- 1. Write an integral that represents the volume of the solid obtained by rotating the region enclosed by the curve $y = x x^9$ and the x-axis around the x-axis. Do not evaluate the integral.
- 2. Write an integral that represents the volume of the solid obtained by rotating the region enclosed by the curve $y = x x^9$ and the x-axis around the y-axis. Do not evaluate the integral.
- 3. Find the volume of the solid obtained by rotating the region enclosed by $x = 12(y^2 y^3)$ and the y-axis around
 - a. the x-axis.
 - b. the line y = 8/5.
- 4. Let

$$g(x) = \begin{cases} (\tan(x))^2/x, & 0 < x \le \pi/4\\ 0, & x = 0. \end{cases}$$

- a. Show that $xg(x) = (\tan(x))^2$, $0 \le x \le \pi/4$.
- b. Find the volume of the solid generated by rotating the region enclosed by g(x), $x = \pi/4$, and the x-axis around the y-axis.
- 5. Consider the region enclosed by $x = 3y^2 2$, $x = y^2$, and the x-axis. This region is to be revolved around the x-axis to form a solid.
 - a. Write an integral to find the volume of the region using cylindrical shells.
 - b. Write an integral to find the volume of the region using cylindrical slabs.
 - c. Find the volume of the region.