
FROM &&', F'', Ne~', AND Na'~

difference between this 0+ level and the ground state
(0+) of Ne" leads to a value ro ——1.40&&10 " cm& in

good agreement with those obtained from the other
members of this series. '~

The 592-kev transition connecting the 0+ state with
the I=3+ ground state of Na" (pure 3II3) has an
expected lifetime" of 0.06 second. The internal conver-
sion coefficient gives a negligible correction to this
value. ' Our upper limit of ~0.1 second is consistent
with this prediction. ~t Considering the direct positron
decay from the 592-kev state in Na" to the ground
state of Ne"(0+—&0+), a lifetime of ~15 seconds is
calculated on the basis of logft = 3 44 ".We. see therefore

' M. Goldhaber and A. W. Sunyar, Phys. Rev. 83, 906 (1951).
"Rose, Goertzel, Spinrad, Barr, and Strong, Phys. Rev. 83, 79

{1951).
~' )Vote added cn proof. See, how—ever, note added in proof,

galley 8.

that a theoretical branching ratio of about 190—:1in
favor of the electromagnetic transition should obtain.

Another missing level in this series occurs in P".
our attempts to detect this level in the reaction
AP'(n, rt) P"*have not been conclusive to date, although
we were able to detect the 2.5-minute positron activity
from the ground state. These experiments are continuing.

D. Energy Levels of Na23 and 3"
The energy levels in the compound nucleus Na" are

listed in Table I. A level diagram illustrating all

states reached in the alpha-particle bombardment of
F" is shown in Fig. 10. No levels in this region of
excitation in Na" have been previously reported.
New excited states in 3"at 9.88, 10.24, and 10.62 Mev
have been found hy the inelastic scattering of alpha
particles in lithium, as discussed in Sec. IV (A).
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Closed formulas are obtained for the fractional parentage coefficients of j-j coupled configurations of

three and four equivalent particles. In states of low seniority, these formulas can be used to simplify the

calculation of famijiar types of matrix elements. Some extension is made to the study of more complex con-

Qgurations. In particular, it is shown that near the ground state the energy level spectrum of an even-even

nucleus should be. independent of t, he number of particles in the unfilled shell.

INTRODUCTION

~HERE are two well-known ways of describing an
antisymmetric configuration of several equivalent

particles bound in a central field. The first' is the per-
mutational construction in which the wave functions
of the several particles with the several sets of quantum
numbers are arrayed in a plater determinant to give
directly an antisymmetric form. However, this structure
proves to be quite unwieldy when one tries to calculate
matrix elements of various operators, since a great
many cross terms come into the expression.

The second" is the method of fractional parentage
in which one considers just one particle of the configura-
tion separated from all the others. The antisymmetry
requirement is satisfied by leaving unspecified all the
quantum numbers pertaining to the combination of the

*This work was assisted in part by the joint program of the
U. S. 0%ce of Naval Research and the U. S. Atomic Energy Com-
mission.

f Gulf Oil Corporation Fellow.
t Now at the Weizmann Institute of Science, Rehovoth, Israel.
'E. U. Condon and G. H. Shortley, The Theory of Atomsc

Spectra (Cambridge University Press, Cambridge, 1951), p. 162
et seq.' S. Goudsmit and R. F. Bacher, Phys. Rev. 46, 948 (1934).' G. Racah, Phys. Rev. 63, 367 (1943).

"other" particles and coupling the angular momentum

of the one separated particle to some particular linear
combination of all the allowed states of the "others. "
The fractional parentage coefficients which determine
this particular linear combination for some given con-
figuration are usually found as the solutions to a set of
simultaneous algebraic equations and are tabulated for
any particular problem.

However, it is clear that a direct (though formal)
determination of the coefficients can be achieved by
equating the wave function as written in the fractional
parentage way to the permutational form mentioned
6rst. The solution generally gives the fractional parent-
age coeKcient in terms of the transformations which

interrelate all the diff'erent vector coupling schemes of
the several angular momenta. Using the techniques of
Racah, ' we have obtained formulas for the fractional
parentage coeKcients for configurations of three and
four particles.

Using recursion relations, 6rst derived by Racah' and
extended in our Appendix, which are developed around
the seniority concept, we can deduce formulas for the
fractional parentage coefficients for some states of con-

' G. Racah, Phys. Rev. 62, 438 (1942).
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figurations of any number of particles. In particular, we
consider states of low seniority number, which are
presumed according to the shell model to describe the
low-lying levels of nuclei.

VVith the fractional parentage coeKcients thus sim-
plified, we are able in many cases to carry out explicitly
the sums involved in calculating matrix elements of one-
and two-particle operators. Considering a short-range
attractive two-body interaction with an arbitrary
mixture of ordinary and spin-exchange forces, we find
that to first order the energy difference between the
ground state of spin zero and the states of spin 2, 4, etc.
with seniority number 2 is independent of the (even)
number of particles in the last unfilled shell.

In addition for the shell j ='7/2, it is found that this
same conclusion about the level structure for 2 and 4
particles holds for any two-body interaction what-
soever.

ANTISYMMETRIC WAVE FUNCTIONS

It is well known that an antisymmetric wave function
for two particles can be written in the form

$12 ~[4'1+2 $2X1]y (1)
where the subscripts denote the particles described, and
the normalization factor E is 1/V2 if p and ~ are
orthogonal functions.

In describing the bound states in a central field, we
say that two particles are equivalent if the wave func-'

tions @ and x are identical in their radial dependence.
If we wish to describe the state in which two equivalent
particles, each of spin j,' are coupled so that the only
good magnetic quantum number is that belonging to
their total angular momentum J, we would write

Pi3(j JM)= Q (jm&jm3Ijj JM)iV
m1m2

X[pi(j~i)43(j~3)—A(j~i)~i(j~3)]. (2)

However, due to the symmetry of the Clebsch-Gordon
coefficient,

(jinni j3m3Ij ij 3JM)
= (—1)&''+&'— (j3m3jinziIj 3j,JM), (3)

where the sum extends over all the permutations of the
arguments of the functions P, and (—1)& is the parity
of each permutation. If 1, 2, 3, , e are all equivalent
particles coupled to a resultant spin J, at least half of
the e! terms in the sum (4) are redundant because of
(3), and in general some values of J may not be allowed.

The expansion (4) allows the specification of all the
intermediate resultant spins of the coupling sequence
in an arbitrary way. However, these intermediate spins
may not be good quantum numbers in a given problem,
and a sum of several wave functions of the type (4) may
be necessary to describe an eigenstate.

THE METHOD OF FRACTIONAL PARENTAGES

An alternative procedure for describing the anti-
symmetrically vector-coupled state of e equivalen t
particles is the method of fractional parentage. " In
this approach it is not the identity of the particles which .

is used as the basis of an expansion as in (4), but instead
one couples the eth particle to some linear combination
of all the allowed states of the e—1 other particles.

Thus, for example, with three equivalent particles
one would write

4»3(j'JM) =&(j'(J')jJ)j'J)

X p y, (j ns, )y, (jm, )y, (j m, )
mImgm3M'

X (j ~ijm3 IjjJ'M') (J'Mj'~3I Jj'JM). (5)

The coefFicients of fractional parentage (j'(J')jJ)j'J)
are, of course, zero for odd values of J', and they are
usually normalized according to

2 I(j'(J')jJ)j'J) I'= 1.

Now since the evenness of J' assures the antisymmetry
of (5) with respect to interchange of particles 1 and 2,
we need only require that (5) be also antisymmetric
under an interchange of particles 2 and 3.'

Thus we must have

we can rename mi and m, (which are only summation Z(j'(J') jJllj'J) 2 ~i(j~i')e3(j~2)43(j~3)
variables) in the second term of (2) and reduce (2) to

X (j~,'j~, 'I&1J M') (J'M'1~, 'I J'pM)
lp»(j 'JM) =1V[1—(—1)"+q

X p (j~j~3IjjJM)gi(jm )p (jm). = —Pj (J"~~»~'»
m].m2

Here is the familiar result that the only allowed states
for two equivalent particles of half-integral j are those
with an even total spin J. Multiplying by

For any number of particles an antisymmetric wave
function can be written in the form'

4 i(j~i")43(j~3")
m1' 'm2' 'm3" M' '

X&3(jm3") (j mi jm3" Ijj J"M")(J"Mjm3"
I Jj JM).

pi*(jmi)$3 (F3)&3*(jnz3)(jmij m3IjjJ"'M"')
X (J"'M"'~~,

I

J"'~JM),
&Z. ( 1)"~ ~'~"" =-~~ ~'~"", —(4)

integrating over the coordinates of the three particles,~ We will work here in the j-j coupling scheme for simplicity of
notation. and summing over the nz's, we have from the ortho-
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gonality of the @'s and the Clebsch-Gordon coefficients:

(j '(I')P VI)= Z—(i '(I")P)i'J)

X g (jm q'm Iq'P'M')(jmjm Ijj J"N")
m1m2m3M M

X (J'm'&m, I-J'~m) (J"m"1m,
I
J"1m).

This sum over four Clebsch-Gordon coefficients has
been defined by Racah4 in terms of his 8' coeKcient. So,

where the phases may be chosen to agree with the con-
ventions of Racah. ' The symbols (jjJp) and (jJJp) are
"triangular delta functions, "

0 if a, b, c cannot form a triangle
if a, b, c can forni a triangle.

This solution can also be easily verified by direct
substitution in (8) with the help of the following well-
known relations" of the Racah coefficients

(j'(I')P O'J) = Z(i'(J—")PO'I) (2J'+ 1)'
JII

X (2J"+1)'W(jjjJ;J'J")( 1)j+J+—J'+J". (7)

For convenience we shall use Wigner's form' of the
Racah coeKcient

ljP' jjJ' s(J„J")
„(2J'+1)= VPo) (PJo),jJJ" 2Jp+1

Thus,

= (—1)'+~'+"W(abed; ef).

(j'(J')jIllj'I) =Z(j'(I")jJllj'J) (2J'+1) '(2J"+1) '
J1I
Jf

X
jj

(—1)~'+~", (J' even only). (8)jJJ"
The coefficients (j'(J')jJllj'J) are thus given as the
solution to the system of Eqs. (8). However, this solu-
tion is rather involved, a more direct formula would be
much desired.

We can write an antisymmetric wave function for
the three particles in the form (4) [remembering that
only half of the 3 t terms are necessary since the even-
ness of Jp leaves all pairs differing only in the permuta-
tation of particles 1 and 2 equivalent according to (3)]

Piano(j JpjJM)=X P (jmijm&IZ&Jp3IIp)
m1m2m3MP

X (Jp~pjmo I
JpjJ~)[&i(jmi)4 p(jms) &p (jmo)

—y, (jm, )p, (jm,)y, (jm, )

41(jmo)it'2(jmp)lp(jmi)] (9)

(i'(J')Plb'J)=~(Jp) 3(J' Jo)(B Jo)(PJo)

+ (2Jp+1)'(2J'+1)&(1+(—1)~')

iP' - (1+(-1)"&
x I I, (10)

jJJii E 2 )
and in accordance with (6),

jjJp
C(Jp) = & 3(jjJp) (jJJp)+6(2Jp+1), (11)

jJJp
$ This formula has also been derived recently by P. J. Redmond

of Birmingham.

We can compare this expression with the expansion (5)
to solve directly for the coefficients (j'(J )jJlIj'J).

One gets then)

The triangular conditions are also implied in the
Racah coeKcient; and although they will not always be
written expressly, they will always be understood as a
selection on the permissible values of the parameter Jp.

It remains to interpret the role of Jp in Eq. (10).
Equation (9) for all the different allowed values of Jp
yields the totality of wave functions which can be con-
structed for three particles which are antisymmetric in
all three particles and which are eigenfunctions of j&',

j ps, j ps (ji——j&= jo——j), J' and J,. It is seen that (9)
can be written in the symbolic form:

$128 (j'JllI) =&[4(jijp (Jo)jpJ~)—4 (jijp (Jp) j2M)
—&(i j (Jo)j J~)] (12)

which can be interpreted as describing a state in which
there is always a pair of angular momenta coupled to Jp.
To say that the definite pair (12) is coupled to Jp would
be inconsistent with the symmetry requirement among
all three, but the statement that a pair is coupled to Jp
is sensible and may serve as an additional labeling of
the state.

Since the different g's in (12) are not necessarily
orthogonal, one cannot say whether different choices of
Jp will lead to different P's or not. The P's defined by
(9) will thus constitute generally a redundant basis for
all the permissible states. For j(9/2 one knows that
there is no further degeneracy in the states f(j 'J3II);
thus different choices of Jp should lead to identical sets
of coefficients (10, 11). This implies a number of iden-
tities among the Racah coe%cients with four half-
integers (three of them identical) and two even integers.

In general we may consider the symmetric matrix,

(Jpl j JIJ )= [1+( 1) o]5(J Jp)+ (2Jp+ 1)*(2J+1)&

X[1+(—1)~ ][1+(—1)~o]', (13)

' A. de-Shalit, Phys. Rev. 91, 1479 (1953).
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which satis6es the eigenvalue equation

' 'Jt
P(JslyJI J') (2J'+1)&(2J"+1)&
JI jJJ"

—8(J',J") =0,

and so the coefficients (13) can describe at most m
independent states, if the matrix,

' 'Jl
)v g = (2J'+1)&(2J"+1)&, (J', J"evenjJ'J" only),

has m eigenvalues +1.
It should be noted that if we take a linear combina-

tion of sets of coefficients (10) (given by different Je's),
the normalization (11) is not correct.

THE SENIORITY NUMBER

An additional quantum number which is useful in
classifying the states of a number of equivalent par-
ticles, and one which is very practical in nuclear spec-
troscopy, is the seniority number. The seniority
number u for the configuration j"vJ is given by~

-,'(e—v) (2j+3—I—v) =Q (N,v), (14)

where Q(n, v) is the eigenvalue of the operator P;&, q;;,
and

(PJ'I v' I
z'J') = (2j+1)~(J',0) (15)

For three particles the seniority number e is one if
(j'(0)jJIIj'J) Wo (therefore J= j) and three otherwise.
There is never more than one state with v=1, though
with larger values of j the multiplicity of other states
may increase.

We shall now show that Js——0 and J=j in Eq. (10),
with the normalization (11), always represents just this
state with seniority v = 1.

Using the relation,

3, Eq. (42))
l(3-v)(2j-v) =3(2j+1)l(~'(0)jJIIj'J)I',

or using the above value (17),

l(3—)(2j—)=(2j—1),
which is satisfied by v=1 only Lv can never be greater
than -,'(2j+1)).

Using the general recursion relations first derived by
Racah' Lhis Eqs. (58) here translated into the j-j
scheme], we can calculate explicitly the fractional
parentage coe%cients for the seniority one con6guration
of any (odd) number of particles

(j" '("=o J'=0)P=i )i "v=»=j)
(2j+2 I)—&

Ee(2j+1) J

(j" '(v'=2J'&0) jJ=jIIj"v=1 J=j)
/2(m —1)(2J'+1))&

J' even only.
(n(2j—1)(2j+1))

(18)

MATRIX ELEMENTS IN STATES OF SENIORITY ONE

The reduced matrix element of an operator of the
type F=P;f,, where f; is a tensor operator of rank r,
can be written 3 4

(j" JIIFllj"- J')=I Z (g".Jk~= (~"J")~J)
Jl I~II

X(j"-'( "J")jJ'IIj"~'J')(-1)"'+""(»+1)»
f jJJ"t

X (2J'+1)&', . (jllfll j) (19)J'j. I

Kith the configurations j"O,J, j"0.'J', both of seniority
v=v'=1 (J=J'= j). Substituting (18) in (19) and
using the relations

jjJ 1
' (2J'+1)=1,' apl

—( 1)sf+J'
(2j+1)

we have from (10) and (11) with Js——0:

(»'+1)(-1)'=(-» 3(r,O) (2j+1),16 jjJ'1
'ljj I

we have

(20)

(j'(J')j J)i'J)

I, J'=0
(3(2j+1))

(2J'+1)
I [1+(—1)~'j, J'&0.

L.3(2j+1)(2j—1))

(17)

Calculating the eigenvalue Q (3,v) we have Lsee reference
r All the formulas of Racah (see reference 3) on fractional

parentage and seniority can be translated from the LS scheme to
the j-j scheme by replacing 4l+2 with 2j+j everywhere except
in Eq. (15) above.

(jllfll j)((I—1)(2j+1)8(r,o)+2j
(2j—1) —1—(e—1)L1+(—1)"j)

F odd

2j+1—2'
= (jllfll j)- x

2j—1

r=O
'
which is identical with Racah's equations (69).'

(21)
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The matrix element of the two-particle scalar
operator G=P, &, g;; in the state j'aJ is given by

(j'~JIGI j'~J) =3 & I(i'(~'J')P&i'~J) I'
a'J'

x (j'J'I g, , I
j'J').

So for the state of seniority v = 1 using (17), we have

(j'o=1 J= jlGI j'o=i J=j)
2

(j'J=olg';I j'J=o)+
2j—1 (2j+1)(2j—1)

xz(2J'+ 1)(1+(-1)')(j'J'lg';I j'J').
JI

However, the sum

Z~ (2J'+ 1)sL1+ (—1)'j(j'J'I g'il j'J')

can be recognized as simply Lsee Appendix, Eq. (A5)
ef seq.

(~"+'0
I
G I

j"+'0),

the interaction in the filled shell.
For the configuration j"v=1 J=j we have, using

Eq. (A8)

(i "~=1 J=i IGli "~=1 J=j)
(e—1)(e—3)

(joe'+iJ p
I
G

I

&si'+iJ~ p)
(2j—3) (2j+1)

(e—1)(2j—e)
+ . (j' =»=jlGlj* =»=~)

2(2j—3)

THE CASE OF SENIORITY THREE

1 23 —1——(J'= 0), (J'= 2), (J'= 4),
10 132+5 220

8 13 17
(J'= 6) (J'= 8)

165 55

and with Jp ——8

931—(J =o), (J'=2), (J'=4),
10 11+5 55 13

5 289
(J'= 6), (J'=8)

44+13 26 22+17

To calculate fractional parentage coefficients from

Eq. (10) for states of seniority three when the state is
not uniquely determined by the value of J alone, we

must take some linear combination of states described

by diferent values of Jp. There are, for example, two
states of the configuration (9/2)' with total spin J= 9/2.
The one of seniority @=1 is described by (17). With
Jo——2 in (10), we get the values (not normalized):

The desired set of coeKcients is that belonging to the
state @=3, which should have (g(0)jJIIj'v=3J)=pr
So subtracting the two above sets and normalizing, we
get '

+13 7+5
(J'= 2) (J'=4),

6/11 2+143
0(J'= 0),

—31 3+17. (J'=6) (J'=8)
6+55 2/715

identical with the results of Flowers. '
In general, if two diferent values of Jp, say Jp and

Jo', give two independent sets of coefficients (10), the
state described by the linear combination of these with
the coefFicient for J'= Jp equal to zero is orthogonal to
the state described by Jp alone.

To see this, consider one matrix (J'ol j'Jl J') of the
type defined in (13) and any other F(J') formed from
a linear combination of terms (Jo'I j'Jl J'). We then
get for the cross sum

Z~ (JoI j'J I
J')F(J')

= L1+ (—1)~'] F(Jo)+Qz F(J') (2Jo+ 1)1

x (2J'+1)~L1+ (-1)'j
jJJoI

but this second sum can be performed by the defining
Eq. (8)

I 1+( 1) 'jZ~ F(J )(2Jo+1)1(2J +1)
jjJ'

xL1+ (—1)'3
jJJp

=2L1+ (—1)"]F(Jo),

since (—1)~ F(J')=F(J'). So,

Z~ (Jol j'Jl J')F(J')=3L1+(—1)"3F(Jo),

0.687(J'=2), 0.352(J'=4), 0.282(J'=6),
—0.105(J'=8), —0.560(J'=10).

%ith Jp=10 we get another set of values, and taking
the linear combination of these two described above, we
get the orthogonal (normalized) set:

lI: 0(J'=2), —0.500(J'=4), 0.726(J'=6),
—0.452 (J'= 8), 0.141(J'=10).

In contrast with the convenient characterization of
nuclear states aGorded by the usual concept of seniority,

s 3.H. Flowers, Proc. Roy. Soc. (London) A21S, 398 (1952).

which is zero if the linear combination Ii has the coef-
ficient for J'= Jp equal to zero.

Looking for more complicated configurations, we
find that for (11/2)' J=9/2 there are two independent
states, both of seniority v=3. For Jp ——2 we get the
(normalized) values
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this division of the two states of the configuration
(11/2)'9~2 does not appear to be very practical. That is,
if we consider the effect of a perturbing short-range
attractive force between all pairs of particles, the state
of lowest energy in this configuration is not described
by I alone or II alone, but by a mixture of both.

MORE THAN THREE EQUIVALENT PARTICLES

In the fractional parentage description of a state of
equivalent particles, the wave function is written

0(j" -J-M-)=Z(i" '( . J-l)—jJ-Ilj" -J-)J. o

QP ~ ~ ~

X(j" '(~n —2Jn—2)jA illj &e—1Jn—1)

X(j'(n~A) jJsIl j'n3J3)8(J~ even)

X Q pl(jml)&2(jm2) . .
m 0 ~ ~

Xp (jm )(jmljm2lj jJ2M2)

X (J„ lM. ljm„l J„,jJ„M„). (22)

If the fractional parentage coeKcients for 3, 4,
~ e—1 particles are known from earlier work, we can
get the coeKcients for m particles by comparing (22)
with (4). The antisymmetrization (4) can be inter-
preted as a series of changes in the coupling order of
the several angular momenta. Thus, it is seen that the
general coeflicient (j" '(n J') jJIlj nJ) is given as sums
over products of all the fractional parentage coefficients
for less than ~z particles and coe%cients for all the
transformations in the coupling scheme of e angular
momenta. These transformation coefficients can always
be expressed as sums of products of Racah coefficients.
There will be e—2 arbitrary parameters analogous to
Jp used before and these will help to describe the state.

For m=4 we compare the two developments

0(i 'JM) = 2 (j'(J')Plil'JXi '(J")P')i 'J')

where X(J") is a series of sums of products of six
Clebsch-Gordon coefficients. This can be evaluated in
terms of Racah coefficients and 9—j symbols"

j11j12j13
~

~ ~ ~

j11j12j18
( jul j22j23 &=+(2j+1)(—1)'&

4'I j23j33j
' j31j32j38

j31j32j88j21 22 23

X
j j

(26)
./12j j82 j jll j21

giving

X(J")=1V(2J'+ I)'*(2J"+1)*(2Jg+1)'*(2J3+1)l

6(J2,J") 8(J3,J')
( 1)Jf JPP J4

2J2+1 2J3+1
E.

3(J2,J") jJ,J, S(J„J') JJJ,—2
2J2+1 jJJ' 2J3+1 jJ3J"

+2 +2
J/J// jJlJ J J 'J/J

+ J'J"j L1+(-1)'+"+') (»)
-JjJ8-

Now substituting (10) and (27) in (25) and summing
over J// we obtain

[j'(J')jJIIj'Jj=lV'(J2, J3) (2J'+1)'(2J&+1)l

—38(J'J4)
X (2J3+1)l(—1)~'+~'(

bolically. Then

(j'(J )P Ib'J) =&(i'J'D'(J")P')X(J"), (25)

x Z 4(j )4(j )y(~ )y(j )
m 1m 2m 3

m4M'A~I"

X (jml jm2ljj J"M")(J"M"jmal J"jJ'M')

x (J'Mj'm4l J'j JM), (23)
and

.jjJ2
X 2

2J3+1

1
- jJJ,

+ +3
2J)+1, jJ'J

P(j JM)=cV Q (jmljmpl jjJ2M2)
m lm2m 3

m4M2M3

x (J,M&j m3l J&jJ3M3) (J3M&jm4l JajJM)

XP 1 (jm) 42 (jm) 44 (jm) 44 (jm),

[1234—1243+ 1423—1432+1342—1324

—2341+2314+2431—2413+3412—3421], (24)

where the permutations have been written out sym-

X 2

J2J2J J2J2J
( 1) &'+&4+J

jJ'j

jjJjJ'J,
+(J'J2j». (28)

jjJ2
+

jJ3J2 jJ3J .JjJ3

+— +[3+(—1)'+"+']
2Jg+ 1 l



MAN Y —PARTI CLE CONF I GURATIONS I N CE NTRAL F I ELD 1263

=C(E,L) 8(Ji3,E)8(J34,L)+ (—1)~8(J(3,L)8(J34,E)

—['+ (—')"'j['+ (—')"'j[(2J»+ ')
4(i'JM)= Z (j'(J»)j'(J34)JIIj'J) E 4&(jml)

&12J34

Here J3 is equivalent to the earlier J3, and J3 is a new it is easy to show that a general solution to (31) is
parameter of similar character. In general, to describe
some particular state a linear combination of coefficients &j & '2» & '4~'» J~
(28) given by different values of J,, J, may be needed.

While the above method of breaking off a single
particle is what one needs for calculating matrix
elements of one-particle (J'-type) operators, the two-
particle operators (G-type) are best handled with the
following description (for four particles).

X43(j m3)&3(j m3)$4(j m4) (jm& jm3 I jjJ»M»)

X (jm3 jm4I jjJ34M34) (J~3M~3J34M34 I J33J34JM), (29)

where the particles are grouped in pairs. Kith J12, J34
even, this description is antisymmetric in the pairs of
particles (1,2) and (3,4). To determine the coefficients
(j'(J&3)j'(J34)JIIj'J) we shall exchange particles two
and three and require the wave function to be —1

times (29)

(29)= —2 (j'(J») j'(J34)JIIj'J) 2 4~(jmi)
J13&S4

X(2J34+1)(2E+1)(2L+1)]'»jjJ34 ~, (33)

where E, L are two (even) parameters similar to J3
used before. The six triangular conditions implied in
the 9—j symbols are understood to apply to the entire
expression (33) although not written out expressly.

Equation (33) takes on a simple form when we set
one of the parameters, say I., equal to zero; then, by
the triangular conditions, we must have E=J (even),
and we get

X&3(jm3)&3(jm3)&4(jm4)(jm& jm3I jjJ»M/3)

X (j m3j m4I jjJ34M34) (J$3M43J34M34I J$3J34JM). (30)

Comparing (29) and (30), we have the requirement

2 (j'(J33)j'(J.4)JIIj4J)[(2J&3+1)(2J34+1)
J 13~24

jjJ12

X(2J)3+1)(2J34+1)]i jjJ34

~J13J24J
= —(j'(J») j'(J34)JlIj'J), (J», J34 even only). (31)

(j'(J») j'(J34)JIIj'J)

+L1+ (—1)'"3[1+(—1)'"3

(2J)3+1)'*(2J34+ 1)& Jg3J'34J
X

(2j+ 1)'* j j j
If we require the normalization

2 1(j'(J»)j'(J34)JIIj'J) I'=1
&12J 34

= C [B(J33,J)8(J34,0)+8(J$3,0)8(J34,J)

~ (34)

This is the 4-particle analog of Eq. (7).
By comparing (29) with (24), we could solve for the

coeKcient directly; but with the help of the relations,

we have
2j—3

C=& 68(J,O)+6
2j+1

(35)

jjJ12' jjJ12

P» jjJ34» jjJ34 (2J»+1)(2J34+1)
J 12&34

,EI.J. .J13J24J.

Testing these values (34), (35) in Eqs. (14) and (15),
we have

3(4—~)(2j—1—~)

8 (E,J„)8 (L,J34)
(jjA3) (jjJ24) (J»J24J),

(2E+1) (2L+ 1)
(32)

jjJ12 jjJ12
» jjJ34 &» jjJ34 ~(2J&3+1)(2J34+1)(—1)

J1aJ34 .EI.J . .J13J24J.

= 6 (2j+1)P I (j (J»)j (0)J lI& J) I

2j—3
=6(2j+1) 68(J,O)+6 1+

2j+1
2(2j—1) J=O

(2j—3) J&0.

—45(J,O) 3

2j+1

=(—1)"'"' ' jjJ34,
.EI.J.

So that the fractional parentage coefficient (34), (35)
describes the state of j' with seniority zero or two as J
is zero or greater. Using the recursion relations (A3),
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we have then for e particles of seniority two'.

(j" '(v'=OJ') j'(J")J IIj"v=2J)

2(2j+1—n)(2j+3 —n) '
S(J',0)S(J",J),

i. n (n —1) (2j—1)(2j+1)

(j'-'("=2J'«) j'(J")J IIj"v=»)
3 4(n —2) (2j+1—n) 1 2j—3

6
2n (n —1)(2j—3) 2j+1

X &(J',J)&(J",0)+L1+(—1)']l.1+(—1)"]
(2J'+1)&(2J"+1)& J'J"J

X-
(2j+1)'

(36)

Also for states of seniority v =0, J=0:

(j" v =0, J=0l G
I
j",v= 0, 1=0) = —UFO(2j+1)n/2

Hence, for the configuration j", the energy level
separation from the state e= J=O to the state m=2,J is given by

oj "&= (j', v = 2, J I g; I,j', v = 2, J)+ 'Fo (2—j+1)
(40)

Thus one would expect the 0—2—4 ~ energy level
di6erences from the ground states of even-even nuclei
to be independent of the number of particles in the
unfilled outer shell. This conclusion may also be drawn
from the more general analysis of Racah and Talmi. '

THE 7/2 SHELL

where
=QJ Z(J')(j'J'IGI j'J'), (37)

2j—3
Z(J') =6 Q 6 b(J',J)8(J",0)

2j+1

+S(J',0)S(J",J) I 5(J—',J)b(J",0)
(2j+1)

+h(J' 0)~(J"J)]+4I:1+(—1)']El+ (—1)"]
(2J'+1)(2J"+1) J'J"J

X
(2j+1)

(2j-7)LS(J',J)y S(J',0)]
2j—3

+4(2J'+ 1)L1+ (—1)']

To calculate the matrix element of an operator of the
type 6 in a configuration of four equivalent particles
with seniority two, we have

(j4v=2JIGI j4v=2J)

=6 2 I(j'(J')j'(J")J'jj'v=2J) I'(j'J'I g' lj'J')

The configuration (7/2)' is the simplest (i.e., lowest
j) instance where the seniority number is needed to
classify the states. There are two states each of spin
J=2 and J=4; in each pair one state has seniority
number e= 2 and the other has v= 4. We shall now show
that in this case the seniority number v is always a
good quantum number. Consider any two-body sym-
metric interaction

G=P g;;, (41)

where, according to Racah, the angular and spin parts
of g;; can be written as a sum of scalar products of
tensor operators which act on each particle separately:

g, P~„r,' rf.
G is now conveniently written in the following form

G=Z. 2LZ'r'". Z~ r(—Z'r'" r'"]

(42)

where 7'=P, r,". Taking the matrix element of G
between two states of the configuration j" with dif-
ferent seniorities, we have from the first term

If g;; is —5(r,—r,), then'

X — . (3S)I (j"vJII2'" 2'"llj"v'J)= 2 (2J+1) '(—1)' "
2j+1 jjJ I'

& 0"»112'"llj""'J")U""'J"II2'"ll j""J) (43)

,(jlj !IjjJ")'-
(2j+1)', J' even,

2 2J'+ 1

and we can sum (37) and get

(j' v=2 JIGI j' "=2 J)
= —kFo(2j+1)+(j'Jlg I

j'J) (39)

Racah has shown that the matrix elements of T" for
odd r are diagonal in the seniority; since v ~v', every
term in (43) has v" Wv or v" Nv' so all these matrix
elements vanish.

For the even values of r we can use Racah's equation
(74)' modified according to his discussions (76)' and
(65).' For the half-shell, n= (2j+1)/2, the formula is

Using Eq. (AS), we have for j"v=2:

(j",v=2, JIGI j" v=2 J)
= —2Fo(2j+1)(n—2)/2+(j'Jlg' I

j'J).

(j-vJII2' ll
j'"J")

= (—1) '+""' '(j"»ll2"IIj""J") (44)
I G. Racah and I. Ta1mi, Physica 18, 109I (1952).
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except for r=O. Hence, for even r(WO), these matrix
elements vanish for hv=0. In our case of j=7/2, the
four particles constitute just half a shell, v—e' is 2,
and the general selection rule for these matrix elements
is fv —v"

I
=0, 2. Thus, for every term in (43), either

Iv —v"
I

or fv' —v"
I

is 0 and all these terms vanish. All

that is left of (42) are the terms P' and r, ".r,", both of
which are scalars, i.e., independent of all angle and spin
coordinates. Since, then, wave functions for states of
difFerent seniorities are orthogonal, the entire matrix
element of G is zero and the seniority remains a good
quantum number.

We shall. now calculate the diagonal energy matrix
element of G in the state (7/2)' v=2 J=2, which in
nuclear spectroscopy is expected to be the first excited
state of this configuration. This matrix element is
given by (37):

((7/2)4, v=2, J=2}GI (7/2)', v=2, J=2)
=2J' Z(J')((7/2)'J'I G

I
(7/2)'J') (45)

Equation (38) for Z(J') contains the term

' 'JI
(2J'+ l)I-1+ (—1)'j

jjJ
This will be recognized as the major term in the formula
for the fractional parentage coeKcient for the con-
iguration j' J=j, where J (which is even) plays the
role of Je. Since we know that for (7/2)' J= 7/2 there
is only one state, and that one is of seniority e= 1, we
can use (17) and write directly

(2J'+ 1)I:1+(—1)'i
(2J'+ 1)= —~(J',J)+G 3(J'0)— . (1+(—1)')

2j+1
and setting J'=0 we have C= —2/(2j —1). Substi-
tuting (46) into (38) we have

Z(J') = 3(J',J)+ &(J',0)
(2j—1)(2j—3)

+ (2J'+ 1)L1+ (—1)'7 (47)
(2j+1)(2j—1)

((7/2) 422
I G I (7/2) 422)

= ((7/2)'2 I G I (7/2)'2)+ s((7/2)'o I
G

I (7/2)'o)
+ r's Z~ (2J'+ 1)L1+ (—1)'3((7/2)'J'

I
G

I
(7!2)'J')

For the state (7/2)4 v=O J=O, we get, using (AS), the
matrix element

((7/2)'00 I G I (7/2)'oo) = (4/3)((7/2)'0
I
G

I
(7/2)'0)+ s»

D=2 ~'(2J'+1)L1+(—1)"3(yJ'IGIPJ') (48)

Finally, for the 0—2 energy difFerence we have

((7/2)400
I
G

I (7/2)400) —((7/2)422
I
G

I
(7/2)422)

=((7/2)'0
f
G

f (7/2)'0) —((7/2)'2 f
G

f (7/2)'2). (49)

Here we have the general result that for any two-body
interaction the excitation energy from the ground to the
erst excited state is the same for two as for four par-
ticles in the j=7/2 shell.

An example of this result can be seen in the results of
the explicit calculations of Kurath. "

The clearest data on this subject involves the pair of
isotopes Ca" and Ca44. Both nuclei have a magic
number, 20, of protons, hence we can well ignore the
efFect of a mixing of neutron and proton configurations.
The nuclei have, respectively, two and four neutrons
in the fri& shell. This shell is supposedly well isolated
between the magic numbers 20 and 28 so that con-
tributions from a second-order calculation would be
very small.

The energy of the first excited state in these two
nuclei are"

Ca42—1.51 Mev,
Ca44—1.16 Mev.

The large discrepancy between these two measured
values indicates very strongly the limitations to which
an individual-particle shell model for the nucleus must
be restricted.

APPENDIX

As was mentioned earlier, for work with G-type
operators it is most convenient to describe a wave
function for n equivalent particles in the form:

4(j" J)= Z ('" '( "J")'(J')JII'" J)
X4'(j" '(~"J")j'(J')J). (A1)

These two-particle fractional parentage coefFicients are
related to the one-particle coefficients by

(j" '(~"J")P(J')Jul"~J)

(2J'+ 1)«(2J"'+1)«(—1)"+"+'&

jjJ'
X ('~—e( I/Jfl)~JIII}}P—i IIIJill)

gJ'tilt t X(j"-'(u"'J"')jJ}}j"nJ), (A2)

and in terms of seniority they obey the selection rule
Av=O, &2. Putting Racah's recursion relations I-refer-
ence 3, Eq. (58)j for the one-particle coefficients into
(A2) we can get recursion relations for the two-particle

"D.Kurath, Phys. Rev. 91, 1430 (1953).
"G. ScharB-GoIdhaber, Phys. Rev. 90, 587 (1953).
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coeKcients

(j" '(v"j")j'(j')j)j"vj)
so

/1+( —1)j')
D=Z(2J'+1)I I(j'j'Ig' Ij'j').

E 2 )
v (v —1)(2j+3—e—v) (2j+5—e—v) i

n(n —1)(2j+3—2v) (2j+5—2v)

X(j" '(v —2j")j'(J')JIIj'vJ)(v"=v —2)

(v+1)(v+2)(n —v)(2j+3—n —v) l

2n (e—1) (2j+1—2v)

(v+ 3) (v+4) (n —v) (n —v —2):
8n (n —1)

X(j "(v+2J")j'(j')j)i '+'v j)(v"=v+2) (A3)

We shall take matrix elements of the symmetric
scalar operator G=P;&, g,; with the wave function
(A1) as follows:

In (A4) the selection rule is v —v'=0, &2, &4. For
v'=v —4, there is only one term in the sum over e",
namely v"= v —2; then using Eq. (A3), we can separate
out the e-dependence of the matrix element and get

(j"vJIGI j"v—4J)

(2j+3—e—v) (2j+5—n —v) (n v+—2) (e—v+ 4)

8(2j+3—2v) (2j+5—2v)

X(j'vJIGI j"v—4J). (A6)

For v'=v —2 there are two terms in the sum (A4),
v"=v, v —2. Thus this matrix element for e particles
can be expressed in terms of that for v particles and one
other configuration. We take the other to be 2j+1—v

particles and use (A5) to get

e(n —1) 0'j'I a' Ij'j')
(j "»IGlj "v 2J)=—(2j+3—n —v)(e—v+2) l

2(2j+3—2v)

J/ J/I ~l I

X(i "vj(i" '("'j"),j '(j')j)
(n —v)

X (j"vJIGI j v —2J)+ D . (A7)
2j+1

We shall also need the relation

(~=-~J
I GIj=-~'j)

2j+1—2e
= (i "~JIGIj"~'j)+ D, (A5)

2j+1 (e—v) (2j+1—n —v)

2(2j—1—2v)

where m=2 j+1;and

D= (j,v=0, J=OIGI j" v=O J=O)
=2m(m 1) Z~—(j" '(j'), j'(j')ojIj"0)'

x(j'j'Ig'
I
j'j').

(e—v —2) (2j—1—e—v)x (j "+'»
I
G

I j"+'»)
2(2j—1—2v)

(A4) For v'=v we shall use the three configurations of v

2j+1—v, and v+2 particles to account for the three
terms in the sum (A4). Substitution of the relations
(A3) gives an expression which finally reduces to the
earlier quoted result

From a simple generalization of Racah's equation
(19),' we have

(j='(j') j'(j')OIb o)'

(n—v) (e—v —2)x (~"JIGI~"j)+ D. (AS)
(2j—1—2v) (2j+1)

These reduction equations play the same role in the
(2j&+1)( '0

(0) '2(j&)j~]j2j~) study of two-particle operators as Eqs. (67) and (69)
m(m —1) of Racah' for one-particle operators.


