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Calculations in SchrGdinger Perturbation Theory* 

CHARLES SCHWARTZ 

Department of Physics, Stanford University, Stanford, California 

The evaluation of second- and higher-order perturbations of the energy by 
iterative solution of Schtidinger’s equation, rather than by evaluation of the 
well-known matrix formulas, is described and exploited. Several examples are 
worked out exactly for the hydrogen atom, to point the way for other more 
practical, but more involved, problems. 

I. INTRODUCTION 

Schriidinger perturbation theory deals with the attempted solution of the 
eigenvalue problem 

W = W, 

where H = Ho + H’ contains a zeroth order part Ho and the perturbation H’. 
Expanding strictly in powers of the “smallness” of H’, we have the well-known 
matrix solution 

E = E(O) + E(l) + Ec2) + . . . , 

$ = #(O) + #(l) + . . . ) 

Em”’ 1 m) = Ho 1 m), E,(l) = (m 1 H’ 1 m), 

4% (2) = cn’ (m I H’ I n>(n I H’ I m> , 
E,(O) - En(O) (1) 

where I n) are the complete set of eigenstates (&“‘) of Ho . The practical prob- 
lem at hand is that while the expression for E”’ is simple enough (just a single 
integral need be done), that for E”’ is so complicated (an infInite sum over 
integrals) that one seldom can evaluate beyond first-order energy shift without 
making some gross approximations. 

* Supported in part by the U. S. Air Force through the Air Force Office of Scientific 
Research. 
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As an alternative to the above popular matrix solution, one can simply write 
down the complete Schrijdinger equation, order by order 

(E,,,(O) - Ho)l),(“) = 0, 

(E,(O) - Ho)~,/) = (H’ - Em(1$6m(o), (1’) 

E,/) = IC;~(~)*H’~,(O) &, 
s 

Em(‘) = s #m(“* (H’ - Em(l))#m(l) &, (2’) 

and try to solve the differential Eq. (1’) for $(l). 
The complete equivalence of the two formulations of the problem is quite 

easily seen, and it has been mentioned (1) that it might be easier in some cases 
to work from (I’), (2’) instead of (1). However, it seems that only recently (z?) 
has this possibility been realized in practice. 

There are two dynamical systems which can be completely solved and might 
serve as Ho’s for many problems: the harmonic oscillator, and the hydrogen 
atom. For perturbations on the harmonic oscillator the matrix formulation (1) is 
most powerful, since the simple operators xn, p” have only a few, easily calculable, 
nonzero matrix elements. The recent work by Dalgarno (2) and collaborators 
has shown that the differential equation approach (l’), (2’) is the most effective 
way to evaluate many perturbations on the hydrogen atom system. It is this 
latter situation that we shall expIore in this paper. 

In Paper II of this series, we shall describe a very important application of 
these techniques in problems where we do not start with exact solutions of some 
Ho1 but rather the approximate (trial) solutions of a given, complicated H. 
Finally in Paper III we give even more general mathematical techniques ap- 
plicable only to the hydrogen atom model, and we carry out the difficult calcula- 
tion of the nonrelativistic part of the Lamb shift. 

II. EXPOSITION: THE METHOD OF DALGARNO AND LEWIS 

For general perturbation problems, we shall start with the matrix solution (1) 
for Ec2) and simplify notations by calling the state 1 m), IO), and dropping super- 
script(O) on the energies in the denominator. 

E(2) = C’ (0 1 H’ 1 n) (n 1 H’lO). 
, 

n E,, - Em (3) 

also 

p = C’ In) ;jH’lj). 

I n 
(4) 
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Formula (3) is “evaluated” by defining an 

[F, Ho1 ( 0) = (H - 
whence 

(Hermitian) operator F such that 

-7-m I o>, (5) 

~(2) = ~~(OIH’In) hIF& - HoFIO) 
n EC - E, 

= ~‘(OIH’ln~~nlFIO) (6) 

= (OjH'F(O)- E"'(O(F(0). 

This is the result for second-order perturbation to the energy in terms of a 
single integral only. The problem is to find F, which is given as the solution of 
Eq. (5)’ for the particular state IO) in question. The connection with Eqs. (l’), 
(2’), comes from substituting (5) into (4) whence 

I//(' = F IO) - (0 ) F 1 O)] 0), 

and Eq. (5) is 

(Eo - &)F j 0) = (W' - E"') j 0), 

which is just Eq. (1’); similarly (6) is the same as (2’). 
The method is then useful only if we can find F satisfying (5). There are three 

approaches here that should be pointed out. 
A. Assume F is a function of space coordinates only so that 

[F,H,,] = ;(V'F + 2VF. V). 

We assume 

[ Ho = -g v2 + V(r).] 

Then by some good fortune manage to solve the inhomogeneous differential 
equation 

$oV2F + 2(VF) . (V+o) = ‘$ (H’ - Ec”)$o. (7) 

The boundary conditions are clear when we remember that the wave function is 
$ z (1 + F)& . In the next section of this paper, we shall display examples of 
this type of solution. 

1 One might try to solve the operator equation [F, Ho] = H’ - E(l) which would allow 
evaluation of JW for every state, but this is in general much too hard. Instead we solve the 
much more special Eq. (5) for each state 1 0). 
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B. For any one-dimensional problem, (7) can be solved by quadrature (3) 

where the unspecified lower limits of integration are determined by the boundary 
conditions.2 We solve one problem by this method in the last section of this 
paper. 

C. One may construct a variational principle for F as follows. Consider the 
quantity 

J = (0 1 #@Z’ - E”‘) + (II’ - E”‘)c$ - $$[4, [+, Ho]] 1 0). (9) 

Straightforward calculation shows that J will be stationary with respect to arbi- 
trary variations of the operator 4 if 4 satisfies Eq. (5) for F and its adjoint 

(0 1 [II0 , F] = (0 1 (27’ - E”‘). 

Furthermore if 4 does satisfy (5) then J = Ec2), and we have a useful variational 
expression for Ec2) depending on our choice of 4 to approximate F. We can put 
(9) in homogeneous form by setting 4 = cc0 and varying the constant c. We then 
have 

c = II/I2 , J = M2/12, 

I1 = (0 [ v(H’ - E”‘) + (II’ - E(‘$ [ O), (10) 

I2 = (0 I [cp, FP, Ho11 I 0). 
The connection with the Ritz variational principle for the total energy is easily 

established (see Refs. 3 and 1). An example of this variational calculation will 
be given in Paper number III of this series. 

III. EXAMPLES: SIMPLE SECOND-ORDER PERTURBATION 
CALCULATIONS IN HYDROGEN 

The zeroth-order Hamiltonian is 

(11) 

and for the ground (1s) state 

$0 = IO) = d/a3 -rlo 
d- -P ’ (12) 

where a = fi2/Zm.e2. 

* It is seen that an arbitrary constant can always be added to F within the definition of 
Eq. (5); but this constant drops out in calculation of EC*), Eq. (6). 
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Consider the perturbation by a 2’ multipolar electrostatic potential with in- 
finitely removed sources. 

H’ = -eXPl(cos 0)~’ (I > o>, (13) 

where Pl is the Zth Legendre polynomial and X gives the strength of the field. For 
the ground state E(l) vanishes so we calculate E w for the polarization energy. To 
calculate all the Coulomb matrix elements of (13) would be hard work, and to 
sum the series (1) appears impossible. Solution of Eq. (5) for F is, however, quite 
simple. Dividing Eq. (7) by $0 , we have 

vzF - ” a F = 2meX 
a Zr 

- -T@- Pl(COS e)d, 
which is easily solved by variation of constants 

F = XPl(cos O)(ar’ + @‘+I), 

yielding 

F = ~P,(cos~,(~+~). (14) 

A simple integration then gives 

E(2) = _ x2 W + l)!(Z + 2) a2’+j 
l-221+1 -. 

z 

For Z = 1 we have the (dipole) polarizability 

2 9 a” a E - _ Ec2’ = _ - 
x2 2 2’ 

a well-known result. 
The long-range force between a hydrogen atom and a fixed charge some large 

distance R away was first calculated by Dalgarno and Lewis (2) exactly as we 
have just done. Later calculation (4) has given the exact second-order interaction 
for all distances R large and small. 

Suppose that with the external multipole potential XPlr’ one attempts to meas- 
ure the 2’-pole moment of the hydrogen nucleus. The electron will produce a 
shielding effect which reduces the effective field strength seen by the nucleus to 

XP$(l - Tl). 

We can calculate yz by the mixed second-order perturbation calculation where the 
two interactions seen by the electron are H’ (same as (13)) due to the external 
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field, and H” = -e/r’+‘Pl(cos 0) due to interaction with the nuclear moment 
(given unit magnitude). We want 

i Cl (ojH’/n) (TzIH~o) + (0pf+2) (+?(o) 
Yl= -x 

Eo - En > 7s 

which we evaluate to be 

- ;(OjH”F[O), 

with P given by (14). The result of integration gives 

2 
y1 = ZZ(Z + 1)’ 

In the neutral atom (Z = 1) the electric dipole field is thus completely screened, 
and the electric quadrapole field is reduced by g of its original value. 

One could also have solved this problem by getting the F corresponding to H” 
on the right-hand side of (7). The solution for this F does not follow from (14) 
by the substitution I--+ -1 - 1 since 

vzr-l-lP,(cos e) = - Pl(COS e>@ + l)r+@ 
r2 ’ 

where 
s 

OI 
drf($(r) = f(0). Th e correct F solution generated by rF’-lPL(~~~ 0) 

0 

has the form 

Pl(COS e) & c,P. 
m&=---I+1 

The operator H’ = T$~@~d.I[6(r)/r~] gives the hyperfine structure of s-elec- 
trons. The first order shift is (for the ground state) 

E(l) = ; /.~oghi-I) f ,  

which $ves the first-order energy-level splitting 

A/) = ;‘s (21 + 1). 

We want to calculate the interaction to second order for the electron, in order 
to get the next contribution to the energy-level splitting 

(2) _ Av -- 2 (21 + 1) C’ 
I E,, - E, * 
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The equation for F is 

which has the solution 

F2?? fi2 ( -;+;lnrt-f. > 
It is easily seen that AvC2) is infinite due to the singular nature of W; actually 

the small distance behavior would be modified by relativistic and other (e.g., 
nuclear size) effects to yield a finite, and in fact small, result. However it will 
be of interest for us to compare this second-order calculation for two different 
states and get a result which is finite in our calculation, and would therefore not 
depend on the “cutoff” of a more refined theory. Heberle et al. (6) have measured 
the ratio of Av’s in the 1s and 2s states of hydrogen to very high accuracy, and 
Mittleman (6) has given an account of the small residual effects in terms of 
quantum electrodynamical corrections. He did, however, not include such an 
effect as this second-order hfs. 

For the 2s state we find 

F.2, = %(- 
(2a T- r) * 

Of interest is the residual R defined by 

Av2s - = ; (1 + R), 
ha 

whence 
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which works out to yield3 

R+!g? (3 - 2 In 2) = - a”; gr(l - i In 2) 

in terms of the fine-structure constant a, electron to proton mass ratio m/M, 
and th.e nuclear g-factor gI (= nuclear moment in units of efi/2Mc divided by 
nuc1ea.r spin). 

This is not yet the entire effect since the hyperfine structure interact.ion can 
also couple sl/2 states to d3/2 state through the interaction 

The calculation of this in second-order proceeds as before. 

A~8-d~~) = 5p02gr2(21 + 1) F 
, (0 1 F3P2(cos e) 1 n)” 

E0 _ E, . 

The appropriate F’s are 

(16) 

and we have the result 

The s-d contribution is very much smaller than the ss part, and the combined 
result is 

R,., + Ramd = -0.153 x lo-‘gr . 

In hydrogen (gr = 5.58) this contributes -0.85 X lo-’ to the experimental 
value of (13 f 3) X 10m7. This effect alone does not resolve the discrepancy 
between this measured value and the result of Mittleman’s calculation (20.5 X 

3 M. II. Mittleman (private communication) has calculated this effect working from the 
Dirac equation and making the appropriate a2 approximations. His result 

is different from ours (although only 12 percent larger in numerical value). We have been 
unable to understand this difference. 
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lo-‘), but suggests that there may be other important $m/M corrections (from 
relativistic recoil of proton, etc.) 

IV. EXAMPLE: A THIRD-ORDER PERTURBATION CALCULATION 

We shall now calculate the Stark effect on the hyperfine structure of hydrogen 
in the ground state. The total perturbation is 

H’= -e&rcose+hfs 

where hfs = the two parts of the hyperfme structure interaction given in the 
preceding section. In first order this H’ gives only the first order splitting of the 
hfs levels. In second order, we get the quadratic Stark effect, which is the same 
shift for both hfs levels, and also the second-order hfs just discussed. Finally, in 
third order, we find a new, interesting effect: the change in the hfs splitting 
which depends on the external electric field strength (NE’). The relevant part of 
the third-order energy formula is 

E(3) = 2 C’ c ~(O~e&rcos~~n)(n~e~rcos~Im)(m~hfs(0) 
m n WI - En>(Eo - Em) 

- (OlhfsIO) c 
r(OIe&rcosBIm)2 

m U-h - Ed2 * 

To evaluate E’” we first find an operator F such that 

[F, Ho] IO) = e&r cos 0 IO), 

which lets us reduce (17) 

Bc3) = 2~~(OIFeErcoseIm)(mIhfs10) 
m Eo - Em 

+ (lFhfsF\O) - (O]hfs10)(0~F210). 

We already know the solution of (18) : 

F = 2”2 e& ~0s e a2r ar2 
h2 

----, 
2 4 

To reduce the one remaining sum we seek another operator G defined by 

[G, H,] I 0) = Fe&r cos 0 IO) - (0 1 Fe&r cos 0 IO) I 0) 

to get 

Ec3) = (0 I (F2 + 2G)hfs IO) - (0 1 F2 + 2G jO)(O 1 hfs IO>. 
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We find 

Evaluating the remaining integrals in EC3) we get a shift C?(G) in the separation 
of the two hfs levels given by 

and thus for hydrogen (a = fi2/me2) a fractional shift in the resonance frequency. 

6(E) 2 3 

-=- 
Av 

14.91 (“e3”a,,, 

which has the expected form: second order Stark shift + Rydberg. 
In discussing the presumed “pressure shift” occurring in their measurement of 

Av, Wittke and Dicke (7) estimated this effect simply by using the characteristic 
dimensions of the system. We now see that they underestimate the result by a 
factor of fifteen. The result of this calculation gives also a qualitative under- 
standing of the result of the experiment by Haun and Zacharias (8) on the Stark 
effect on the hfs in cesium. 

V. ATTEMPTS TO STUDY THE HELIUM ATOM 

The separation of the 2-electron atom Hamiltonian into 

Ho = -& (V12 + Vs2) - Ze2 k + k 
( ) 

(19) 

and 

gives, in treating H’ as a perturbation, a power series in l/Z for the energy. For 
the ground state 

Es -2z”+;Z-E2+0 

The calculation of Ez has been the subject of much work by Hylleraas (see Ref. 
1, Section 33) using the variational principle. We have tried, but not succeeded, 
to calculate E2 by analytical means. Even though the expansion (20) is not very 
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useful as a means of calculating the energy of the He atom, an exact evaluation 
of Ez would provide a standard to which one could compare Hylleraas’ result in 
order to judge how appropriate is his choice of trial functions. In this direction 
of supplying some exact answers with which to gauge the accuracy of trial 
functions, we 6nd that we can evaluate the first correction to the one-electron 
density. 

The zeroth-order wave function is 

1 4 -(rt+r,)/a #o(n, r2) = - - e 47r a3 

and the first-order correction to this due to the above H’ is 

where 1 n) are all the hydrogenic states for two electrons (space-symmetric for the 
spin singlet under consideration). The square of the total wave function 
$0 + p + * * - integrated over the coordinates of electron No. 2 gives the one- 
body density p(4). To first order we have 

p(q) = s 1 #o(r~, r2) 1’ dvz + 2 s $o(rl, r2)+‘“(n, r2) dvz 

cm 

where x(r) includes the first-order effects of the correlation e’/r,, . The states 
1 n) in J/(l) can be written 

I n) = F ~u,,hhih,,l,(r2) + u,,2m(r2>u,,hhi>l 

*Ml + &wJ>- 
l/2 (-1P 

dm, 

where unlm are hydrogen states and the two orbtials are coupled to a total S-state. 
In calculating x we keep only those states in which one electron stays in the 1s 
orbit. This is no approximation, but is forced by the integration over r2 in Eq. 
(21). Thus, we are reduced to the one-electron problem 

f x6-1 I 0) = 2 F 1 n) g _” ;), 
n 

where 

V(r) = (1s I &, 11s) = ;[I - e-2++ + ;)I 
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and 

(0 1 v IO) = E(l) = f z 2. 
0 

(22) 

From our earlier studies we see that 

; x = 2[F - (0 I F IO)], 

where 

[F, HOI I 0) = [V - (0 I v I 0)l I 0). 

This is just the type of one dimensional problem referred to in paragraph B of 
Section II, and we solve by integration. 

(23) 

and 

(OJFIO) =g(g-iln2). (24) 

In the variable x = 2r/a we have finally 

c-t!ln? ’ -“+ 8 2-2e 

(25) 

C = -l-.5772 --a , 

Hylleraas [see Bethe (I), p. 2381 gives the wave function as 

U,[l+kq], u. = e-lib&-, p = ~c,~~(T~T~~v~, (26) 

where 

rl + r2 u=2-, 
f-1 - r2 7=2---, 2, = 2%. 

a a a 

Thus 

x&i> = -L ?ra3 s dv2(p(r~ , rJe-2ra’a. (27) 
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TABLE I 

COMPARISON OF THE EXACT RESULT WITH HYLLERAAS’ ~-PARAMETER APPROXIMATE 
~/Z-CORRECTION TO THE ONE-ELECTRON DENSITY IN HELIUM 

2 0 0.5 1 2 4 

X -0.33382 -0.32554 -0.29999 -0.20026 +o. 14089 +1.09170 
XH -0.33 -0.328 -0.300 -0.199 +O. 138 fl.102 

The various integrals in (27) are easily evaluated. We give here the result for 
Hylleraas’ %parameter function (1)4 2 = 2r/a, 

XB(x) = -0.889 + 0.1719x + 0.0109$ - 0.0035~~ 

- 0.2343eC” - 0.00944xeC + 0.785 l-. 
2 

A numerical comparison between xH and our exact x is given in Table I. The 
errors in the one-body density from Hylleraas’ &parameter function are thus 
seen to be about 1 percent, while the energy Ez obtained with that wave function 
is within 0.2 percent of the value from a much more complicated function (g).’ 
We cannot use our exact x to calculate Ez since that requires knowledge of the 
two-body density. It will be interesting to repeat this comparison with Hylleraas’ 
more recent work (9) (up to 24 parameters) to see just how effective the newly 
added terms are. The error shown here may be a useful guide in deciding how to 
improve the trial function at each step. 

VI. SUMMARY 

We have explored the technique of evaluating second-order perturbation 
theory, from the point of view of Schrodinger’s differential equation. The method 
seems very well adaptable to problems based on the hydrogen atom and several 
examples-some of these actually of practical interest-have been worked out. 
In the following two papers we present further generalized applications of this 
technique. 

RECEIVED: November 12, 1958 
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