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Theory of Hyperfine Structure*

CHARLES SCHWARTZ)

(Received August 31, 1956)

Numerical values for the one-electron integrals of interest in the analysis of atomic hyperfine structure
have been calculated by using screened relativistic wave functions. Ratios of these integrals, representing
the relativistic correction factors of Casimir, are given to replace the older values which neglected shielding
effects. The most marked changes occur in the studies of the octopole interaction and hfs anomalies in
p-states. The calculated one-electron magnetic dipole integral, when compared with the experimental
ratio, dipole hfs/nuclear moment, makes it possible to deduce the magnitude of atomic polarization (Stern-
heimer) effects. In the doublet P-states that were studied, the polarization terms seem to be almost entirely
of the sort discussed in an earlier paper: excitation of s-electrons. In a general discussion of polarization
calculations we give some explanation of the large correction factors for the fine structure, dipole and
quadrupole hyperfine structure that were calculated by Sternheimer (the radial redistribution of charge
terms). It is also suggested that large polarization corrections may be needed for the octopole interaction.

INTRODUCTION
' EASURE3IENTS of atomic hyperfine structure

to determine nuclear magnetic dipole moments
have to a large extent been supplanted by the more
direct measurements of nuclear resonances in externally
applied magnetic fields. However, for the determination
of all other nuclear moments —electric quadrupole, mag-
netic octopole, and so forth —it is felt that we shall have
to rely on observing the interactions with the electronic
structure surrounding the nucleus. Of the three struc-
tures used in experimental work: atoms, molecules, and
bulk matter (usually crystals) we emphasize the first,
solely because of its relative simplicity.

In an earlier paper' the general analysis of hyperfine
structure in atoms was set up and a number of detailed
aspects were worked out. This is the second report in a
continuing program of analysis for determining the
values of nuclear moments to an accuracy of a few

percent.
First-order atomic hyperfine structure is described

generally by some relation like the following:

Measured hfs= nuclear moment
g electronic matrix element.

work. The contribution of all other electrons (polariza-
tion corrections) has been the subject of much work by
Sternheimer, ' some of whose results are rather unsatis-
factory in comparison with experimental data. We shall
speak here only qualitatively of the polarization eGects
and leave their actual calculation for future work. '

The results of the present work include a revised
evaluation of the relativistic correction factors used
in I, revised values for the nuclear octopole moments,
corrections to the analysis of hfs anomalies, some re-
marks on the polarization corrections of Sternheimer,
and —in the appendix —a completion of the earlier
analysis of second-order corrections to the octopole
interaction.

EVALUATION OF ONE-ELECTRON INTEGRALS
IN HFS

Evaluation of the one-electron matrix elements in hfs
reduces (see I) to the problem of working out a charac-
teristic radial integral for each multipole. The expecta-
tion value of r ' for the dipole interactions was first
estimated by Goudsmit and by Fermi and Segre by
comparison with the hydrogenic wave functions,

Our goal is a reliable evaluation of the electronic matrix
element. The operators involved are presumed to be
well known (I), and it is the wave function of the elec-

tronic system that is being studied. In the first approxi-
rnation of the "closed inner shell" model of atomic
structure only the one (or few) valence electron(s) con-

tribute to this matrix element and it is these one-

electron integrals that we attempt to evaluate in this
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Corps), the U. S. Air Force (Office of Scientific Research, Air
Research and Development Command), and the U. S. Navy
(Office of Naval Research).

f Now with Department of Physics, Stanford University,
Stanford, California.

' C. Schwsrtz, Phys. Rev. 97, 380 l1955l. This work will be
referred to as I; numbering of equations will follow consecutively
from the last (63) of I, and notation in this work will conform to
usages in I.

/liydrogen =—3K

m'as'l (f+—,') (l+ 1)

except that for;z and Z they used effective quantum
numbers e*, derived from the term values, and shielded
nuclear charges Zo, Z;. The determination of Z; has
always been something of a sport; in fact, the general
success of this formula in correctly determining nu-
clear dipole moments is somewhat surprising.

Later work made great use of the similar dependence
of magnetic dipole and electric quadrupole hfs as well
as fine structure on (r ') to derive the lesser known of

' R. Sternheimer, Phys. Rev. 80, 102 (1950); 84, 244 (1951);
86, 316 (1952); 95, 736 (1954).

3 A calculation of the hfs of lithium, with polarization (con-
figuration interaction) e6ects included, has been started by
R. K. Neshet of M.T.T.
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these quantities from the better known. The corrections
to these ratios, which arise mainly from relativistic
effects, were given by Casimir (reference 3 of I) and
others who used the analytical eigenfunction for a
Dirac electron in a pure Coulomb field with zero binding
energy. The same procedure was used in I to calculate
the octopole integral relative to the fine structure or
to the dipole integral, and also for our analysis of
s-electron configuration interaction.

The starting point of the present work was the desire
to have more reliable values for the relativistic cor-
rection factors F, R, T, G, S, H, C"/C' (see I), as well as
Z; which is defined by the fine structure. Reasons for
doubting the Casimir values are as follows: some of
these factors can be easily calculated by using Dirac
hydrogen wave functions for ~&=i, 2; then it is seen
that they differ significantly from the Casimir values
at n= ~. In a many-electron atom, the first correction
to the purely Coulomb potential Ze"-/r at small values
of r is the constant shielding potential of all the other
electrons that can be estimated from the Thomas-Fermi
statistical inodel to be approximately —1.9Z'"e-'/as.
Thus, in the region near the nucleus that is important
for hfs integrals, the electronic wave functions behave
as hydrogen wave functions characterized by a principal
quantum number e,ff gZ'" that barely exceeds 2 in
the heaviest atom.

We decided to undertake a program of numerical
integration of the Dirac radial equations for some
reasonable atomic potential in order to calculate all
the hfs integrals without appealing to mathematical
approximations. The facilities of the 3I.I.T. electronic
digital computer, Whirlwind I, were used for this work.

CALCULATIONS

The Dirac radial equations for an electron in a
central field are (see I):

fd try 2 n

I

——— lf(x)=- 1 ——Le—2y(x)) g(x),
EZ~ ~) ~ 4

Z —11
y(x) =- 1y

x (1+/x)'
(66)

In Fig. 1 we have plotted, for the purpose of corn-
parison, the exact Thomas-Fermi shielding function,
Tietz's approximation (1+0.643Z"'x) ', and the Har-
tree equivalent Z~(x) for neutral gallium (Z=31). In
our work, P in formula (66) will be treated as a param-
eter to be varied so that good values for the term
energies and fine-structure splittings are obtained. We
actually end by taking ratios between calculated fine-
structure and hfs integrals, and the exact value of P
will have negligible e8ect on these comparisons.

The range of x was limited to 0.0001~&x&&12 for
most of the atoms studied, and this total region was
broken up into 484 intervals with spacings varying
from 0.000005 to 0.1. Numerical integration was
carried out by the computer, using a fourth-order
Kutta-Gill method at a rate of approximately two
intervals per second. With some particular values of the
parameters K, Z, and some guessed values of e and P,
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able potential, p, and compare some of the results—
term values, fine structur- with experimental values,
as a test.

We have actually used the convenient form sug-
gested by Tietz. '

(d tr) n
I

—+- lg(~) =-L —2&('))f(- )
Edx x) 2

(64)
Q .4

0.3

where x=r/as, as ——h-'/me', e is the binding energy in
Rydbergs= e'/2as, n= e'/Ac= 1/137, it= (j—l) (j+l+-', ).
V(r), the potential seen by the electron, = (e/a, )p(x);
the normalization integral is

0.2

0. I

r dx(f'-+g') =.V.
0

(65) I
"f - -- ~ ~ --- -.-... . . ,'. .. .

2 3 4
8 lO l2 14 I 6

The only problem is to define the screened field P(x).
Ideally, p(x) should be that field which gives the eigen-
functions f, g that are just t.he Hartree-Fock functions
for the particular atom. It is, of course, impossible to
make this comparison; therefore, we shall use a reason-

FIG. 1. Screening functions for atomic potential in neutral
gallium; note doubled abscissa. Thomas-Fermi function, solid
curve; Tietz's approximation, dashed curve; Hartree, Z„/Z )from
A. J. Freeman, Phys. Rev. 91, 1410 (1953)g, dotted curve.

4 T. Tietz, J. Chem. Phys. 22, 2094 (1954); 23, 1167 (1955).
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f x—'dx (p; and p;)

fgx 'dx
0

(p ).

This was all worked out for two different values of the
potential parameter p for each of the following atomic
doublet states: H 2p, Al 3p, C'a 4p, In Sp, Tl 6p, Cl 3p~,
Br 4p', I Sp'. We intended to use these two sets of data
for interpolating or extrapolating to that value of p
that best reproduced the experimental values of e, 8.
The actual use of the calculated numbers is displayed
in the following sections; the raw numerical results have
been given in a previous report. '

the ratio f(g at x=0.0001 is determined by a simple
power series expansion, and Eqs. (64) are int. egrated to
x=12. For x) 12, P is put=0, and f(12), g(12) are
joined to the appropriate spherical Hankel functions
for this outer region. The eigenvalue criterion is that
the coefFicient of the exponentially increasing Hankel
function determined by this matching should go to
zero. With a fixed value of p, e would be varied to make
this coe%cient go to zero by a simple linear interpola-
tion-searching procedure which improved the value of e

by approximately a factor of 10 for each complete
iteration when we were fairly near the correct value.
Alternatively, we could specify the energy eigenvalue e

and vary the potential parameter p. Thus, for each
atomic state, an energy eigenvalue accurate to within
one part in 10' could be obtained after about 20 minutes
of machine computation time.

If this procedure is repeated with one value of p for
~=+2 and —1 (p3~2 and p&i&), we have immediately the
doublet fine-structure splitting 6= Ei]g fp2 (measured
in Rydberg units). Another program took the calcu-
lated eigenvalues and used a fourth-order numerical
integration formula to calculate the normalization in-

tegral (65) and the quantities of interest for hfs:
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number, could give an excellent representation of
shielded atomic potentials. In this extended form,
p controls the initial slope of the funct. ion and y controls
the rate of decrease for large x.

In Fig. 2 we plot the values of P that give the experi-
mental values of &i~2 (crosses) and 8 (circles) for the
several atoms mentioned, together with Tietz's value
p= 0.643Z'" (dotted curve).

In some additional calculations, it was found that
one value of p gave the term values of the 6s, 6p, and 7p
levels of Cs, each of which is within one percent of the
experimental value. Also, the matrix elements (s~x~ p)
between these states were calculated and found to be
in good agreement with the measured transition rates.

RESULTS 2: RELATIVISTIC CORRECTION FACTORS

The ratios between any two hfs integrals or between
the fine-structure and any hfs integral calculated at one
particular value of the potential (p), a.re very insensitive
to moderate changes in P; hence they can be reliably
obtained directly from our calculated values. By factor-
ing out the theoretical values of the ratios in the limit
of no shielding and Q.Z—+0 we have determined the
ratios of the relativistic correction factors. For the
p-doublets, we have

f I
1 I

20 30 40 5Q 6Q Tp 80 9p
Z

FIG. 2. Values of the potential parameter p calculated to give
experimental values of term energies (crosses) and hne-structure
splittings (circles), ~vith Tietz's value P =0.643Z'".

RESULTS 1: USE OF TIETZ)S POTENTIAL
FOR ATOMIC WAVE FUNCTIONS

The one-parameter Tietz formula (66) was found to
be a very simple and, we believe, accurate form for
constructing shielded atomic wave functions. It is

suggested that an extended form

274
fgx 'dx(p;)

0

(67a)

(1+Px+px') ',

with p, p as suitably parameterized functions of atomic

5 Quarterly Progress Report, Research Laboratory of Elec-
tronics, Massachusetts Institute of Technology (January 15,
1956), p. 70.

Fr0=-
F.;

fgx 'd" (p!)
0

fgx 'dx(p:)

(67b)
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2.5
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formula, for future use. ' In Casimir's theory, H/Fs/Q is
very close to unity for all Z and so our ratio (67d)
should give very nearly just Z, defined by

2.0—
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FIG. 3. Calculated relativistic correction factors for p electrons.
FEZ,./F~/~ is measured on the right-hand ordinate, all others on
the left. The values for 8 and R/I'&/. are very well represented by
Casimir's formulas. The strong depression of T/F~/~ results from
screening of the electronic wave function. FIZ;/F'3/~ represents
only the one-electron fine structure and neglects the exchange
eAect.

fgx 'dx(pi)
T 3 ~p

F; 2Z'
fgx 'dx(p,)- (67c)

HZ;

F,*

45.688.V;
(67cl)

The calculated values of these ratios are shown in
E'ig. 3 as heavy marks, and smooth curves have been
drawn to facilitate interpolation. EBects of shell struc-
ture, i.e. , different behavior for p versus p' configura-
tions, are most apparent in the values of T/Fs/s and
somewhat apparent in 8. We want to compare these
results with those gained by using Casimir's approach,
which neglects shielding.

Shielding corrections, as we would expect, are most
pronounced for the lighter elements, although they are
not negligible even for the heaviest. Values of R/F3/s are
essentially identical to Casimir's, any shielding sects
canceling out the ratio, since both these integrals are
(r ') in the region removed from the nucleus. The
calculated values of 0 are also in excellent agreement
with those given by Casimir's formulas (see I); this is
thought to be somewhat fortuitous, but nevertheless
serves to recommend Casimir's admittedly approximate

where we neglect the two-electron exchange contribu-
tions to fine structure which will be discussed later.
Our values of Z; are larger than we expected, thus
indicating that Casimir s work overestimates F3/2 and
underestimates II. These criticisms are supported by
the comparison of results for pure hydrogenic wave
functions for principal quantum numbers m=1 and

The most outstanding new result is in T/Fs/s the
ratio of octopole to dipole integrals. The chief assump-
tion in the Casimir approach is that the hfs integrals
have almost all their contribution in the region very
close to the nucleus. Actually, the dipole integral

(r ') in a p-state extends for a considerable distance
into the total electron cloud of the atom, more so in the
lighter elements. Consequently, the rapidly oscillating
Casimir wave functions give too small a value for all

(r ')-dependent quantities. This large error, as we have
stated before, cancels out almost completely in com-
parisons involving dipole, quadrupole, and fine struc-
ture; however it does show up in the ratio with the
octopole integral, which depends essentially on the
electron density at r= 0.

We also calculated the off-diagonal pt/s ps/s matrix
elements of the dipole and quadrupole operators for
indium and thallium and found values for the relativistic
correction factors $, ti that were essentially equal to the
values given by Casimir's formulas (see I).

The chief results of this analysis of ratios is a rather
large correction to the octopole integrals, which will be
applied in a later section, and another similar revision,
which will now be discussed.

RESULTS 3: CORRECTIONS TO hfs ANOMALIES
IN Pg-STATES

The theoretical analysis of the aspects of hfs anomalies
(i.e., isotope effects in hfs), which are ascribed to either
the Bohr-Weisskopf (B-W, nuclear magnetization dis-
tribution) or Breit-Rosenthal (B-R, nuclear charge
distribution) effects, depends on the ratio of the valence
electron's charge density at r =0 to the entire dipole
integral. These ratios (b coefficients) were previously
worked out, using the unshielded Casimir wave func-
tions. The analysis of our calculations described above
gives shielding corrections for these b-coe%cients for
pUs-states. We find that the theoretical strength of
B-W or B-R effects for pi/s-states should be reduced
from their earlier given values by dividing by the

Closer study reveals that the factors F»2, P»2 in (67b) are
overestimated by Casimir and the factor ~C&/~/C&/2)s is under-
estimated, although the errors accidentally compensate.
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TABLE L Calculated values of hfs integrals. For use of these numbers, see the text.

gp2 P fgr ~dr(pi/ )
a/ p

~p' ~ fr~ '~r(ps' )
al p

ao'r f (f'+g')r 'dv(ppg)
p

gp4 ( tgr 4dr (p3(2)
a/ p

B 2p

0.000139

0.4796
(0.367 )

1.2836
( —0.223)

0.0037380
(0.835)

—0.0018655
(0.833)

0.51122
(0.834)

—0.011940
(1.185 )

Al 3p

0.001021

0.3885
(0.5 73 )

1.7190
( —0.233)

0.0086317
(0.932 )

—0.0042518
(0.92 7 )

1.1669
(0.929)

—0.27831
(1.113)

Ga 4p

0.007528

0.4150
(0.588)

2.4521
( —O, 193)

0.025982
(0.980)

—0.011783
(0.969)

3.2701
(o.971 )

—5.6309
(1.046)

In Sp

0.02016

0.4185
(0.644)

2.5937
( —O. 164)

0.048380
(0.998)

—0.018571
(0.980)

5.2864
(0.982 )

—26.460
(1.026)

Tl 6p

0.071013

0.4770
(0.701 )

3.1231
( —0.159)

0.16635
(1.020)

—0.034432
(0.975)

10.619
(0.978)

—173.98
(1.003 )

Cl 3p~

0.008028

1.0348
(0.828)

1.6390
( —0.255)

0.049119
(O.953)

-0.02385 7
(0.952)

6.5595
(0.952)

—3.1222
(1.061)

Br 4ps

0.033580

0.9846
(0.832)

2.2353
( —O.21O)

0.10297
(0.980)

—0.045056
(0.983)

12.570
(0.985)

—29.704
(1.037)

I 5p6

0.069281

0.9202
(0.843)

2.3632
( —0.209)

0.15937
(0.988)

—0.057652
(0.993)

16.558
(0.996)

—101.506
(1.024)

factors 1.68 for Al; 1.49 for Cl; 1.38 for Ga; 1.30 for Br;
1.22 for In; 1.19 for I; 1.10 for Tl. For other elements
we can easily interpolate. It should also be pointed out

. that, in view of recent experiments, we should use a
nuclear charge radius of approximately 1.2A'")&10 "
cm in these theories instead of the larger values used
earlier.

RESULTS 4: FIXING THE POTENTIAL; COMPARISON
WITH EXPERIMENTAL DATA

The absclute magnitudes, not just ratios, of all the
hfs integrals depend strongly on the value of the
potential parameter P. Our plan is to interpolate these
integrals —calculated for two diferent potentials —as
linear functions of the calculated fine structure 8 and
take their final value at that point which corresponds to
the experimentally measured fine structure. These
interpolated points do not generally give the correct
term value but we console ourselves with the observa-
tion that the separation of the pairs of points in Fig. 2

is not very great. We are falling back on the old feeling
that fine structure and hfs are closely akin, and the
energy is only a secondary criterion.

There is one more correction to be made, however,
before we can take this final step. The fine structure in
a many-electron atom is not solely the result of the
motion of the valence electron in the fixed Hartree-
Fock central field of the nucleus and all other electrons;
but this one-electron problem is all that we have calcu-
lated. There are exchange matrix elements of the mutual
spin-orbit interaction between electrons (Breit inter-
action) which are not included in the formula (68) even
when V includes the exchange electrostatic potential.
We have estimated the magnitude of this correction to
our calculated one-electron fine structure, using simple
analytical forms for the wave functions involved, and
we find a correction to 8 of —11ao'(r ') cm ' for all the
atoms studied here, ' with an estimated uncertainty of
approxima, tely &20%. This exchange correction, which
amounts to a fraction —1/Z of the total fine structure,
comes chiefly from interaction of the valence p electron

7 In boron this effect is very important and a more detailed
study will be necessary.

with the E-shell and a smaller contribution from the
L-shell; the uncertainty in the exact magnitude of this
correction will limit the accuracy of our final numbers.

In Table I we give values of the calculated hfs
integrals chosen by interpolating against the calculated
values of 8 at that value of 8 which equals the experi-
mental doublet fine structure' (i.e. , neglecting the
exchange correction). In Table I, 8 and oi~o are in
Rydberg units, while all other quantities are dimension-
less. The numbers in parentheses are the fractional
increases in the particular quantities for a unit frac-
tional increase in 5. That is, we actually calculated for
each quantity x the values (xi,8i) and (x&,4). The
table gives

+0—

where 80 is the measured value of the fine structure and
the quantity in parentheses is

(x2—xi)5o

(ho —6i)xo

Thus, for chlorine with the fine-structure exchange
correction of —11X6.56/109 737&20%= —0.00066
&0.00013, we would want to take our calculated
hfs integrals at a value of 8 that is increased by
(66+1.3)j803= (8.2+1.6)%. This yields

ao' ~~ fgr 'dr(p;) =0.049119
0

XL1+ (0.953) (0.082&0.016)]=0.0530+0.0008,

a o' fgr 'dr(pt) = —0.023857

X L1+ (0.952) (0.082&0.016)]= —0.0257~0.0004,

and so forth.

The experimental value for the 2p fine-structure splitting of
boron, 0.000139 Ry=15.3%0.2 cm ', comes from Dr. S. P. Davis
(private communication), Spectroscopy Laboratory, MIT. Other
data came from Landolt-Bornstein, Zahlen2oerte und Funktionen
aus Physik, Chemic, Astronomic, Geophysik, und rechnik (Springer-
Verlag, Berlin, 1950), Vol. 1, Part 6.
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Ke would like to check this determination of the hfs

integrals by comparing them with the measured dipole
interactions for which the nuclear magnetic moment is
known by independent measurements. However, it is
not surprising that there are a number of discrepancies
in these comparisons; this is attributable to the eGects
of electronic configuration interactions (core polariza-
tion). We shall, therefore, use our calcula. ted values of
the one-electron dipole hfs in order to deduce the magni-
tude of these polarization corrections that are defined

according to the formula:

(measured hfs)

(measured nuclear moment)

= (calculated one-electron matrix element)

X (1+R); (69)

a,nd we compare these apparent values of R,„(for mag-
netic dipole hfs) with the numbers calculated by Stern-
heimer for a few atoms.

These polarization eBects can be described as follows,
using the language of perturbation theory. The zeroth-
order atomic wave function describes a series of closed
shells and one (or a few) valence electrons; and with

this wave function only the valence electrons contribute
to the hfs matrix element. The first-order correctio» to
this wave function contains states in which some

electron from the core is moved into all of the many

unoccupied energy levels outside the core. This "virtual

excitation" of a core electron comes about through t.he
electrostatic interaction of this core electron with the
valence electron(s). The polarization contribution to
hfs is mainly the cross matrix element of the hfs inter-
action between the zeroth-order wave function and
these first-order, polarized-core, wave functions.

For a doublet p valence state there a,re several modes
of excitation of core electrons; we shall limit our
attention to the two modes which appear from Stern-
heimer's vork to be the most important ones. These
two are the excitation of a core electron in an s-orbit
into a higher unoccupied s-orbit (s~s' mode), and the
spherical symmetric part of the excitation of a core
electron in a p-orbit into a higher unoccupied p-orbit
(~P', P, mode).

From angular momentum considerations, we know
the relative contributions of these two modes of excita-
tion between pi, 2- and p;&/2-states of the doublet

R,=R,(p—&p'; Po)+R, (s~s'),

R 3, (p p', Po) =R i/2(~p', P(,),

R 3/ (s—+s') = 50R ii—~(s~s')

(70b)

(70c)

Since t.here are two Eqs. (69) for pi/2- and p&.—

states —we can solve for the two independent polariza-
tion terms R (~p'; Po) and R i/~(s~s').

In an earlier work' we defined the quantities pi/9 p3/2"
as the fractional contribution of the (s—+s ) excitation
to the dipole hfs in a 'P~/2- or a 'P~/~-state. These are
related to R (s~s') by

0.0 7

0.06— TI6p t.

0.05—

0.04—

0.0 3
Vl

6
0.02—

Ga4p
+

fn5p
+

15V
+

0.0 I—

82p

AI3p
+

- 0.0 I—
+C I 3p

N03p

-0.02—
Rb5p

003 I I I
+

I I I I

0 I 0 20 30 40 50 60 70 80
Z

F/Q. 4. Fractional contribution of s-electrons to the dipole hfs
jn p~/g-states, calculated by ignoring all other polarization effects,
in accordance with Eq. (3) of reference 9. It is interesting to note
the trends of P~/~ versus Z for each of the configurations s'p
(B, Al, Ga, In, Tl), s2p' (Cl, I) and s p p' (Na*, Rb*). Experi-
mental data on Rb* 5P from I. I. Rabi and B. Senitzky, Phys.
Rev. 103, 315 (1956).

The values of Pi/2 deduced for P-doublets under the
assumption that R =R (s—+s') can be deduced solely
from the measured ratios ai/2/a3/2 and the theoretical
values of 0. Values for several atoms are shown in

Fig. 4.
hfost interesting are the values of R (~p'; Po)

deduced according to (69, 70). Table II gives values of
polarization correction terms R (p—+p'; Po)—deduced

by using our calculated one-electron dipole integrals-
and Pi/2, P3/2

—calculated from our earlier formula. s

(see reference 9) that assume R =R (s~s'). The
pi/2-state of bromine has not been measured; and the
exchange correction to the fine structure in boron is so

large that we have not been able to determine
R (p +p'; Po), which s—hould be identically zero for
this atom. Also finite nuclear size effects (a few per-
cent in Tl) have been ignored. Except in the case of
iodine, " all the uncertainties here result from the
inaccurate determination of the exchange correction to
the calculated one-electron fine structure. It is remark-

C. Schwartz, Phys. Rev. 99, 1035 (1955).
' Not to be confused with the atomic potential parameter g,

which will not be referred to again.
"The value ~v('Pfq~ I' ) =0.673 cm '~2~/~ was measured by

R. Onaka of the Spectroscopy Laboratory, M.I.T. (private com-
munication) .
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TABLE II. Deduced values of polarization correction factors for dipole hfs in P states; contributions from
the excitation of s- and p-core electrons.

B2p
Al 3p
Ga 4p
In Sp
Tl 6p
Cl 3p'
Br 4p'
I 5p'

&1/2 /~&3/2

0.9985
1.065
1.403
1.887

16.109'
1.012

1 55&0 08b

1.0019
1.0151
1.103
1.303
2.416
1.0294
1.143
1.382

Pt/2

—0.00057
+0.00773
+0.0329
+0.0413
+0.0616
—0.00273

~ ~ ~

+0.0135%0.006

+0.0028—0.0412—0.231—0.390—4.96
+0.0138

~ ~ ~

—0.104&0.05

R (p p', Po)

~ ~ ~

+0.028&0.019
+0.023~0.008
+0.034~0.005
+0.050~0.003
+0.030&0.015

~ ~ ~

+0.040~0.022

a See reference 13. b See reference 11.

able how small and uniform all of these deduced values
for the ~p'; Po excitation are. The only comparable
values calculated by Sternheimer are +0.17 for alumi-
num and +0.47 for chlorine. Reasons for the large
discrepancy in the results for these "antishielding"
terms will be discussed in the next section.

We cannot conclude anything from our present,
calculations about the magnitude of all other modes
of excitation, e.g. , (s—+d), (p &f), (~—P'; P2), and so on.
However, our earlier phenomenological theory of s—+s'

sects" is based on the assumption that all other
modes are negligible. This theory has been so successful
in predicting the g/ perturbation (see I) and the relative
magnitude of the hfs anomalies in p~/&- and P~/~-

states" " that it appears that probably all polarization
effects for dipole hfs in 'P-states are negligible except
for the s—+s' excitation which can be handled by our
empirical analysis.

DISCUSSION OF POLARIZATION TERMS

Sternheimer's calculations of the s—+s' polarization
contribution to dipole hfs in boron and chlorine give
values about six times too large, '- as determined by
comparison with the experimental values of ag/2/'a3/g.

This error is believed to be a result of the inaccuracies
of the particular mathematical approach used by Stern-
heimer. However, in the case of the p~p'; Pp excita-
tions —which are frequently described as a radial re-
distribution of core charge —much more can be said
regarding the difference between the large terms calcu-
lated by Sternheirner and the small values we have
deduced.

First, it should be pointed out that the values of
R„(p—&p'; Po) which we derived were based on the
values of the calculated dipole integrals fixed by com-

paring our calculated fine-structure splittings with the
experimental fine structure. We have tacitly assumed
the absence of any polarization contributions to the
one-electron fine structure. Sternheirner does find a
p~p'; Po polarization contribution to the fine structure
of just the same size as those he finds for the dipole hfs,
and he also has the same term contributing to the
quadrupole hfs. Thus, Sternheimer finds' very little or

'~ A. Lurio and A. G. Prodell, Phys. Rev. 101, 79 (1956).
'3 G. Gould, Phys. Rev. 101, 1828 (1956).

no relative p—&p; Po polarization correction in ratios of
these quantities. The last statement is essentially in
agreement with our results and gives support to the
statement that in comparing dipole hfs to fine structure
only the s~s' configuration mixing is important. In
comparing quadrupole hfs to dipole hfs we cannot make
such a general statement, since there are the terms in
the quadrupole polarization problem —the classical
angular redistribution of core charge —that are no t

present in the dipole or fine-structure problems. Ke
therefore suggest the following modification of well-
known formulas for the determination of nuclear quad-
rupole moments. "For atomic states P'(x = & 1) 'P3/2,

bpF, 0.269
e=~ barns,

a;IRC (1 P,*)— (71)

'4 This is essentially Sternheimer's Eq. (59a), in the third of
references 2; his (1+R ) has been replaced by our (1—P3/2) ';
and the Thomas-Fermi (modified) factor C replaces his (1+R),
in accordance with Sternheimer's discussion."The factor (1—P) ' in Eq. (71) is most important for indium,
in which it reduces the previously given values of Q by 28~/~;
A. K. Mann and P. Kusch, Phys. Rev. 77, 427 (1950).

where b is the measured quadrupole hfs, a is the dipole
hfs, p is the nuclear dipole moment in nuclear mag-
netons, I is the nuclear spin, P/R is the ratio of rela-
tivistic correction factors, and P is the fractional con-
tribution of s electrons to the hfs" [(1—P) '= (1+R)j.
C is Sternheirner's quadrupole polarization correction
factor as calculated by the Thomas-Fermi or his
equivalent method. ' It is, of course, understood that
this formula should be replaced by the results of
thorough going calculations with polarized atomic wave
functions. Calculations of this sort must be consistent.
with all experimental data and Sternheimer's present
results are not.

One important. lesson t.hat has been learned from the
rather confusing history of this polarization problem is
that in speaking of a polarization correction factor we
should state for which initially unpolarized description
we are correcting. Sternheimer generally starts a calcu-
lation by using the available Hartree, not Hartree-Fock,
wave functions for an atom; sometimes he has to start
with the given wave functions for an ion containing
one electron more or less than the atom he is interested
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in. In Sternheimer's work, the large p—+p', Po term is
mainly a readjustment of the radial wave function of
the valence p-electron by virtue of the exchange inter-
action between core and valence electrons that was
neglected in the wave functions taken at the start.
Hence, we claim that these are not polarization effects
of consequence to hfs"; indeed these terms cancel out
in ratios ~if dipole and quadrupole hfs and fine structure.

A formal analysis of the Hartree-Fock method shows
that in this scheme two excitations, which give the
major part of Sternheimer's p~p'; Po terms, '7 are
identically zero:

(A) Excitation of an electron from a closed nl-shell
of the core into the valence n'l-shell.

(8) Excitation of a,n electron from the valence ii'1-

shell into an unoccupied e"l-shell.
These "selection rules" reAect a stability of the

Hartree-Fock wave functions, in that we cannot im-

prove the radial wave functions of the occupied rsl-

shells by attempting to mix states, since they have
already been determined to be the best possible as a
consequence of the variational principle on which the
Hartree-Fock procedure is based. Indeed, in the most
general Hartree-Fock procedure, " when we do not
impose the restrictions of the shell structure, this
stability becomes so extreme that there will be no
(first-order) polarization corrections of any sort. How-
ever, the solution of this generalized Hartree-Fock
problem is at least as difficult as that of the ordinary
approach; e.g. , modified (shell model) Hartree-Fock,
plus polarizations as perturbation effects. There are
alternative restrictions" on the generalized Hartree-
Fock procedure that give 0th-order wave functions
which, in the polarization calculation, have still different
selection rules regarding the nature of admixed con-
figurations. All of these different starting points should

(must) lead to the sa, me final results, and the decision
as to which program will be used depends upon the
ease and reliability of calculation.

OCTOPOLE MOMENTS

In determining the nuclear magnetic octopole mo-

ments, we have made several improvements on the
earlier work. First, the problem of deriving the purely
octopole interaction by calculating the second-order
dipole-quadrupole effect is very nearly solved (see
Appendix), at least for 'P3/2 states. Our conclusion is

that there is only one small, easily calculable addition

'6 It may be claimed that these really are independent "spin
polarizations" caused by separating "direct" and exchange phe-
nomena. However, in the very important aspect of describing
several electrons in the same (equivalent) orbit no separation like
this is meaningful.

"P0 means, in the notation of atomic spectroscopy, that only
those parts of matrix elements of configuration interaction in-
volving the Slater integral F' are considered."L.Brillouin, Actualites Sci. et Ind. No. 71 (1933); No. 159
(1934).

' R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).

to be made to the doublet perturbing terms calculated
in I.

Second, our calculations give new values for o~e-
electron octopole integrals that are quite different from
the Casimir-styled evaluation of I. For evaluating the
nuclear octopole moment 0 from the corrected octopole
interaction constant c, we use a formula similar to (71).
For p+' 'P~, ~,

cp1';1.96X 10'

a, lT(1 P,)Z—nmb, (72)

TABLE III. Octopole data.

c„„a.(cps) Ccorr (Cps) g (nmb)e

CP'
CP'
Ga69
Ga71
Inl15
I127

9.30~1.2'
5.35&1.2'
50 2&3 3b
86 0&3 3b

82~32c
2870&370d

—6.95w1.2
—5.41~1.2
93.0 ~3.4

121.9 &3.4
1682 &40
2010 &520

—0.0188&0.0003—0.0146~0.0003
0.137 a0.005
0.180 &0.005
0.475 &0.011
0.181 &0.047

a J. EI. Holloway, Ph. D. thesis, Department of Physics, Massachusetts
Institute of Technology, 1956 (unpublished)."R.T. Daly, Jr. and J. H. Holloway, Phys. Rev. 96, 539 (1954).

c P. Ktlsch and T. G. Kck, Phys. Rev. 94, 1799 (1954); experimental data
corrected slightly in accordance with a private comm u nicat ion froln
P. Kusch.

d Jaccarino, King, Satten, and Stroke, Phys. Rev. 94, 1798 (1954).
& 0 is given in units of nuclear magneton barns (10 ~4 cm~).

(where 1 nmb—:1 nuclear magneton barn= eA/2%le
X10 "cm'), and the existent data are summarized in
Table III, wherein we give the measured and corrected
values of c (=33 defined in I) as well as values for f2 de-
duced from (72) with our new calcula, ted values of T/F
(Fig. 1).The errors given in Table III are experimental
errors for c „„plus the estimated theoretical error in the
second-order correction (&1%) for c„„.No error has
been given to the theoretical evaluation of the octopole
moment 0 from the corrected interaction constant.
The one-electron part of this —which is all we have
used —is believed to be accurate within a few ((5)
percent.

The new octopole data, obtained after the publication
of I, is on the chlorine isotopes. In this light element, the
second-order correction is extremely important; it re-
verses the sign of the apparent octopole effect. Further-
more, the nuclear shell model predicts, for a d&/2-proton,
0= —0.008 nmb, which is a very small octopole moment
on account of the mutual cancellation of the spin and
orbital contributions. The values of 0 for the chlorine
isotopes given in Table III are somewhat unique in that.

they fall outside the Schmidt-like lines in Fig. 2 of I.
The unanswered question is "What about polariza-

tion corrections to the one-electron octopole inter-
action?" It has been thought that, analogous to the
dominant configuration interaction contributions of
s-electrons to dipole hfs, the most important modes of
core excitation for the octopole problem will be p—+p'

and s~d. Both of these modes involve the delta-func-
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tion form of the radial operator,

r '~—46(r)—,

that gives the numerically largest contribution.
Pursuing the analogy, we thought that the relative

importance of polarization effects to the octopole inter-
action in a 2P3/~-state might be similar to that of s~s'
effects in the dipole hfs of a 'SI/2-term. However, this
dipole effect is surprisingly large, for example, in the
lighter alkali atoms. If we calculate P'(0) from Hartree-
Fock functions for the valence electron in Li, Na,
and K, we find, in comparison with the experimental
value of 6v, /'p, , apparent polarization correction factors
of 40—60%. It should be the first requirement of any
program for calculating polarization effects in hfs to
give the correct result for the simple Li atom. ' How-

ever, until more is known about these polarization
effects, we should probably not trust the values of
nuclear magnetic octopole moments given here for
more than qualitative comparison with nuclear models.

cgp2I]

PIgnl2
(73)

where a is the dipole hfs interaction constant measured
in that state, p, is the nuclear magnetic dipole moment,
I is the nuclear spin, and subscripts 1, 2 refer to the
two isotopes (convention: 2 heavier than 1). This
effect has several sources, each of which is of physical
interest, and it may be a difficult problem to separate
them from the total measured A.

The reason that 6 is small is that. the relation (for an
s-electron, for example)

c=pP'(0) (74)

is very nearly correct and P'(0) is very nea, rly the same
for two isotopes. Corrections to P(0) come from the
following sources:

(A) The electron's reduced mass m '—+m '(1+nz/
AM) controls the scale of the electronic wave function;
hence a factor (1+m/AM) ' in Eq. (74) (and the (r ')
terms) contribute to 5, since the masses (AM) of the
two isotopes differ.

(B) The finite size of the nuclear charge distribution
implies that the electron sees a non-Coulombic field at
distances r (R, where R is the nuclear radius (B-R
effect). Since R may change between two isotopes, this
distortion of the electronic wave function gives a
contribution to A.

Corrections to the nature of the dipole interaction come
from:

INTERPRETATION OF hfs ANOMALIES

The hfs anomaly for a particular atomic state is
defined as the defect in the following ratio between
measured quantities for a pair of isotopes.

(C) A reduced mass factor 1/m~1/m(1+m/AM)
enters into the orbital (not spin) g-factor for p, and
higher l-electrons, and it will contribute differently in
the two isotopes. There are also "specific reduced
mass" terms that contribute to orbital hfs which are
of the form:

AMc '~~

p~. (r;Xp;)

r'3

where i, j refer to two different electrons. This term
has exchange matrix elements (for I.)0) which, on
account of the nuclear mass factor AM, can contribute
to D.

(D) Because the nuclear magnetism is not concen-
trated in a point, a part of the total dipole hfs inter-
action occurs when the electron penetrates the nuclear
matter (B-W effect). This part of the interaction is not
represented by the nuclear moment p, which is measured
with the field of completely external sources. This
effect is probably the most interesting, as far as infor-
mation on nuclear structure is concerned, but only its
differential between two isotopes is seen in A.

In their contributions to 6, the effects that depend
on the nuclear size (B) are important for heavy nuclei,
while the mass effects (A), (C) are important for light
nuclei; this is similar to the situation in the spectro-
scopic isotope shift studies. The B-W effect (D) may be
larger or smaller than these other effects for any nuclear
mass and size, depending upon the magnetic structure
of the two isotopes.

3,Ioreover, there may be contributions to 6 from
second-order hfs. That is, in addition to the usual first-
order formula (74), there may be second-order terms
coming from the mixing of higher electronic (and
possibly nuclear) excited states by the hfs interactions.
These second-order terms have the product of two
matrix elements of electric (F) or magnetic (M) hfs
interactions in the form EE, MM, ME; and they may
give contributions to several multipoles when the
experimental data are interpreted according to the
first-order interval rules. Second-order contributions to
the apparent dipole interaction constant, a, may come
from nearby atomic states. This part is easily calcu-
lated, say for a perturbing doublet, and the value is
generally quite small. Probably more important are
the contributions from the very highly excited (con-
tinuum) electronic sta. te. These terms can be estimated
in a very crude way by techniques analogous to those
used in the appendix for the particular problem of the
M1E2 second-order pseudo-octopole term.

The EE terms do not. contribute to the dipole hfs but.

may inhuence the even multipoles. 2' The MM terms
give contributions that appear to be about nm/M~10
times the first-order dipole term; thus, they are generally
negligible. The ME terms, however, may give results

~ Gunther-Mohr, Geschwind, and Townes, Phys. Rev. 81, 289
(1951).
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as large as 1% of the first-order dipole, and might con-
tribute to A.

These estimates of second-order effects are very
rough and considerably more analysis is needed before
too much trust can be placed in the current interpreta-
tions of hfs anomalies.

a valence electron is excited to high continuum states-
can be estimated by a more careful application of the
closure approximation attempted in Appendix I of I.
The scheme is to evaluate the second-order sum as
follows:

APPENDIX: THE SECOND-ORDER CORRECTIONS
TO THE OCTOPOLE INTERACTION

(~IDQIi)
AEA„

(A17)

(J,=0IDI~. )(J. IQI J,=o);

but, since D is a, vector operator and Q is a second-rank
tensor operator, we have the two incompatible selection
rules: J,'= 1, J,'= 2. There are thus no DQ cross
products from these types of excitations. The only
exception to this analysis is the case of the core particle
excited into the valence shell; then, the Pauli principle
forbids this arbitrary angular momentum coupling
scheme. For these special terms, we can easily calculate
the contribution. A good approximation gives the value
of this part of the DQ pseudo-octopole correction rela-
tive to the main DQ term from the doublet pi~2-state as

1

5 filled ep shells Ezp
(A16)

where the values of h„~, the fine-structure split tings,
and E „, the term values, can be obtained from x-ray
data. This correction is approximately 0.2% for chlo-
rine, and increases to about 5% for iodine. As the
importance of the main second-order term (from pi(&)
decreases for heavier atoms, the increase of this relative
correction with increasing Z is not at all serious, and
it can be ignored completely. The only possibly serious
approximation in this analysis is ihe neglect of con-
figuration mixing for other than the doublet per-
turbation.

The second and final class of excited states —in which

In I, we calculated the second-order pseudo-octopole
corrections caused by mixing of the doublet p&~2-state

and estimated the further contributions of the higher mp

levels as negligible. The two other classes of terms con-
tributing to the dipoleXquadrupole (DQ) matrix-ele-
ment product, which were ignored in I, have now been
estimated. First, the contributions of almost all excited
states formed by raising an electron out of the closed
shells vanish.

The ground state core system has total angular mo-
ments J.=o (in the absence of polarization effects); we
shall characterize the excited states by the angular
momentum J,', which is formed by coupling the spin
of the excited core electron to the spin of the hole in

the core. J,' is then coupled to the spin of the valence
electron(s) to form the total electronic angular ino-
mentum of the intermediate state. The second-order
hfs contribution comes from products of matrix ele-

rnents of the form

When Ii) is a p3~2-state, it is seen that the operator
product DQ is excessively singular at r~o. One then
applies a cutofI' at r=E„, the nuclear radius, since the
singular form of these operators is correct only for the
electron coordinate outside the nuclear coordinate. If we
did not cut off, in this way, the left-hand side of (A17)
would also diverge in the sum over the very highly
excited states. Since the P„is increasing up to the high
value of the momentum of excited continuum states
corresponding to the coordinate cutoA',

k,„=1jR„,
we can fairly approximate DEA, by the excitation energy
at this cutoR:

Eq„hcjR„(relativistic).

We then proceed to evaluate (A17) relative to the first-
order octopole interaction, and it is seen that this is an
effect of less than 1%.
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ERRATA IN PREVIOUS PAPERS I, and the result can be written for a 'P state (replacing
In Eq. (30) of reference 1, the factor in square Eq (62) of I) as follows:

brackets should read:

In reference 9, the last line of paragraph 4 should read:
"(—0.80&0.16) while we predict —5.3/(1.7+5.3)
= —0.76."

The definition of the correction factor f (Eq. (47) of
I) is incorrect since it neglects the effect of s electrons
on the diagonal dipole matrix element. " The proper
formula for f can be evaluated with formulas given in

"This error was pointed out to the author by Dr. Thomas Eck
in private communication.

where P3/s is defined in reference 9 and some values are
given in Table II of this paper. The octopole data in
Table III have been corrected for this error.

Similarly, in Eq. (51) of I, the factor Lht/6(2I+1)]
Xf($/|t) should be replaced by (5/12)Bast&, using this
new formula for f'. The correctly calculated values of
R ' still agree with the measured values within the
experimental uncertainties.
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Electron g Value in the Ground State of Deuterium*t
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The ratio of the electron gz in the deuterium ground state to the proton g„ in a cylindrical mineral oil
sample has been measured. The measurement was made using the microwave magnetic resonance absorption
method and apparatus which Beringer and Heald used to determine —gJ/g„ for hydrogen. The three
strong-field Zeeman transitions having AmJ = &1, Ami=0 were observed at a frequency of 9200 Mc/sec.
The accuracy was limited by the minimum observed line widths of 20 parts per million resulting principally
from magnetic field inhomogeneities. When one uses the Breit-Rabi formula, the unweighted mean of 68
observations yields —gJ(D)/go=658. 2162 with an assigned error of ~0.0008. The ratio of this value to
the value of —gz(H)/g~ obtained by Beringer and Heald, who used an identical mineral oil sample is
gq(D)/gg(H) =0.9999983&0.0000015, and to the value of —gJ(H)/g„of Koenig, Prodell, and Kusch,
after suitable diamagnetic corrections, is gq(D)/II;g(H) =0.9999997~0.0000023. These values are in agree-
ment with the theoretically expected value of gJ (D)/g J (H) = 1 and with the less precise direct measurement
of Nelson and Nafe.

1. INTRODUCTION

'HE spin magnetic moment of the electron in the
ground state of the hydrogen atom relative to the

proton magnetic moment (or, in terms of the g value
ratios, gz(H)/g„) has been measured in recent years' '
to a precision of about 1 part per million (ppm). The
quantity of theoretical interest is the ratio of the spin
magnetic moment of the free electron to the orbital
magnetic moment of the free electron (g,/gt, ). The
experimental value of gs(H)/gr, is obtained as the ratio
of the value of gq(H)/g„ to the value of gt/g„, which is

measured by comparing the cyclotron frequency of a
free electron with the proton resonance frequency. ' The
quantity g,/gz, is obtained from gz(H)/gz, by making the

*This research has been supported in part by the OfIIce of
Naval Research.

t To be submitted by J. S. Geiger in partial fulfillment of the
Ph.D. thesis requirement at Yale University.

f Yale University Sterling Fellow, 1955—56.
' Koenig, Prodell, and Kusch, Phys. Rev. 88, 191 (1952).
2 R. Beringer and M. A. Heald, Phys. Rev. 95, 1474 (1954).
3 J. H. Gardner, Phys. Rev. 83, 996 {1951).

theoretical relativistic bound state correction4' g,
= gs (H) (1—

—s,u') in which u is the fine structure
constant. The measurement of gt, /g„has been made to
an accuracy of only 12 ppm and thus limits the accuracy
of the experimental value of g,/gt. to about 12 ppm.
The experimental values so obtained' ' are in agreement
with the theoretical value' for the electron spin mag-
netic moment, which includes quantum electrodynamic
radiative corrections to order o.'.

One of the early radio-frequency measurements of
electronic magnetism was a comparison of the electron
spin magnetic moment in the ground states of hydrogen
and deuterium by the atomic-beam magnetic resonance
method. ' To within the experimental accuracy of 10
ppm, the ratio gq(H)/gs(D) was found to be 1. In view

4 G. Breit, Nature 122, 649 (1928).
s N. F. Mott and H. S, W. Massey, Theory of Atomic Collisions

(Clarendon Press, Oxford, 1949), second edition, p. 72.
6 J. Schwinger, Phys. Rev. 73, 416 (1948); R. Karplus and N.

M. Kroll, Phys. Rev. 77, 536 (1950). A further correction of
order o.' to the magnetic moment of the electron in the hydrogen
atom has been computed by E. H. I.ieb, Phil. Mag. 46, 311 (1955).

7 E. B. Nelson and J. E. Nafe, Phys. Rev. 76, 1858 (1949).


