Both sides previous revision
Previous revision
Next revision
|
Previous revision
|
math214:home [2020/05/01 15:27] pzhou [Lectures] |
math214:home [2020/12/18 21:23] (current) pzhou |
* Week 11: | * Week 11: |
* [[04-06]]: {{ :math214:note_6_apr_2020.pdf |ipad note}}Holonomy, interpretation of Curvature[Ni] 3.3.4 | * [[04-06]]: {{ :math214:note_6_apr_2020.pdf |ipad note}}Holonomy, interpretation of Curvature[Ni] 3.3.4 |
* Errata of ipad note: page 1, right column. It should be: if $A = \omega \ot (e_\alpha \ot \delta^\beta)$, for ω∈Ω1(U) and eα the local frame of E previously chosen, and δβ the dual frame of E∗, then $dA = d(\omega) \ot (e_\alpha \ot \delta^\beta).Thisisbecaused e_\alpha =0, d \delta^\beta=0bythedefinitionoflocalconnectiondonE|_U$. | * Errata of ipad note: page 1, right column. It should be: if $A = \omega \otimes (e_\alpha \ot \delta^\beta)$, for ω∈Ω1(U) and eα the local frame of E previously chosen, and δβ the dual frame of E∗, then $dA = d(\omega) \otimes (e_\alpha \ot \delta^\beta).Thisisbecaused e_\alpha =0, d \delta^\beta=0bythedefinitionoflocalconnectiondonE|_U$. |
* 04-08: {{ :math214:note_8_apr_2020.pdf |ipad note}} Connection on Tangent Space. Levi-Cevita connection. | * 04-08: {{ :math214:note_8_apr_2020.pdf |ipad note}} Connection on Tangent Space. Levi-Cevita connection. |
* 04-10: {{ :math214:note_10_apr_2020_3_.pdf | ipad note}}. Levi-Cevita connection for bi-invariant metric on Lie group. Begin Geodesic equation. | * 04-10: {{ :math214:note_10_apr_2020_3_.pdf | ipad note}}. Levi-Cevita connection for bi-invariant metric on Lie group. Begin Geodesic equation. |
* Week 14: de Rham cohomology | * Week 14: de Rham cohomology |
* 04-27: {{ :math214:note_27_apr_2020_2_.pdf | ipad note}} | * 04-27: {{ :math214:note_27_apr_2020_2_.pdf | ipad note}} |
* 04-29: {{ :math214:note_29_apr_2020_2_.pdf | note}} Poincare duality. | * 04-29: {{ :math214:note_29_apr_2020_2_.pdf | note}} Poincare duality. {{ :math214:mv-sequence.pdf |Excerpt from Bott-Tu}}, p23-24, on MV sequence. |
* 05-01: {{ :math214:note_1_may_2020_2_.pdf | note}} Singular, Cech, Morse cohomology. | * 05-01: {{ :math214:note_1_may_2020_2_.pdf | note}} Singular, Cech, Morse cohomology. |
| |
=== [[hwsol | Students Homework Solutions]] === | ** [[hwsol | Students Homework Solutions]] ** |
| |
| |
| ===== Final ===== |
| [[final]] and [[final-solution]] |