
Cheat Sheet - EE130
q = 1.6*10-19 C            e0 = 8.85*10-14 F/cm
K_S = 11.8, K_O = 3.9        Eg (Si) = 1.12 eV
Boltzman k = 8.62*10-5 eV/K
Planck h = 4.14*10-15 eV*s
Free e Mass, m0 = 9.1*10-31 kg
Effective density of states Nc = 3.22*10^19 cm-3 
dEg = 3.5*10^(-8) * N^(1/3) eV
Basic Semiconductors Fundamentals
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Low T = freeze out; high t = intrinsic; else extrinsic
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hi T = phonon scattering, low T = ion scattering
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Generation: band2band, R-G center, impact ion
Recomb: direct, R-G, Auger (2 collide, excite 1)

rate of recombination=dn
dt
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Semiconductor Fabrication:
*oxidation = deposition of SiO2 layer
dry = thin, slow, precise, wet = thick, fast, imprecise

*lithography/etching = remove SiO2 with photoresist
*Dry/wet etch; dry=precise, wet = easy, cut sides
Antenna effect, charges left after etching, tunnel
*Ion Implantation = dopant atoms introduce into Si
low T vs diff. Dominant process now.
*Annealing/Diffusion = clean and spread
*Thin Film Deposition, spray metal, > clean sputter
*CVD – deposit ions/nitrides, etc.
Advanced lithography – EUV photo, ebeam, dip-pen
Positive = light, softens, negative = light hardens
Antenna effect – e- flow tunnel beneath oxide
Dop gasphase,solid source,in situ (deposit on surface)
PN Junctions
Forward Bias = Current flows P->N
Dep approx: assume carrier inside dep. region = 0
charge density out dep reg = 0 and q(Nd-Na) inside
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N A x p=N D xn common field in depletion region
one that reaches first is first to depleted
Dep reg. Widens under reverse bias
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Drift doesn't change with V b/c low numbers
Forward bias = more minority @ dep edge
Reverse bias = black hole @ dep edge
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IV curve shifts left @ high T b/c more diffusion
Charge storage: I=Q /s charge/carrier lifetime

Capacitance: C=sG Conductance: G=
I DC q
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PIN Junctions
Only e/h generated in dep reg contribute to current
Only light absorbed in dep reg is useful. Avalanches.
MS Junctions
lightly doped rectifying, heavily doped ohmic
Ideal assumptions: intimate contact, no oxide/charge
Not ideal: interface pinned Ef 0.4-0.9 eV below Ec
BN=M−X Barrier height; work(metal) – EA
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PN higher V for same I. MS more reverse current.
MS = Ideal for rectifying high I, low V. I0 > PN's
Contact both directions, dope heavily to tunnel
Actual, MS is rectifying. Ohmic needs high N(thin)
P=e−H  B−V A /N D Ohmic when small barrier

Reduce height/reduce width. 2nd works. 1st too rare
Carrier injection @ contact: 3 modes (parameter)
thermionic emission (work fcn, T, Forward bias), 
tunneling (high doping)
thermally activated tunneling (high T, high doping)
MOSC
Ideal assumption: no charge in oxide, same Work Fcn
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Cox=ox A/ t ox C si=si A/W Hi N = little effect
Nonideal: nonmetal gate, charge traps, FB voltage
Threshold voltage: larger doping requires small t_ox. 
Nonmetal gate is problematic; small oxide is good, 
but hard to get smaller. Want high dope in body.
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Fixed charge due to ionized silicon not oxidized.
Mobile ions shift CV curves. Positive shifts left
Interface traps smooth out curve; degrade mobility
More surface scattering with lower t_ox
Lower t_ox shifts CV curve down, lowers V_t
MOSFET
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For above, C_ox = e_ox/t_ox, or cap per unit area
Only apply to diffusive devices, today quasi-ballistic
* Square law also ignores bulk charge effect, assumes 
gate charge balanced by inversion charge, not dep
* Also ignores changes in dep width
Threshold and Subthreshold
Mobility degrades at high V_GS, minority carriers 
flow at low V_GS(subthreshold). Exponential decay.
Small subthreshold swing is desirable, get sharper 
slope.
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Lower swing by Increase Cox, problem – tunneling, 
scattering
Decrease C_dep w/ lighter doping. Kills V_t
Decrease Temp
Velocity saturates b/c of high energy collisions.
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Ballistic devices often exceed v_sat.
Series resistance shifts IdVg curve to right.

Lowers Id/Vd curve respectively. Degrades perf.
Not all Vd drops across channel; some in contacts
Vt rolloff – V_t decreases with decreasing length
I_off becomes too large if V_t becomes too small.
Consequence of reducing oxide thickness.
Reduce tox
• Larger Cox raises Ion, better e-field
• Reduce subthreshold swing
• Control Vt rolloff
• Bad – breakdown due to high field; leakage
Define EOT = E_siO2/E_gate dielectric * t_ox
Hi-k challenges: chemical reaction w/ gate
lower surface mobility, too low V_t for PMOS
Source/drain leakage in body is a problem. Drain 
controls this part. Reduce this w/ UTB, FINFET, SOI.
BJT
Good design: minority carriers don't recombine in B
Emitter current almost all from carriers from B
Control doping in base but balance w/ dep width
I E=I BIC current flows to C in pnp, E in npn

Bias Mode E-B Interface C-B Interface
Saturation Forward Forward
Active Forward Reverse
Inverted Reverse Forward
Cutoff Reverse Reverse
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Base width modulation / punchthrough
High CB bias causes early effect, sloped Ic vs Vec
Base gets shorter and thinner. 


