
ANNALS OF PHYSICS: 2, 170-177 (1959) 

Uses of Approximate Wave Functions* 
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Stanford University, Stanford, California 

A procedure is given for using approximate wave functions (derived, say, 
by the Ritz variational method), to calculate properties of the system other 
than the energy to an accuracy much greater than that previously thought to 
be possible. The method is based on the form of perturbation theory discussed 
in the previous paper but stands by itself as an independent and, it is believed, 
very powerful innovation. Several sample problems, based on the two-elec- 
tron atom, are worked out; and a program of greatly increasing the accuracy 
in the calculation of many properties of atomic systems is envisaged. 

I. INTRODUCTION 

It is well known that an approximate wave function $0 , when used in the Ritz 
variational principle 

[E] = ($0 7 H#o) 

($0 7 $0) 
= minimum 

gives an approximation [E] to the true energy E which is in error by terms of 
second order in the (small) difference between $0 and the exact solution $J obeying 

H$ = Et). 

If, however, one wants to calculate some other property of this state of the 
system, which would be given by the first-order perturbation theory as 

($7 W), 

where D is some operator which does not commute with H, then the evaluation of 

($0 , Wo) 

gives an answer which is in error by terms of the first order in A = # - $0 . 
One way of improving the calculation would be to imagine #o as the eigenfunc- 

tion of some Hamiltonian Ho , and then treat the difference between H and Ho 
as a perturbation. The correction to ($0 , !21to) would then appear as a second- 
order perturbation calculation mixing the two perturbations Q and H - Ho. 

* Supported in part by the U. S. Air Force through the Air Force Office of Scientific 
Research. 
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APPROXIMATE WAVE FUNCTIONS 171 

From the viewpoint of the matrix formulation of second-order perturbation 
theory this would seem like an impossible calculation; but from the iterated 
differential equation approach described in’ the preceding paper (1) one could 
perhaps simply solve the equation 

P, &Ihl = wo - (!h , wl)ihl 
for F, and then calculate 

2(#0 , F(H - HOMO). 

This is the type of solution we seek for the problem of calculating (#, Qy5) more 
accurately, although we shall not have to consider any zeroth-order Hamil- 
tonian Ho , nor shall we explicitly do perturbation theory. 

In what follows, we have H# = E#, I/J = & + A where A is the (presumed 
small) error in the trial function $0 . Without loss of generality we may take 
(#o , A:) = 0 an normalize both wave functions d 

w, $1 = (90 9 $0) = 0, 

where the symbol x will mean “equal to within terms of order A’.” The Ritz 
energy is 

IE] = (#o 7 Wo) 
($0 > fro) 

= (It, HIL) - (A, Wo) - (Go, HA> 

= 64 W) - (A, W) - (Y? HA> 

= ED - (A, $0) - ($0, A)] = -6 

which thus errs by 0 (A”) as stated. 
For the approximation to (#, Q$)/($, $) = (Q), we shall define 

[Ql ~ ($0 1 Q + FVJ - 4 + (H - 4F I Co> 
($0 7 *o) 

(1) 

and determine the (Hermitian) operator F which makes [Q] - (Q) second order 
small in A. In formula (1) H is the full Hamiltonian and Q will be either E or [El, 
which are NN to each other. 

Now, using (H - e)$ x 0 we proceed to calculate 

WI - (9) = W, WI - (4 W - (ti, W 

- (A FVJ - dA.) - (A, (H - 4W) - (A W) 

x -(A, Wo) - (Go , fiA) - ($7 [F, HIA) - (A, W, FM) 

= (A I [F, HI - Q I 150) + ($0 I [ff, Fl - 8 j A>. 
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These are the first order (in A) errors which we want to vanish. We thus require 

which is the equation determining F. Note that this looks just like the pertur- 
bation theory, but we never had to postulate tie as the eigenfunction of some Ho . 
The practical use of this method lies in the fact that (1) and (2) involve only 
the one function $0. 

The problem is now to solve (2) for F. There are three courses open. 
A. Use a simple enough $0 so that one can solve (2) by either analytical or 

numerical means. Remember that for a one-dimensional problem, one can always 
find F by direct integration. 

B. Use the stationary expression 

J = ($0 I %P’, [F, HII - F(Q - 60) - (fi - WV’ I $01 
to get the “best” value for some guessed solution F, such as F = Ci(c, + c2r + 
. . a), for example. 

C. Suppose one has some accurate but complicated 90 for which it seems too 
difficult to solve (2) for F; but one knows a more crude trial function (3- 

ib=~++=$o+A, il>>A- 

for which 

[F, , H]cp = &o - w  cp 
I 

can be solved for Fo . The difference between F. and F is easily seen to be of the 
order A, so that using Fo in (1) instead of the correct F but still using the ac- 
curate $41 in (1) leaves an error in [sl] - (0) of order of magnitude (AA) which 
is worse than the ideal O(A2) (if we could find the exact F), but better than not 
using any F at all: O(A) .I 

One final word about what energy is to be used for e in (1). Since any constant 
may be added to F and still leave (2) satisfied, it seems safest always to set 
E = [E] so that in view of the identity 

MO, (Ho - FWo) = 0 
any constant added to F will not affect the answer. 

1 One can iterate this procedure to get even better accuracy. Set, Fo = FOO f  PO1 where 
Foe is defined as is 8’0 above. Then solving for Fol from 

[FOl , WY, = (Q - (V, %I - [FIX, HIM0 

one will have residual errors of order M2 and AZ. We have not found any examples where 
this technique was applicable. 
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II. EXAMPLES BASED ON THE 2-ELECTRON ATOM 

The Hamiltonian for 2-electrons in an atom of nuclear charge Ze is 

H = -2 (v; + v;) -‘; - z + <, 
r12 

and we shall use the simple trial function for the ground state (spin singlet) 

where 

The Ritz energy is 

and we can write 

(H 

Since [E] differs from the true energy E by about 2 percent (for Z = 2) we ex- 
pect that & errs by -42% - 14 percent. We shall now calculate the expecta- 
tion values of a few simple operators using (1) and see that we do come within 
about 2 percent (and not -14 percent) of the values previously obtained with 
much more elaborate trial functions. 

fi = ~12 + ~22 is the operator whose expectation value gives the value for the 
atomic diamagnetism. The appropriate F equation is easily solved 

We then have 

(90 , WC) = 6a2 

as the zeroth order expectation value; and the first-order correction works out to 
be 

%A , F(H - [ElhhJ = 6a2 $ z2 , 
which is an increase by 
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For helium (Z = 2) we have 

py] = 6&y {l + 0.096) = 2.31, 

which agrees with the first calculation of Slater (2), and is 3 percent smaller than 
the more elaborate result of Wikner and Das (3) or equivalently the Hartree 
result (4). The experimental value is variously quoted at 2.37 (4) and 2.44 (5).* 

Q = l/r1 + l/rp gives the diamagnetic shielding (of the nucleus by the elec- 
trons) . 

We find 

&I, wo) = p 9 
2m 1 

F = - - 6.1 + TZ), h2 2 shl , (H - mmhJ = 0. 

Thus for helium 

[%++2(2-$3.375. 

Hylleraas (6’), using a six-parameter function gets 3.3764, and he found values 
very close to 3.375 for all the approximate wave functions he tried. It appears 
that (l/r1 + 1/ 2) r is very closely related to (H); and this is evidenced in our 
calculation by the vanishing of the first-order correction. 

Q = 6(rl) + 6(r2) is an extreme example since it measures the electron density 
at a point, and turns out to be quite sensitive to the correlation in the wave func- 
tion. Its expectation value enters in the calculation of part of the relativistic 
energy level correction. 

and we already know (i) 

. 

We find 

Thus for He 

47m03[6(r1) + 6(r2)1 = (2%)“fl + (96 In 2 - 967) 1 

= 38.4{ 1 + .209} = 46.4. 
(3) 

*We have calculated (~2) using the elaborate helium wave functions of Kinoshita (7) and 
get the value 2.37 a~*. 
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Here we have an excellent example of the improvement wrought by our tech- 
niques. The first-order correction is 21 percent and gives an answer within 2 
percent of the value 45.5 given by Kinoshita (7). 

III. EXTENSION TO SECOND-ORDER PERTURBATIONS 

Suppose we needed to calculate the second-order energy perturbation EC’) due 
to some operator 0 if, for example, the first-order (Q) vanished by reasons of 
symmetry. 

E(2) = c’ (’ I ’ 1 n>(n 1 ’ 1 ‘>. 
n Eo - En 

Here the states ( n) and energies E, follow from the complete Hamiltonian of 
the unperturbed system H. According to the discussions of the preceding paper 
(I), we may set 

E”’ = (I//, QF#) , 

where P is determined by [F, H]# = fi$ and we assume (#, a#) = 0. 
The problem is, If we cannot even solve exactly for #, one eigenstate of H, can 

we get an accurate evaluation of Ec2’? 
The solution we give is the extension of what we have already done, i.e., we 

do effectively third-order perturbation theory starting with an approximation 
to #. 

The following result can be proved by an analysis similar to that following 
Eq. (1). We define an approximation to Ec2), [Ec2’] calculated with some ap- 
proximate wave function $0 

[Ec2’] = ($0 1 QF,, + G(H - E) + (H - E)G 

+ %Kt(H - 4 + %‘(H - e)Fo2 I $0). 
(4) 

Then it is claimed that [EC’)] E Ec2), i.e., we err only by terms of second order 
in I - $0 if Fo and G are determined by the equations 

PO , HMO = Wo, [G, HI&, = QF&, - (‘;; ‘2:‘) $0. 
0, 0 

(5) 

Using our earlier model of #o for the two-electron atom we now calculate the 
dipole polarizability: 

D = eE[?-~Pl(cos e,) + rJ-qcos &)]. 

We have from earlier work (1) 
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TABLE I 

POLARIZABILITIES OF Z-ELECTRON ATOMS [CX IN UNITS OF (ANGSTROM/~)~] 

Present work Wikner and Das (3) Sternheimer (8) “Exp.” (8)s 

H- 7.60 14.88 13.4 
He 0.183 0.218 0.224 0.204 
Li+ 0.0273 0.0305 0.0307 0.0235 
Be++ 0.00758 0.00813 0.00825 0.0059 
B+++ 0.00287 0.00303 0.00306 0.0029 

a Of the values labeled “experimental” only that for He is reliable. 

so the zeroth order result is 

We find the solution of the equation for G (by trial and error method) : 

G = ; G’ ; [gh) + g(rz> + PI (cos ~IZ&(TI, ~41, 
0 

g(r) = %6a4r2 + Kgx3r3 + 1/52a2r4, 

4 3 2 

6(r1, r2) = c Tl?+2 + a_ (TIT22 + TzT12) + !L. r12r22* 
4 8 16 

And we get the first-order correction in [E’2’] 

9(&2&a 

-5 a0 16 ao’ 

Setting EC2) = -~cY&~ we have our evaluation of the polarizability CY 

9a03 
a = (2 - 9&)4 ’ + $- (z _‘5&) 

Numerical values in Table I compare fairly well with the results of more 
elaborate works. 

TABLE II 

QUADRUPOLE SHIELDING FACTORS 7.. 

Present work Das and Bersohn (10) 

H- 1.080 1.141 
He 0.413 0.416 
Li+ 0.255 0.256 
Be++ 0.185 0.185 
B+++ 0.144 0.145 
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We h.ave carried out an analogous calculation for the quadrupole shielding fac- 
tor ya (9) resulting from the mixed second-order perturbation calculation with 
electron interactions r”P,(cos 0) and r-“P,(cos 0). Our result is 

rmo(1s2) :&,) i ’ - = 
(2 

+ 1 3840 In 2 2671 
(2 _ 5fs) 

$j + 
96 

= (2 $6) + (2 
0.0520 

- $id2. 

The comparison with the result of the more elaborate calculations&y Das and 
Bersohn (10) shown in Table II is quite favorable. 
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