User Tools

Site Tools


math121b:ex3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math121b:ex3 [2020/02/08 14:13]
pzhou created
math121b:ex3 [2020/02/20 15:02] (current)
pzhou
Line 6: Line 6:
  
 1. True or False 1. True or False
-  * All vector spaces come equipped with a preferred inner product.  +  * Each vector space comes equipped with a preferred inner product.  
-  * All vector spaces come equipped with a preferred basis. +  * Each vector spaces comes equipped with a preferred basis. 
   * If vVv \in V is an element in a vector space VV, then it determines a dual element vVv^* \in V^*   * If vVv \in V is an element in a vector space VV, then it determines a dual element vVv^* \in V^*
   * Let PP be the vector space of smooth R\R-valued function on [0,1][0,1]. For example, f(x)=x22f(x) = x^2-2, is an element in PP, or f(x)=1x+1f(x) = \frac{1}{x+1}. Then, the function Φ:PR\Phi: P \to \R, defined by sending f(x)Pf(x) \in P to 01x2f(x)dx\int_0^1 x^2 f(x) dx is a linear function on PP.   * Let PP be the vector space of smooth R\R-valued function on [0,1][0,1]. For example, f(x)=x22f(x) = x^2-2, is an element in PP, or f(x)=1x+1f(x) = \frac{1}{x+1}. Then, the function Φ:PR\Phi: P \to \R, defined by sending f(x)Pf(x) \in P to 01x2f(x)dx\int_0^1 x^2 f(x) dx is a linear function on PP.
  
 2. Area 2. Area
-  * Consider the vector space R2\R^2. Let v1=(1,1),v2=(0,2)\vec v_1 = (1,1), \vec v_2 = (0,2). Let P(v1,v2)P(\vec v_1, \vec v_2) denote the area of the parallelogram (skewed rectangle) generated by v1,v2\vec v_1, \vec v_2.    P(\vec v_1, \vec v_2) = ? +  * Consider the vector space R2\R^2. Let v1=(1,1),v2=(0,2)\vec v_1 = (1,1), \vec v_2 = (0,2). Let P(v1,v2)P(\vec v_1, \vec v_2) denote the **signed** area ((Signed area means $P(v,w) = - P(w,v)$)) of the parallelogram (skewed rectangle) generated by v1,v2\vec v_1, \vec v_2.    P(\vec v_1, \vec v_2) = ?
   * From the above computation, can you deduce P(v1+3v2,v2)=? P(\vec v_1 + 3 \vec v_2, \vec v_2) = ? which formula did you use?    * From the above computation, can you deduce P(v1+3v2,v2)=? P(\vec v_1 + 3 \vec v_2, \vec v_2) = ? which formula did you use? 
   * How about P(av1+bv2,cv1+dv2)=? P(a \vec v_1 + b \vec v_2, c \vec v_1 + d \vec v_2)=?    * How about P(av1+bv2,cv1+dv2)=? P(a \vec v_1 + b \vec v_2, c \vec v_1 + d \vec v_2)=?
Line 24: Line 24:
   * e12e2=? \| e_1 - 2 e_2 \| = ?    * e12e2=? \| e_1 - 2 e_2 \| = ?
   * P(e1,e2)=P(e_1, e_2) = ?   * P(e1,e2)=P(e_1, e_2) = ?
-  * Can you find two vectors v1,v2R2v_1, v_2 \in \R^2+  * Can you find two vectors v1,v2R2v_1, v_2 \in \R^2, such that v1,v2v_1, v_2 has the same properties as e1,e2e_1, e_2
  
 4. Let V=R2V=\R^2 be the Euclidean vector space of 2-dim, and v,wv, w be two vectors in it. Suppose we know that 4. Let V=R2V=\R^2 be the Euclidean vector space of 2-dim, and v,wv, w be two vectors in it. Suppose we know that
Line 31: Line 31:
    * What if VV is nn-dimensional, does the above conclusion still holds?     * What if VV is nn-dimensional, does the above conclusion still holds? 
  
 +==== Tangent Vectors ====
  
 +1. Tangent vector of a subspace in R2\R^2. Let S1S^1 denote the unit circle in R2\R^2, i.e 
 +S1={(x,y)R2x2+y2=1}. S^1 = \{(x,y) \in \R^2 \mid x^2 + y^2 = 1 \}.
 +Let v=(0,1)v = (0,1), then for which point pS1p \in S^1, is the vector (p,v)(p,v) a tangent vector of S1S^1 at pp
  
 +2. Let f(x,y)=x2y2f(x,y) = x^2 - y^2, and let Γf={(x,y,z)z=f(x,y)}\Gamma_f = \{(x,y, z) \mid z = f(x,y) \} the graph of ff in R3\R^3
 +Then for the point p=(2,3,5)p=(2, 3, -5) on Γf\Gamma_f, find two linearly independent tangent vectors in TpΓfT_p \Gamma_f
  
  
 +
 +===== Solution =====
 +==== Metric Tensor. Length, Area and Volume element ====
 +1. True of False
 +  * False. Although, you can equip any finite dimensional vector space with an inner product, there is no one holier than the other. 
 +  * False. The whole point of introducing abstract linear vector space is to do away with basis (at least on the level of definition, even though in practice, it is useful to pick a basis). 
 +  * False. 
 +  * True. 
 +
 +
 +2. 
 +  * P(v1,v2)=det(1012)=2P(\vec v_1, \vec v_2) = \det \begin{pmatrix} 1 & 0 \cr 1 & 2 \end{pmatrix} = 2.
 +  * P(v1+3v2,v2)=P(v1,v2) =2P(\vec v_1 + 3 \vec v_2, \vec v_2) = P(\vec v_1, \vec v_2)  = 2. You can use either the property of determinant modify a column by a multiple of another column does not change the value. Or, you can use the fact that v1v2)=(v1+3v2)v2\vec v_1 \wedge \vec v_2) = (\vec v_1 + 3 \vec v_2) \wedge \vec v_2. Same thing.
 +  * 
 +P(av1+bv2,cv1+dv2)=det(abcd)P(v1,v2)= 2(adbc) P(a \vec v_1 + b \vec v_2, c \vec v_1 + d \vec v_2) = \det \begin{pmatrix} a & b \cr c & d \end{pmatrix} P(\vec v_1, \vec v_2) =  2 (ad-bc)
 +
 +3. 
 +  * e1=3\| e_1 \| = \sqrt{3} , e2=2\| e_2 \| = \sqrt{2}
 +  * e1+e22=g(e1,e1)+g(e2,e2)+2g(e1,e2)=3+2+2=7 \| e_1 + e_2 \|^2 = g(e_1, e_1) + g(e_2, e_2) + 2 g(e_1, e_2) = 3 + 2 + 2 = 7 , hence  e1+e2=7\| e_1 + e_2 \| = \sqrt{7} . Another way to get e1+e22\| e_1 + e_2 \|^2 is by 
 + (11 )(3112)(11)=7  \begin{pmatrix} 1 & 1  \end{pmatrix} \begin{pmatrix} 3 & 1 \cr 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \cr 1 \end{pmatrix} = 7
 +  * e12e22= (12 )(3112)(12)=7 \| e_1 - 2 e_2 \|^2 =  \begin{pmatrix} 1 & -2  \end{pmatrix} \begin{pmatrix} 3 & 1 \cr 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \cr -2 \end{pmatrix} = 7
 +  * P(e1,e2)=det(g)=5P(e_1, e_2) = \sqrt{\det(g)} = \sqrt{5}
 +  * Can you find two vectors v1,v2R2v_1, v_2 \in \R^2, such that v1,v2v_1, v_2 has the same properties as e1,e2e_1, e_2? v1=(3,0),v2=(2cosθ,2sinθ)v_1 = (\sqrt{3}, 0), v_2 = (\sqrt{2} \cos\theta, \sqrt{2} \sin \theta) where cosθ=123\cos\theta = \frac{1}{\sqrt{2} \sqrt{3}}. We are using the formula 
 +vw=vwcosθ v \cdot w = \| v \| \|w \| \cos \theta 
 +there θ\theta is the angle between vv and ww
 +
 +4. Try using the angle formula above to show that the two vector are parallel. It does not depends on whether you are in 2-dim or higher dim. 
 +
 +==== Tangent Vectors ====
 +
 +1. For point p=(1,0)p=(1,0) and p=(1,0)p=(-1,0), the vector v=(0,1)v = (0, 1) is a tangent vector in TpS1T_p S^1. Just draw the picture to see. 
 +
 +2. The defining equation for Γf\Gamma_f is zf(x,y)=0z - f(x,y) =0, then tangent vectors vp\vec v_p to Γf\Gamma_f at point pp satisfies 
 +dzdfp,vp=0 \langle dz -d f|_p , v_p \rangle = 0
 +In concrete form, we have at $p=(2,3,-5)$, 
 +dzdfp=dz2xdx+2ydyp=dz4dx+6dy dz -d f|_p = dz - 2x dx + 2y dy|_p = d z - 4 dx + 6 dy
 +thus, if vp=vxx+vyy+vzzv_p = v_x \d_x + v_y \d_y + v_z \d_z, then the only requirement we have is
 +4vx+6vy+vz=0 -4 v_x + 6 v_y + v_z = 0
 +The solution space is spanned by vp=(1,0,4)v_p = (1, 0, 4) and (0,1,6)(0, 1, -6). More correctly, we have 
 +x+4z,y6z \d_x + 4 \d_z, \quad \d_y - 6 \d_z
 +are two linearly independent vectors on TpΓfT_p \Gamma_f
  
  
math121b/ex3.1581200015.txt.gz · Last modified: 2020/02/08 14:13 by pzhou