* Consider the vector space R2. Let v1=(1,1),v2=(0,2). Let P(v1,v2) denote the area of the parallelogram (skewed rectangle) generated by v1,v2. P(\vec v_1, \vec v_2) = ?
+
* Consider the vector space R2. Let v1=(1,1),v2=(0,2). Let P(v1,v2) denote the **signed** area ((Signed area means $P(v,w) = - P(w,v)$)) of the parallelogram (skewed rectangle) generated by v1,v2. P(\vec v_1, \vec v_2) = ?
* From the above computation, can you deduce P(v1+3v2,v2)=? which formula did you use?
* From the above computation, can you deduce P(v1+3v2,v2)=? which formula did you use?
* How about P(av1+bv2,cv1+dv2)=?
* How about P(av1+bv2,cv1+dv2)=?
Line 62:
Line 62:
(11)(3112)(11)=7
(11)(3112)(11)=7
* ∥e1−2e2∥2=(1−2)(3112)(1−2)=7
* ∥e1−2e2∥2=(1−2)(3112)(1−2)=7
-
* $P(e_1, e_2) = \sqrt{\det(g)} = \sqrt{4} = 2$
+
* $P(e_1, e_2) = \sqrt{\det(g)} = \sqrt{5}$
* Can you find two vectors v1,v2∈R2, such that v1,v2 has the same properties as e1,e2? v1=(3,0),v2=(2cosθ,2sinθ) where cosθ=231. We are using the formula
* Can you find two vectors v1,v2∈R2, such that v1,v2 has the same properties as e1,e2? v1=(3,0),v2=(2cosθ,2sinθ) where cosθ=231. We are using the formula
v⋅w=∥v∥∥w∥cosθ
v⋅w=∥v∥∥w∥cosθ
math121b/ex3.1581471113.txt.gz · Last modified: 2020/02/11 17:31 by pzhou