Differences
This shows you the differences between two versions of the page.
Both sides previous revision
Previous revision
|
|
math214:home [2020/05/17 16:18] pzhou |
math214:home [2020/12/18 21:23] (current) pzhou |
* Week 11: | * Week 11: |
* [[04-06]]: {{ :math214:note_6_apr_2020.pdf |ipad note}}Holonomy, interpretation of Curvature[Ni] 3.3.4 | * [[04-06]]: {{ :math214:note_6_apr_2020.pdf |ipad note}}Holonomy, interpretation of Curvature[Ni] 3.3.4 |
* Errata of ipad note: page 1, right column. It should be: if $A = \omega \ot (e_\alpha \ot \delta^\beta)$, for ω∈Ω1(U) and eα the local frame of E previously chosen, and δβ the dual frame of E∗, then $dA = d(\omega) \ot (e_\alpha \ot \delta^\beta).Thisisbecaused e_\alpha =0, d \delta^\beta=0bythedefinitionoflocalconnectiondonE|_U$. | * Errata of ipad note: page 1, right column. It should be: if $A = \omega \otimes (e_\alpha \ot \delta^\beta)$, for ω∈Ω1(U) and eα the local frame of E previously chosen, and δβ the dual frame of E∗, then $dA = d(\omega) \otimes (e_\alpha \ot \delta^\beta).Thisisbecaused e_\alpha =0, d \delta^\beta=0bythedefinitionoflocalconnectiondonE|_U$. |
* 04-08: {{ :math214:note_8_apr_2020.pdf |ipad note}} Connection on Tangent Space. Levi-Cevita connection. | * 04-08: {{ :math214:note_8_apr_2020.pdf |ipad note}} Connection on Tangent Space. Levi-Cevita connection. |
* 04-10: {{ :math214:note_10_apr_2020_3_.pdf | ipad note}}. Levi-Cevita connection for bi-invariant metric on Lie group. Begin Geodesic equation. | * 04-10: {{ :math214:note_10_apr_2020_3_.pdf | ipad note}}. Levi-Cevita connection for bi-invariant metric on Lie group. Begin Geodesic equation. |