
Indefinite Integrals

To find a solution to an equation of the form

dF

dx
= f(x)

we are looking for a function F (x) such that F ′(x) = f(x). We formalize this notion with
the following definition

Definition: Antiderivative
A function F (x) is an antiderivative of f(x) if

F ′(x) = f(x)

for all x in the domain of f .

If we have a single antiderivative F (x) for a function f(x), it turns out that every other
antiderivative of f(x) can be written as F (x) + c for some constant c. Because we can
choose any constant value for c it follows that this family of antiderivatives contains infinite
members. This realization motivates the following definition.

Definition: Indefinite Integral
We call the set of all antiderivatives of f the indefinite integral of f , denoted by∫

f(x)dx

The symbol
∫

is an integral sign. The function f is the called the integrand and x is
the variable of integration. We say that dx is a differential of x.

Based on our previous discussion we can say that∫
f(x)dx = F (x) + c

because the expression on the right-hand side represents all possible antiderivatives of f(x).

When we find the indefinite integral of a function f(x) we say that we integrate the inte-
grand f(x). Thus, the process of evaluating an integral is referred to as integration. The
resemblence of

∫
and an enlongated S is not accidental. This notation reflects the relation-

ship between integration and summation. Integration is essentially the summation of the
area underneath the integrand f(x) over intervals of infintessimal length. The differential dx
represents an infintessimal change in x, which represents the intervals of infintessimal length
over which the summation involved in integration occurs.

When it will not lead to confusion we will refer to the indefinite integral as simply the inte-
gral. The term indefinite integral is used to distinguish the process of indefinite and definite



integration. Although both of these concepts are related to the area underneath a function,
the indefinite integral is a function, whereas the definite integral is a constant, which is given
by the area underneath a function over a set interval (defined by the limits of integration,
which are not present in an indefinite integral).

Since the process of (indefinite) integration is an inverse to differentiation, we can derive
many rules for integration using rules we already know for differentiation. For instance

d

dx
xn+1 = (n + 1)xn

so we see that
d

dx

( xn+1

n + 1

)
= xn forx 6= −1

This leads us to the product rule for integrals.

Power Rule for Integrals ∫
xndx =

xn+1

n + 1
+ c

for every n 6= −1 (n ∈ R \ {−1}).

Example 1 Evaluate the indefinite integral of x2.
Solution In this case we use the product rule, to see that∫

x2 =
x2+1

2 + 1
+ c =

x3

3
+ c

Example 2 Evaluate the indefinite integral of
√

x.
Solution Once we rewrite

√
x = x1/2 we see that∫

x1/2 =
x1/2+1

1/2 + 1
+ c =

2

3
x3/2 + c

Example 3 Evaluate the indefinite integral of x−3.
Solution We find that ∫

x−3 =
x−3+1

−3 + 1
+ c = −1

2
x−2 + c

Example 4 Evaluate
∫

dt.
Solution Rewriting the integrand we find∫

dt =

∫
t0dt =

t0+1

0 + 1
+ c = t + c

Just like differentiation, integration is a linear operation. What this means is that integration
satisfies the following two properties.



Sum Rule for Integrals∫ (
f(x) + g(x)

)
dx =

∫
f(x)dx +

∫
g(x)dx

Constant Product Rule for Integrals∫
af(x)dx = a

∫
f(x)dx

for every a ∈ R

Example 5 Evaluate the indefinite integral of −2x−3 + 4x1/2 .
Solution We can use the constant product rule and sum rules in conjunction to find∫

−2x−3 + 4x1/2 = −2

∫
x−3 + 4

∫
x1/2 = −2(−1

2
x−2) + 4(

2

3
x3/2) + c = x−2 +

8

3
x3/2 + c

In the above analysis we do not write the result as −2c + 4d, because we can easily enough
choose c and d so that we have any value for the arbitrary constant. Thus, it is cleaner
to just replace −2c + 4d with a single c, as both are capable of representing any arbitrary
constant.

When we are faced with a differential equation of the form

dm

dt
= f(t)

we can use integration to find a solution m(t), as an antiderivative of f(t) will be a function
with derivative of f(t), so it will satisfy the differential equation. The fact that the indefinite
integral is a family of antiderivatives corresponds directly with the fact that there are a
family of solutions to the above differential equation. It follows that we will need to choose
c appropriately to satisfy the initial conditions of a given initial value problem.

One major application in which polynomial differential equations arise is to find a velocity
given an acceleration, or position given velocity and acceleration. We have the following
relationships

dv

dt
= a

and
dy

dt
= v

where a denotes acceleration, v denotes velocity, and y denotes position.

Example 6 Using the above relationships we can solve the initial value problem related
to a free-falling object (ignoring wind resistance). Suppose a shoe is thrown from a height
of 100m at an initial velocity of -5 m/s. Find the velocity and position of the object as
functions of time.



Solution To solve this problem we will assume a constant gravitational force, which causes
the shoe to accelerate at a constant rate of 9.8 m/s after it is released at time t = 0. To
solve the equation

dv

dt
= a = −9.8

we integrate finding

v(t) =

∫
−9.8dt = −9.8t + c

Using the initial condition we find

v(0) = −9.8t + c = c = −5

so v(t) = −9.8t − 5 is our exact solution for velocity as a function of time. Note that the
velocity is negative because the object is traveling downward (in free fall). Now we must
solve

dx

dt
= v = −9.8t − 5

to find x. Integrating we find

y(t) =

∫
(−9.8t − 5)dt = −9.8

∫
tdt − 5

∫
dt = −4.9t2 − 5t + c

Using the initial condition

y(0) = −4.9 · 02 − 5 · 0 + c = 100

implies that y(t) = −4.9t2 − 5t + 100 is our solution for position as a function of time. If we
solve for y(t) = 0 we find that the shoe hits the ground after about 4 seconds. When it hits
the ground its velocity is about -45 m/s.

Corresponding to other differentiation rules we have learned, we can evaluate the following
integrals. ∫

exdx = ex + c∫
cos(x)dx = sin(x) + c∫

sin(x)dx = − cos(x) + c

Note that the negative sign corresponds to the integral of the sine function, just as the
negative sign corresponds to the derivative of cosine. We’d also like to note∫

1

x
dx = ln(|x|) + c

In the above formula we use the magnitude of x, |x|, because although 1
x

is defined for
negative x, ln(x) is not. We can verify this integral through differentiation. For x > 0

d

dx
ln(|x|) =

d

dx
ln(x) =

1

x



If we consider x < 0 then

d

dx
ln(|x|) =

d

dx
ln(−x) =

1

−x
· (−1) =

1

x

We cannot evaluate the above derivative at x = 0, because ln(x) is undefined for x = 0.

Example 7 Evaluate

∫ (1

x
+ 2ex + 3 cos(x)

)
dx

Solution We can evaluate the above integral using the sum and constant product rules in
conjunction with the integrals we have just discussed.∫ (1

x
+ 2ex + 3 cos(x)

)
dx =

∫
1

x
dx + 2

∫
exdx + 3

∫
cos(x)dx = ln(|x|) + 2ex + 3 sin(x) + c


