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The Ground States of Odd-Odd Nuclei
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Applications of techniques already developed for the study of atomic spectra to calculations on odd-odd
nuclei give some particularly simple results. The spins of the ground states of nearly all odd-odd nuclei
measured can be accounted for, and the validity of Nordheim s empirical rules is discussed.

INTRODUCTION
' 'T was found by Nordheim' that the total spin J of
~ - the ground state of odd-odd nuclei could be given
by the rules:

J=
Ij„j„I, —if 1 +j +J„+j„is even,

I j„—j„I(J&j„+j„, if 1„+jv+1„+j„is odd,

where j~, j„are the individual spins of the odd proton
and odd neutron involved, and l~, I„ their respective
orbital quantum numbers as determined from the shell
model most successful in the study of odd-even nuclei.
The calculation of de-Shalit' on nuclei with one odd
proton and one odd neutron outside closed subshells
has given a theoretical basis for Nordheim's rule in
this restricted case. Other calculations in special cases
have been carried out by Kurath' and by Flowers. 4

To discuss the general odd-odd nucleus with ni
equivalent particles of one kind and n2 equivalent
particles of the other kind all outside closed subshells,
we shall adopt the "odd group model. "In this approach
it is assumed that the particles in the two groups, i.e.,
protons and neutrons, first interact among themselves
to give in their lowest states some well-defined resultant
group angular momenta Ji and J2. It is expected that
this approach, neglecting all but the ground configur-
ations of the separate groups, should be valid for the
determination of only the very lowest levels of the
combined configuration. '

THE INTERACTION MATRIX

Ke shall start with the zeroth-order wave function of
the Mayer-Jensen j jco'upled inde-pendent particle
scheme with the two groups separately coupled to
well-defined resultant angular momenta. The con6gur-
ation of the n~ particles of the erst group is character-
ized by the quantum numbers ltd, j&, J&, that of the n2

particles of the second group by /2, j2, J2.
The wave function for the combined configuration

with total spin J and magnetic quantum number M is
then written:

4 (j,"Jr,js"Js,JM) = Z A(j,"J&Ma)A(j,"J~,)
M].My

X (J M J M
I
J JsJM).

' L. W. Nordheim, Phys. Rev. 78, 294 (1950).
s A. de-Shaht, Phys. Rev. 91, 1479 (1953).
s D. Kurath, Phys. Rev. 87, 218 (1952) and 91, 1430 (1953).' B.H. Flowers, Proc. Roy. Soc. {London) A212, 248 (1952).

Here we write the sequence j&"&J& as meaning e&

equivalent particles each of spin j& coupled to a re-
sultant spin Ji, j2"'J2 is similarly read. This form has
no special symmetries regarding interchange of protons
and neutrons, which are thus considered as two distinct
particles. Whatever the actual relation between proton
and neutron may be, our approximation is certainly
valid for heavier nuclei where the total isotopic spin is
not a good quantum number.

At this point all the diGerent levels of the total spin
J are degenerate. Now introducing an attractive short-
range interaction between particles of group one and
those of group two, we shall calculate by perturbation
theory the 6rst-order energy shifts and see which state
of total J is pushed deepest.

Taking the interaction between protons and neutrons
as a sum of two-body static potentials, we have

where the indices i and j count particles in the first
and second groups, respectively. Now, according to the
techniques developed by Racah, ' the two-particle inter-
action may be decomposed as

V; = —Qsfs(rt r )t, &'& t;&"&. (2)

Here t;&s& is a tensor operator with respect to jt (thus
also with respect to Jt and J'), of rank h, which operates
only on the angle and spin coordinates of particle i.
t;&" is similarly dedned with respect to particle j, and
t;~~'t, &~& is the scalar product of the two tensors.

Since both groups contain equivalent particles, the
radial part of the matrix element of every term in the
double sum (1) and (2) will have the same value for a
given k, namely

pOO po0

I
~t I'I ~s

I

sj's(r trs) rr'rs'«t«s (3)

where E» is the total radial part of the wave function
characterized by l& arid the principal quantum number
of the state in question.

' G. Racah, Phys. Rev. 62, 438 {1942).
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If' we now set

n2

T (k) —Q, g.(k) and T (k) —Q g. (k)

Eqs. (1), (2), (3) combine to give

V12 Zk fk(rr, rs) Tr'"' Ts "
~

Eq. (8) reads

(j "J=jllT"'llj"J=j)= (jllT'"'ll j) «»»dd; (9a)
(4)

. 2j+1—2s
(j"J=jllT"'ll j"J=j)= (jllT'"'ll j)

2j—1

for k even, (9b)

For the erst-order energy shifts we take the diagonal
matrix element of (5). Using (3) we obtain:

except for k =0. With an interaction of the Wigner type,
i.e., V;, a function of r;—r; only, it is weIl known that

E(jr"'Jrj2 J2,J)=—Zk I'k(jr"'Jtj2 J2 J~
X I

Tr(k) Ts("
I jr"'Jr, js"'J2,Jm). (6)

1,.(k) —(4&)l P', (k)

If we have a spin force of the form

(10)

Now since T&& ' operates only on particles of group one
and T2( ' only on particles of group two, we can use a
well-known theorem of Racah' to decompose this
matrix element (6) of Tr(k) T2(k' into the reduced
matrix elements:

(—1)"+'~'(j "'Jrll Tr"'ll j "'Jr) (j2"2Jsll Ts"'ll
Xj2 J2)IV(J)J2J1J2 J~) (7)

where W is a Racah coeQicient. ~

Ef, for the j-j coupled' configuration j"J, we dehne
the Q operator and seniority number s in a manner
completely analogous to that done for I.S coupling, '
it is not dBBcult to derive the pertinent equivalent of
Racah's Eq. (69)III:

(j"»IIT'"'ll j"»')= U"»II T"'ll j'»')

(2j+1—22 —s)—(—1)k (e—o)
X (8)

2/+ 1—22)

except for 0=0.
This equation gives for any irreducible tensor oper-

ator T(~' the matrix element in a con6guration of n
particles. with seniority v in terms of the matrix element
in the configuration of only v particles. For example, if
we take T&~& to be the quadrupole moment operator
Q= (16)r/5)&F22 (the normalized spherical harmonic is
here written as F ') and s happens to be one (J=j),
Eq. (8) tells us that the quadrupole moment for the
configuration j"(J=j) is (2j+1—222)/(2j —1) times
the quadrupole moment for a single particle in that
state with the same orientation.

Now it has been showri by Edmonds and Flowers'
and also by Racah' that for a wide variety of attractive
interactions among like particles the ground state of
the con6guration j"for n odd has seniority v=1. This
gives rise to Mayer's rule that an odd number of
equivalent protons or neutrons couple to a resultant J
equal to the j of the individual particles. With v=1,

' G. Racah and L Talmi, Physics 18, 1097 (1952).' G. Racah, Phys. Rev. 63, 367 (1943).' A. R. Edmonds and B.H. Flowers, Proc. Roy. Soc. (London)
A214, 515 (1952).' G. Racah, I.. Forkos jllemorial Volume (Research Cou.ncil of
Israel, Interscience Publishers, New York, Agents, 1952), p. 294.

then
V,;=(r;.(r;V(r;—r;),

1 (k') = (4~)ly'. (k)&,.(r)

((r is a tensor of rank one) is not an irreducible tensor,
but it may be expressed as a sum of irreducible tensors
of ranks:

k'=k —1, k, 4+1.
It can be shown" that only terms for which k and
also k'+0+1 are even numbers, contribute in the
evaluation of the necessary matrix elements.

Thus for a (r (r force the tensors Tr and T2 in (7) are
of odd rank only. Equation (9a) then tells us that

E (jr"'Jr=jr, js"'Js=j2, J)=K(j &jsJ)
for o"o force. (12)

But E.(j&j 2)Jwas just the term calculated by de-
Shalit. ' In the limit of zero range force,

&.(jr"'Jr=jr, j2"'Js=j2, J)=&.(j&j J)2

= —-'2Ps(2 j,+1)(2j2+1)(j;',j,——,
'

I j,j,JO)'
2J+1

I (2gr+1)+ (—1)"+"+s(2gs+1)$2

4J(J+1)
—[1+2(—1)"+'rt ~] . (13)

(jr"'J)= j)IIT)'ll jr"'Jr= jt) =~r(2jr+1)',
and similarly for T2', and also with

(—1)'+ WU, j,j,j„JO)= L(2j,+1)(2js+1)g-&,

we have Anally

&w(jr"'Jt= jr, js"'J2= js, J)
2jr+1—222r 2js+1—2N2

&w(jrj2J)
2jQ 2j2-1

2j&+1—2N& 2j2+1—2rss

2j&—1
(14)

For Wigner force Tj and T2 are of even rank. Noting'
that T~' is the scalar e~ and
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TAnx, n I. -E(j&j sf)/Fo for zero range forces.

1/2
W r+

1 —3 1 1
1 1 -0.33 1

3/2

1 —1.67 1—0.60 1 1

~ 5/2,

—1.40 1 1
1 -071 1

7/2

1 —128 1-0.78 1 1

9/2

1022
1

1 -1/2-0.82

2 -6 2 1.8 1.8 -3 1.72 -2.40 1.72
1.20 1.20 0.67 0.89 0.20 0.89 0./6 0.76 0
0.40 —1.20 0.40 0.3/ 0.37 -1 0.38 -0.89 0.38
1.20 1.20 —0.86 1.29 —1 1.29 1.33 1.33 -1.09

1.67 1.67 -2.14 -3/2
0.'/0 —0.11 0.70, —1/2
0.39 039 —0.82 +1/2
136 115 136 +3/2

3
1.63
0.69
0.91
0.29
1.43

9
1.63-2.06
0.91-0.86
1.43

3
1.29
0.69
0
0.29—1.17

2.57 2.57
1.05 0.59
0.62 0.62
0.90 -0.14
0.27 0.27
1.52 —1.28

4 -12
2.10 2.10
0.95 -2.86
0.99 0.99

. 0.47 —1.40
0.94 0.94
0.23 —0.70
1.63 1.63

-4.29
1.05—1.67
0.90—0.77
1.52

1.84
0.95
0.36
0.4/-0.26
0.23-1.42

2.38 -3.33 2.38 —5/2
0.82 0.82 0.30 —3/2
0.62 —1.45 0.62 —1/2
0.88 0.88 —0.24 +1/2
0.27 -0.71 0 27 . +3/2
1.57 1.57 —1.36 +5/2

3.33 3.33 —5.56 —7/2
1.25 0.91 1.25 —5/2
0.84 0.84 -2.27 -3/2
0.91 0.19 0.91 —1/2
0.43 0.43 -1.24
0.9S -0.35 0.95 +3/2
0.22 0.22 —0.65 +5/2
1.71 -1.51 1.71 +7/2

Again, for zero range forces, '

&w(jtjsJ)
= —&~a(2jr+1) (2js+ 1)(jtk js—k I jtjsJO)'

2J+1

X
[(2jr+1)+ (—1)~'~+f~~(2gs+1)]s)

(15)
4J(J+1)

DISCUSSION

Wigner forces alone will not give the desired dis-
tinction between condgurations of various l's, so we
shall investigate the usefulness of a mixture of Wigner
and Bartlett forces. If we take the interaction as

In Table I are given values of —E(j&jsJ)/Fs com-
puted from Eqs. (13), (15) with columns headed W
for Wigner force and 0~ for spin force in states of
positive and negative parity, respectively.

former effect, due to the second term in Eq. (14), and,
in fact, any translation of the energy scale can be
ignored here since it does not aGect the level spacing
at any mixture. As nj and n2 increase through the 6rst
halves of their respective shells, the levels are bilinearly
compressed. When either group is exactly half of a
filled shell, all the levels (on the Wigner side) are
degenerate. As one group, . only passes through the
second half of its shell the levels are inverted and
dilated: n~ holes and n2 particles give exactly the
inverted level structure of n~ particles and n2 particles.
n& holes and n2 holes are again equivalent to n& particles
and n2 particles.

Surveying the data on odd-odd nuclei of Nordheim"
and of Goldhaber and Hill, " and the recent note of

i-) i-) (~) (-) (-) i-) i-) (2)

it is interesting to plot against o, the energy levels
characterized by the diferent ways in which J& and J&
can combine to the resultant J. In Fig. 1 are a typical
set of such graphs for various values of n~ and n~ when
we have chosen j&——5/2, j&=7/2 and f1+fr is even.
de-Shalit gives a number of such graphs for several
values of j& and j2 when n&= n2= 1.

From Eqs. (12), (14) we can easily see how these
graphs change as we put more particles in each shell:

For a pure e~.e2 force, 0,=1, the level structure is
independent of n~ and n2.
for a pure Wigner force, 0,=0, increasing e~ and n~

both lowers and compresses the level structure. The

a*a ant asO anE auO a=1 ao as/ a no a*i

Fro. 1.Energy levels of con6gurations (5/2)"&(7/2)"~ with posi-
tive parity under interaction Vis= —

t (1-a)+oe| e~)s(rz-rm).
Both subgroups have seniority one.

'o L. W. Nordheim, Revs. Modern Phys. 2$, 322 (1951).
"M. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 179

(1952).
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+

(y)) (y) (y)) (y)

(~) (~) (~) (~)z) s sl s

m~=02= I. Such a relation is

Z(ji"'J,js"IJI,J)
I Q (2J1+1)(2J'+1)li/" (Ji'jiJJI,J,J')

FIG. 2. Energy levels of con-
6gnrations (7/2) "75/2(7/2}"'7/I
with positive parity under
interaction V82 —L(1-88}
+/3878 '5783& (r1—rI).

X (ji"'-'(Jt'), jrJ1 jj ji"Ji)'Z(j„jI"J„J'),
F.(j i,j I"'JI,J)

=752 Q (2JI+1)(2J"+1)~'(JI'jIJ'j 1,'JIJ")
J5sl Jr I

X (js" '(JI'),jIJIjIjs"IJ2)'&(jijIJ"),

0.*0 . a*1 a o a*i

where (ji"1 '(Ji'), ji,J,)ji"'Ji) is the fractional par-
entage coefBcient for the con6guration j~"1J~ as com-
puted by Edmonds and Flowers. ' Of use in checking
numerical work is the sum rule

King and Peaslee, "we 6nd that the above considera-
tions furnish an excellent accounting of the measured
and indicated ground state spins. Except for a few
nuclei with the configurations (3ds/2)2 and (4fr/I), "
there were no cases which could not be 6tted to our
graphs. However, it is known from the spins and
magnetic moments of the odd-even nuclei Na23 and
Mn" that these exceptional configurations are probably
not of seniority one and must be treated separately
(see next section).

In many cases where the spin was known the con-
figurations could be unambiguously assigned. In cases
where measurements were incomplete, some certainty
about the configurations involved allowed prediction of
the most probable spin.

TABLE II.EGective e-p force mixtures indicated by observed spins

Nucleus Configurations Spin

Li0
LP
QS
@10
Na'4
CP'
K40
K~
Sc4e
Co"
Co60

Rbs'
S$122

(PI/2) I/O

(P3/2) 3/I
(PIlI) 8/2

(Ps+)38/2
(d") ..
(d8/I) 3/2

(~")".
(d3/I) 3/2

(f7/I) 7/2

(fv/2)vv(~
(f7/2}77/I

(PI/O) 3/I
(g7/2) 7/I

(PI/2) I/I
(PI/2) I/I
(PI/I) 3/I
(PI/I) 3/2
(~5/2)'512
(d8/2)33/I
(f7/I}'7/I
(f7/I }'7/I
(f7/2)55/I
(PI/I) I/I
(P8/2) 3/2

or
(f5/2) 5/2

(d5/I) 5/I
(1381/I) 11/2

&~ 0.10
&~ 0.25
~&0.25
&~ 0.10
~& 0.42
&~ 0.25
~& 0.50
~& 0.17
~& 0.30
~& 0.10
~& 0.10

~& 0.50
~& 0.17; ~& 0.50
&~ 0.10

@Q.. Vf. King and D. C. Pellet!, Phys. Rev. 90, 1001 {1953).

EXCEPTIONAL CONFIGURATIONS

In some cases it is desirable to calculate the level
schemes involving configurations of seniority other than
one. For such work we need a general relation between
the perturbation energy in the state (ji"'Ji,jssIJI,J)
and the terms already calculated for the simple case

Qz(2J+1)E(ji"'Ji,js"'JI,J)
= —rsins(2Ji+1) (2JI+1)Fp. (18)

Using Eq. (17) and Table I, we have computed the
energy levels for the configuration (7/2)'5/I(7/2) with
positive parity under the perturbing potential (16).
Since (8) still gives the correct relation between particles
and holes for any seniority, we have the several cases
shown in Fig. 2.

The spin 4 for Sc4' is well accounted for, and we
would predict spin 6 for Mn" and 4 or 5 for V".Recent
work" gives spin 6 for V", which is best accounted for
by assigning seniority one to the (7/2)' proton con-
figuration. "For Sc~ the indicated spin 2 can be fitted
only with an extremely small value of n. The correct
configuration here is most likely a mixture of (7/2)'5/I
and (7/2)'7/I, this may also be the case in Mn".

For F'p the configuration (si/2)L(dp/2)25/I] would have
J=3 lowest whereas (si/2)L(dp/I)'I/2$ wouldhave J=2
lowest. The measurements do not yet indicate which
of these two is correct.

Calculations for the nuclei Na" and V" with both
neutron and proton configurations having seniority
diGerent from one require performing both sums of
(17) and have not been carried out. However, for the
latter nucleus, letting only one group have seniority
one would lead to spin 4 or 5, which are the most
probable indicated values.

NCLUSIONS

In Table II are listed a number of nuclei from which
we may infer something about the necessary amount of
mixture of the two forces considered. It should be
remarked that the two-body interaction taken as a
perturbation here is not the total neutron-proton force
but is supposed to be the residual of an averaging
over all interparticle forces which gives the central
potential well of the shell model. Especially since none

83 Kiknchi, Sirvetzz, and Cohen, Phys. Rev. 88, 142 (1952).
'4 A. Hitchcock, Phys. Rev. 87, 664 (1952).



GROUN D STATES OF OD D —OD D NUCLEI

but a scalar potential survives between outer particles
and any subgroup coupled to zero total spin, there is
no simple reason to expect the mixture of forces in the
perturbation to be independent of 3, . However, with
the exception of Co" all of the nuclei can be 6tted
with a value of 0. between 6 and 4.

Kith regard to Nordheim's rules, we now see that
their validity is not as gerieral as was 6rst indicated in
the case of one odd proton and one odd neutron.
Certainly for one less than a filled shell of both neutrons

and protons they are equally valid; and the "strong"
rule,

J=
Ij ~—j„I, forjn+j „+1,+l„even,

is still good when ei and e2 are both more or both less
than half of a filled shell. However, in general, the
situation is more complicated, especially as it is unsafe
to rely on the constancy of the mixture of forces.

The writer wishes to acknowledge the assistance of
Dr. A. de-Shalit, who instigated this work and gave
extensive advice throughout its development.
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The Decay Scheme of Zr"t'*

PHILLIP S. MITTELMANt
Renesselaer Polytechnic Institgte, Troy, See Fork

(Received September 8, 1953)

The decay scheme of Zr9' has been studied using the techniques of beta-ray spectroscopy and beta-gamma
angular correlation. The decay of Zr' is found to proceed by three beta gamma cascades. Two of the beta
transitions are allowed and proceed to Nb'5 levels at 722.0 kev and 754.4-kev. The third beta transition
is to a 235-kev level in Nb". From E-conversion coefficient determinations and shell theory the 722-kev
and 754.4-kev levels are both assigned even parity and a spin of 5/2 or 7/2.

'HE radiations originating from the decay of Zr'5

have been studied by a number of investigators
with somewhat divergent results. A recent paper by
Cork et a/. ,' published after the completion of this study,
contains an excellent survey of the previous work.

In the present investigation, beta-ray spectrometer
studies were made of the Zr" spectra and gamma ray
conversion lines. In addition, the angular correlation
between the Zr' beta and gamma rays in cascade to
the ground state of Nb" was measured.

BETA-RAY SPECTROMETER STUDIES

The beta-ray spectrometer used in this investigation
was a double-focusing, high-resolution spectrometer
patterned after that of Kurie, Slack, and Osaba. ' In
most of the runs reported here it was operated at a
resolution of 0.2 percent. The electron detector used for
studies of the shape of the beta spectrum was an end-
window Geiger counter with a 0.6-mg/cm' rubber
hydrochloride window. Later studies of conversion
lines and of the high-energy end of the beta spectrum
employed an end-window counter with a 3-mg/cm'
mica window.

t This work was carried out in partial fulfillment of the require-
ments for the Ph.D. degree at Rensselaer Polytechnic Institute.
It was supported by the U. S. Atomic Energy Commission.

*This work was reported at the 1953 Washington meeting of
the American Physical Society.

f. Now at Nuclear Development Associates, Inc. , White Plains,
New York.

'Cork, LeBlanc, Martin, Nester, and Brice, Phys. Rev. 90,
5'79 (1953).' Kurie, Osaba, and Slack, Rev. Sci. Instr. 19, 771-6 (1948}.

The magnetic 6eld in the spectrometer was measured
using a double-coil monitor with a temperature-
stabilized permanent magnet supplying the reference
field. The magnetic field could be kept constant to
within 1 part in 20,000 for extended periods of time.

The source material used in all of the experiments
consisted of a Zr"—Nb" oxalate mixture obtained from
Oak Ridge National Laboratory. The Oak Ridge
analysis indicated that the radiochemical purity of the
source material was better than 99 percent and that
the source initially consisted of 40 percent Zr" and
60 percent Nb".

The source for the spectrometer study of the spectrum
shape was prepared by laying down the source material
in the form of a line 3 mm wide by 1 inch high on a thin
formvar 61m on which a 61m of gold had been vacuum
evaporated. The areal density of the source backing
was less than 125 pg/cm'. The areal density of the
source material was approximately 50 pg/cms.

Figure 1 shows the Kurie plot obtained with this
source. It will be noted that the plot has an "allowed"
shape from the end point of the Nb" spectrum at 160
kev out to approximately 360 kev. At the high-energy
end of the spectrum the 900-kev branch of the Zr"
decay is in evidence but the source was too weak to
make signi6cant measurements on it. The E conversion
line resulting from the 23S-kev isomeric transition in
Nb" is also in evidence in this 6gure.

The conversion lines from the gamma ray transitions
in Nbo and Mo ~ were examined with a stronger source.
This source was prepared by ruling a line j. mm wide and


