User Tools

Site Tools


math121b:02-10

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math121b:02-10 [2020/02/10 00:29]
pzhou
math121b:02-10 [2020/02/22 18:03] (current)
pzhou
Line 1: Line 1:
 ====== 2020-02-10, Monday ====== ====== 2020-02-10, Monday ======
-\gdef\div{\text{div}} \gdef\vol{\text{Vol}} \gdef\b{\mathbf}+\gdef\div{\text{div}} \gdef\vol{\text{Vol}} \gdef\b{\mathbf} \gdef\d{\partial}
  
  
Line 72: Line 72:
 See Example 2 on page 523, for how to consider a general curvilinear coordinate (x1,x2,x3)(x_1, x_2, x_3) on R3\R^3 See Example 2 on page 523, for how to consider a general curvilinear coordinate (x1,x2,x3)(x_1, x_2, x_3) on R3\R^3
  
 +The notation dsd \b s corresponds to 
 +i=1nxidxi(TpRn)(TpRn). \sum_{i=1}^n \frac{\d }{\d x_i} \otimes d x_i \in (T_p \R^n) \otimes (T_p \R^n)^*.
 +An element TT in VVV \otimes V^* can be viewed as a linear operator VVV \to V, by inserting vVv \in V to the second slot of TT. In this sense dsd \b s is the identity operator on TpRnT_p \R^n. You might have seen in Quantum mechanics the bra-ket notation 1=nnn1 = \sum_n | n \rangle \otimes \langle n | (( \otimes sometimes omitted as usual in physics.)) It is the same thing, where nV| n \rangle \in V forms a basis and nV \langle n | \in V^* are the dual basis.  
 +
 +** Orthogonal coordinate system (ortho-curvilinear coordinate) **, the matrix gijg_{ij} is diagonal, with entries hi2h_i^2 (not to be confused with our notation for dual basis). This is 
 +the case we will be considering mainly. 
 +
 +===== Section 10.9 =====
 +Suppose we have orthogonal coordinate system (x1,x2,x3)(x_1, x_2, x_3), and **unit** basis vectors ei\b e_i, we have
 +ai=xi=hiei. \b a_i = \frac{\d }{\d x_i} = h_i \b e_i.
 +
 +Given a vector field VV, we write its component in the basis of ei\b e_i (warning! this is not our usual notation, we usual write with basis xi\frac{\d }{\d x_i}
 +V=iViei \b V = \sum_i V^i \b e_i
 +
 +==== Divergence. ====
 +Try to do problem 1. 
 +
 +An important property is the "Leibniz rule"
 + \b \nabla \cdot (f \b V) = \b \nabla f \cdot \b V + f  \b \nabla  \cdot \b V.
 +
 +==== Curl ====
 To compute the curl, we note the following rule To compute the curl, we note the following rule
 ×(fV)=(f)×V+f×V \b \nabla \times (f \b V) = \b \nabla(f) \times \b V + f \b \nabla \times \b V  ×(fV)=(f)×V+f×V \b \nabla \times (f \b V) = \b \nabla(f) \times \b V + f \b \nabla \times \b V
math121b/02-10.1581323375.txt.gz · Last modified: 2020/02/10 00:29 by pzhou