choosing ϵ, this method might he useful, as one could hope to arcept calculations at only one value of κ, thus saving a great deal of labor. The required condition would be that the error introduced by ϵ should be less than the error inherent in the problem given the particular set of trial functions avalable at the time. This is probably no more than a restatement of our general need for an understanding of the over-all convergence.
V. Consideration about numerical aceuracy. The method we use for solving (8) is a good one elimination with pivotting. This terhnigue, as we have used it for several bound-state problems, has given solutions rorrect (by examining $l^{\prime}-V^{\prime}$ to six and seven figures (in our 8-figure machine) with matrices up to size 80 . When we first noticed intaceuracies in the third figure of our zero-energy calculation (50×50 matrix) , we tried many variations of numerical terhniques to improve the solution of the linear equations; but the only thing that succeeded in decreasing $l^{\prime}-I^{\prime}$ was a complete double-precision (16-figure arithmetie) solution of the efuation (by the original method). However, we then found that if the input matrix-which is computed in single precision and un. doubtedy contains rounding errors of a couple of mits in the eighth plare- wats changed (randomly) by one unit in the eighth place, the new solution, although
internally accurate to cight figures, differed from the first solution by as much as our original error in $l-V$, namely, almost one percent. ${ }^{3}$ Thus, in order to get better than three-figure accuracy in this calculation, we have to compute the matrix to better than eight places. At this point we guit.

SIMMARY

It has been shown that the concept of "the extremum" in variational principles for sattering is not well understood when one does actual calculations with any finite number of trial functions. We understand how, becaluse of the continum of eigenvalues of H for positive energies, the so-called "stationary" value of the phase shift ohtained from any single variational calculation may be anywhere from $-x$ to $+x$. (On the basis of purely experimental (numerical) results displayed in graphs like lig. 9 , we can advise that one may overlook the rough parts and deal with the smooth parts 10 get an answer; and in this mamer we have succeded in obtaining some very acourate results. What we lack is a quantitative amalysis of the convergence problem, which would tell us how to get the best answer, most cfliciently. Without such further support, it may be necessary, in the realm of scattering problems, for "variational principles" to relinquish the popularly held title as the way to get the most output for the least input

APPENDIX I

Instead of the simple function $r^{\prime \prime} e^{-r r^{2}}$, we will he as our basis some haguerre polynomials:

The matrix is then

$$
\begin{aligned}
& M_{n, n^{\prime}}=\langle n| \Gamma^{2}+k^{2}\left|n^{\prime}\right\rangle=\text { cocff. of } s^{\prime \prime} t^{n^{\prime \prime}} \text { in } I \text {. } \\
& I=\frac{1}{(1-x)^{2}}(1-t)^{2} \int_{0}^{\infty} r^{2} d r c^{-s r(1-k t)(1-s)(1-t)}\left(l^{2}-\frac{k^{2}}{4} \frac{1+s 1+t}{1-s 1-1}\right) \\
& =\frac{2}{\kappa^{3}(1-s t)^{\overline{3}}}\left[h^{2}(1-s)(1-t)-\frac{\kappa^{2}}{4}(1+s)(1+t)\right] \text {, }
\end{aligned}
$$

Or°

$$
\begin{aligned}
M_{n, \ldots}=\frac{1}{\kappa^{\prime}}\left\{\delta_{m,},\left(k^{2}-\frac{k^{\prime \prime}}{4}\right)\right. & {[(n+1)(n+2)+n(n+1)] } \\
& \left.-\left(k^{2}+\frac{\kappa^{2}}{4}\right)\left[n(n+1) \delta_{n^{\prime}, n-1}+n^{\prime}\left(n^{\prime}+1\right) \delta_{n, n^{\prime}-1}\right]\right\}
\end{aligned}
$$

[^1]In order to find when the determinant of M is zero, we solve the recursion formula

$$
\left(k^{2}-\frac{\kappa^{2}}{4}\right) \geq(n+1)^{2}\left(_{n}-\left(k^{2}+\frac{\kappa^{\prime \prime}}{4}\right)(n+1)\left[n C_{n-1}+(n+2) C_{n+1}\right]=0\right.
$$

The solution is

$$
C_{"}=\text { const. } \frac{1}{(n+1)} \sin (n+1)_{\varphi}
$$

where $\cos \varphi=\left(l_{i}^{2}-\kappa^{2} / 4\right) /\left(k^{2}+\kappa^{2} / 4\right)$. Applying the boundary condition $f_{N}=0$, we have the eigenvalues determined,

$$
(N+1)_{\varphi}=m \pi, \quad m=1,2,3, \cdots, N
$$

or equivalently

$$
\kappa^{2} / 4 h^{2}=\tan ^{2}\{[m /(N+1)](\pi / 2)\} .
$$

APPENDLA II

We present here a short and very preliminary attempt at discussing the convergence of variational calculations. Consider that the process of adding more trial functions serves to remove from a given trial function some of the error, which error may be described as an admixture of some of the wrong cigenfunctions. It is frequently said that the admixture of an eigenfunction ψ_{s} to a desired eigenfunction ψ_{n} may be measured by $\left(E_{x}-E_{n}\right)^{-1}$. In bound-state problems this is a finite number, and one generally finds "good" convergence for many problems. (By "good" convergence we mean something where the uth step gives a contribution something like a^{n}, where a is appreciably less than unity; a "poor" convergence would be something like having the nth step contributing as n^{-2}, for example.)

For the seattering problem many ($E_{x}-E_{1}^{\prime}$) will get very small, more so ats the number of trial functions increases. Compensating for this is the fact that a state nearhy (in energy) will have a phase shift very close to that of the state being studied. Just how these two effects compensate is what we do not understand theoretically; and we give here a model calculation which suggents that maybe things do behave quite well.

Consider Kohn's variational principle for the second Born approximation to the phase shift (i.e., expand everything in powers of the strength of the potential).

$$
\begin{aligned}
{\left[\lambda^{(2)}\right]=} & \left.\left.+\left\langle\chi^{(1)}\right| k^{2}+\Gamma^{2}\left|\chi^{(1)}\right\rangle+2 \lambda^{(1)}\left\langle\chi^{(1)}\right| k^{2}+\Gamma^{2} ;(\cos k r) r\right) f\right\rangle \\
& -2\left\langle\chi^{(1)}\right| l^{\prime}|\sin k r / k r\rangle+\left(\lambda^{(1)}\right)^{2}\langle(\cos \operatorname{li} / r) f| h^{2}+\Gamma^{2}|(\cos k r) f\rangle \\
& \left.\left.-2 \lambda^{(1)}\left\langle\sin k r^{\prime} k r\right| l^{\prime}\right\}(\cos k r / r) f\right\rangle .
\end{aligned}
$$

where

$$
l=\left(2 m \hbar^{2}\right) V^{\prime}(r)
$$

and $\lambda^{(1)}$ is a free parameter. Iet us take $f=1-e^{-k \prime y}$, as usual, then if we wet $t=0$, we will be able to have the matrix diagomal with the ehoiee

$$
\chi^{(1)}=\sum_{n}\left(_{n}^{\prime} u_{n}: \quad u_{n}=\text { rueff. of } s^{\prime \prime} \text { in } r^{\left.-t / x c^{n}\right)(1+s)(1-s)}(1-s)^{2}(1+s)\right.
$$

We then get

$$
\left\langle\chi^{(1)}\right| k^{2}+\Gamma^{2}\left|x^{(1)}\right\rangle=-\frac{1}{\iota_{k}} \sum_{n=1)}^{N-1}(n+1)(n+2)\left(_{n}^{\prime 2}\right.
$$

the terms linear in $\chi^{(1)}$ are

$$
-2 \sum_{n=1}^{x-1} C_{n}\left[+C_{n}+\frac{\lambda^{(1)}}{t}(-1)^{n}\right]
$$

where $l^{5}{ }_{n}=\int_{0}^{\infty} r^{2} d r l(r) u_{n}(r)$; and the constant terms are

$$
-\lambda^{(1) 2 \kappa} \frac{\pi}{4}-\underline{2} \lambda^{(1)} \int_{0}^{\infty} r d r\left[(r)\left(1-r^{-\infty r}\right)\right.
$$

Let us take $I^{-}=\eta \mu e^{-\mu r} r$; then

$$
U_{n}=(\eta+\mu)(-1)^{n}\left[1-(n+2) \beta^{n+1}+(n+1) \beta^{n+1} \mid\right.
$$

where $\beta=[(\kappa 2)-\mu][(\kappa 2)+\mu]$, and we get, upon varying the $\left({ }_{n}\right.$,

$$
\left.\left.\left.\begin{array}{rl}
{\left[\lambda^{(2)}\right]=} & \frac{\kappa}{4} \lambda^{(0)^{2}}-\frac{\eta \kappa}{(\kappa-2)+\mu} \lambda^{(1)}+4 \kappa \sum_{n=1}^{x-1}(n+1)(n+2)
\end{array}\right\} \begin{array}{l}
1 \\
\frac{1}{4} \lambda^{(n)}+\frac{\eta}{4 \mu}\left[1-(n+2) \beta^{n+1}+(n+1) \beta^{n+2}\right]
\end{array}\right\}^{2}\right\}
$$

Now, varying $\lambda^{(1)}$, we get simply

$$
\begin{equation*}
\left.\left[\lambda^{(2)}\right]=\left(\eta^{2} \cdot 2 \mu\right) \mid 1-\beta^{2 \times+2}\right], \tag{A.2}
\end{equation*}
$$

which converges very rapidly. (If we had chosen $\kappa \geq=\mu$, the exact answer is obtained from the first term, but this makes the problem uninteresting.) Notice that if we had not varied $\lambda^{(1)}$, the error after I terms would be of order 1λ, which is extremely slow convergence. The variation of the trial phase shift is essential in getting a good fit for the asymptotic part of the wave function, since the Incalized rariational functions have a hard time getting out to large distances.

In this soluble model calculation we have seen that one may in principle
expert convergence as good as that found in bound-state problems. The fact of working here at $k=0$ meant there were no explicit problems of the singularities of $E-H$ with which the body of this paper is concerned; we are not sure just how representative this special result is.

For the purposes of further eomparison, we set up this problem on the eomputer, using the single basis,

$$
r^{\prime \prime} r^{-k r}, \quad(m=0,1, \cdots, V-1)\left(\text { with } \kappa 2 \mu=1_{i}\right),
$$

and letting the machine do the diagonalization which our Laguerre polynomial here did analytically. This is then a test of numerical accuracy: the matrix of ∇^{2} will not have a zero eigenvalue for any finite Λ, but nome eigenvalues may get (quite small as N increases (presumably $-1 V^{2}$), and we may expect increasing inaccuracy due to the finite numerical accuracy of machine operations. The (quantity $[\lambda]-1$ computed agreed well with (A.2) up to about $N=10$; and from $N=10$ to $N=20$ there was pssentially no increase in aceurary, the round-off errors growing to several decimal places larger than the answer it.self.

In these trial calculations the difference $l^{\prime \prime}-1$ 'stayed in the last (eighth) decimal place up to $N=8$, then increased sharply, and from $N=11$ to $N=19$ this error fluctuated from less than 10^{3} up as high as 10^{6} in the eighth place. Torompare this with a typical bound-state caleulation, we repeated this calleulattion by replacing the matrix of Γ^{2} by that of ($\Gamma^{2}-\epsilon^{2}$) with a value of $\epsilon=0.08$, which keeps the smallest eigenvalue of the matrix always greater than it was before at around $N=5$. Now the arror $C_{2}-V_{2}$ was no greater than 2 in the last place with only one exception (then equal to 4) for all $N<20$. However, the errors in $U_{0}-l_{0}$, although better than oun order of magnitude reduced from the first calculation, were still very large, growing orer four and five derimal places; but this may be explained by the fart that this catculation comverges in the worst possible manner (expansion of 1 in Laguerre functions).

ArKNOW LEDGMENT:

The author thanks Dr. C. Zemach for many very helpful discussions. It is also a pleasure to acknowledge the assistance of many members of the staff of the Caiversity of Califomia Computer Center, on whose IBM 704 these calculations were carried out.

Received: May 30, 1961

REFERENCEN

1. J. K. L. MacDonald, Phys. Kev. 43, 830 (1933).
2. E. P. Wigner, Phys. Rev. 70, 606 (1946).
3. Marehall Baker. Arm. Phys. 4, 271 (1958).
4. B. A. Lippmany and J. Nohwinger, Phys. Ret'. 79, 469 (1450).
5. L. Rosenberg and L. Sprych, Phys. Rev. 120, 474 (1960).
6. J. H. Wilhingin, Numer. Math. 2. 319-40 (1960).

[^0]: ${ }^{1}$ It is interesting to look at the history of the use of the scale parameter as andependent variable constant in the trial functions. In the early work of Hylleratas, with only a few

[^1]: * See Wilkinson (6) and other papers referred to there. An analysis is given of romd-off errors in terms of finding what input matrix will give the resulte obtained.

