User Tools

Site Tools


math121b:02-10

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math121b:02-10 [2020/02/09 23:34]
pzhou
math121b:02-10 [2020/02/22 18:03] (current)
pzhou
Line 1: Line 1:
 ====== 2020-02-10, Monday ====== ====== 2020-02-10, Monday ======
-We first finish up the derivation of Laplacian last time. See the lecture note [[02-07]]. Then, we introduce two vector operations, divergence and curl. Finally, we give a summary of the mathematical treatment of tensor analysis. +\gdef\div{\text{div}} \gdef\vol{\text{Vol}} \gdef\b{\mathbf} \gdef\d{\partial}
  
-Then, we will follow Boas 10.9 and 10.10, to introduce the physic-engineer notations: the nabla operator \gdef\b{\mathbf} \b \nabla 
  
-===== Differential of a function =====+We first finish up the derivation of Laplacian last time. See the lecture note [[02-07]]. Then, we review three concepts df,f,Vdf, \nabla f, \nabla \cdot \b V (×V\nabla \times \b V is a bit special for R3\R^3).  
 + 
 + 
 +Then, we will follow Boas 10.8 and 10.9, to reconcilliate the math notation and physics notations.  
 + 
 + 
 + 
 +===== Differential of a function is a 1-form (covector field)=====
 In Cartesian coordinate, the differential of a function ff is  In Cartesian coordinate, the differential of a function ff is 
- df = \sum_i \frac{\df }{\d x_i} dx_i. + df = \sum_i \frac{\d f }{\d x_i} dx_i.
  
 In general coordinate (u1,,un)(u_1, \cdots, u_n), the differential of a function ff is  In general coordinate (u1,,un)(u_1, \cdots, u_n), the differential of a function ff is 
- df =  \sum_i \frac{\df }{\d u_i} d u_i. + df =  \sum_i \frac{\d f }{\d u_i} d u_i.
  
-You can specify the differential of a function directly: dfdf at a point pRnp \in \R^nis a linear function on TpRnT_p \R^n: it sends an element $\b \in T_p \R^n$ to $\b v(f)thedirectionalderivativeof the directional derivative of f$ along the vector $\b v$. +You can specify the differential of a function directly: dfdf at a point pRnp \in \R^n is a linear function on TpRnT_p \R^n$df(p) \in (T_p \R^n)^*$. It does the following 
 + df(p) : \b v_p \mapsto  \b v_p(f), \quad \b v_p \in T_p \R^n $
 +where $\b v_p(f)$ is the directional derivative of ff along $\b v_p$. 
  
 ===== Gradient of a function (is a vector field) ===== ===== Gradient of a function (is a vector field) =====
 In Cartesian coordinate, the gradient of a function is  In Cartesian coordinate, the gradient of a function is 
- grad f=i \gdef\grad{\text{ grad } } \grad f = \sum_i + \gdef\grad{\text{ grad } }  \grad f = \sum_i \frac{\d f}{\d x_i} \frac{\d }{\d x_i}. 
  
 +In general coordinate, the gradient of a function is more complicated
 + grad f=i,jgijfuiuj, \grad f = \sum_{i,j} g^{ij} \frac{\d f}{\d u_i} \frac{\d }{\d u_j},
 +where gijg^{ij} is the entry of the inverse matrix of the matrix [gkl][g_{kl}]. And it just happens that, for Cartesian coordinate, gij=δijg^{ij} = \delta_{ij}
  
 +Note that gijg_{ij} and gijg^{ij} depends on the coordinate system. 
 +gij=g(ui,uj),gij=g(dui,duj). g_{ij} = g(\frac{\d}{\d u_i}, \frac{\d}{\d u_j}), \quad g^{ij} = g^*(d u_i, d u_j).
 +Beware that $\nabla u_i \neq \frac{\d}[\d u_i}$. 
 +
 +** Notation ** f= grad f. \nabla f = \grad f. 
  
 ===== Divergence of a Vector field (is a function) ===== ===== Divergence of a Vector field (is a function) =====
Line 27: Line 43:
  
 The divergence of V\b V is a function on Rn\R^n The divergence of V\b V is a function on Rn\R^n
-div(V)=i=1ni(Vi) div(\b V) = \sum_{i=1}^n \d_i( V^i ) + \div(\b V) = \sum_{i=1}^n \d_i( V^i )
 recall that ViV^i is a function on Rn\R^n, and i\d_i is taking the partial derivative with respect to xix_i recall that ViV^i is a function on Rn\R^n, and i\d_i is taking the partial derivative with respect to xix_i
 +
 +** Notation ** V=div(V). \nabla \cdot \b V = \div (\b V). 
 +
  
 **What does divergence mean?** Geometrically, it measure the relative change-rate of the volume of an infinitesimal cube situated at point pp. Suppose Φt:RnRn\Phi^t: \R^n \to \R^n is the flow generated by V\b V (every point moves as dictated by V\b V). And let C=C(p,ϵ)C= C(p, \epsilon) be a cube of side-length ϵ\epsilon, center at pp **What does divergence mean?** Geometrically, it measure the relative change-rate of the volume of an infinitesimal cube situated at point pp. Suppose Φt:RnRn\Phi^t: \R^n \to \R^n is the flow generated by V\b V (every point moves as dictated by V\b V). And let C=C(p,ϵ)C= C(p, \epsilon) be a cube of side-length ϵ\epsilon, center at pp
 Then, we have the geometrical interpretation as Then, we have the geometrical interpretation as
- \gdef\div{\text{div}} \gdef\vol{\text{Vol}} \div(\b V) = \lim_{\epsilon \to 0} \frac{1}{\vol(C)} \frac{d \vol(\Phi^t(C))}{dt} \vert_{t=0}. +div(V)=limϵ01Vol(C)dVol(Φt(C))dtt=0. \div(\b V) = \lim_{\epsilon \to 0} \frac{1}{\vol(C)} \frac{d \vol(\Phi^t(C))}{dt} \vert_{t=0}.
 That is why, if SRnS \subset \R^n is an open domain, we can compute the change-rate of the volume of SS by  That is why, if SRnS \subset \R^n is an open domain, we can compute the change-rate of the volume of SS by 
 dVol(Φt(S))dtt=0=Sdiv(V)(x)dVol(x). \frac{d \vol(\Phi^t(S)) } {dt}\vert_{t=0} = \int_{S} \div(\b V)(\b x) \, d \vol(\b x).  dVol(Φt(S))dtt=0=Sdiv(V)(x)dVol(x). \frac{d \vol(\Phi^t(S)) } {dt}\vert_{t=0} = \int_{S} \div(\b V)(\b x) \, d \vol(\b x).
  
-If we are given curvilinear coordinate, how to compute the divergence? +** In curvilinear coordinate. **  
 +The formula for computing the divergence is the following, suppose V=iViui\b V = \sum_i V^i \frac{\d }{\d u_i}, then 
 +div(V)=i=1n1g(gVi)ui \div (\b V) = \sum_{i=1}^n \frac{1}{\sqrt{|g|}} \frac{\d (\sqrt{|g|} V^i)}{\d u_i}  
 + 
 +The reason we have the above formula is that , for any compactly supported function φ\varphi ((compactly supported function on Rn\R^n is a function that vanishes outside a sufficently large ball. )), we have  
 +Rn(V) φgdu1dun=RnV(φ)gdu1dun \int_{\R^n} (\nabla \cdot \b V)\,  \varphi\, \sqrt{|g|} du_1\cdots d u_n = \int_{\R^n} \b V \cdot (\nabla \varphi)\, \sqrt{|g|} du_1\cdots d u_n  
 + 
 +====== Back to Boas ====== 
 + 
 +===== Section 10.8 ===== 
 +For Cartesian coordinate, we have basis vectors i,j,k\b i, \b j, \b k.  
 + 
 +For spherical coordinate, we have **unit** basis vectors er,eθ,eϕ\b e_r, \b e_\theta, \b e_\phi, and corresponding coordinate basis vectors ar,aθ,aϕ\b a_r, \b a_\theta, \b a_\phi (not unit length). These an\b a_n corresponds to our coordinate basis tangent vectors:  
 +ar=r,aθ=θ, \b a_r = \frac{\d }{\d r}, \quad \b a_\theta = \frac{\d }{\d \theta}, \cdots  
 + 
 +See Example 2 on page 523, for how to consider a general curvilinear coordinate (x1,x2,x3)(x_1, x_2, x_3) on R3\R^3.  
 + 
 +The notation dsd \b s corresponds to  
 +i=1nxidxi(TpRn)(TpRn). \sum_{i=1}^n \frac{\d }{\d x_i} \otimes d x_i \in (T_p \R^n) \otimes (T_p \R^n)^*.  
 +An element TT in VVV \otimes V^* can be viewed as a linear operator VVV \to V, by inserting vVv \in V to the second slot of TT. In this sense dsd \b s is the identity operator on TpRnT_p \R^n. You might have seen in Quantum mechanics the bra-ket notation 1=nnn1 = \sum_n | n \rangle \otimes \langle n | (( \otimes sometimes omitted as usual in physics.)) It is the same thing, where nV| n \rangle \in V forms a basis and nV \langle n | \in V^* are the dual basis.   
 + 
 +** Orthogonal coordinate system (ortho-curvilinear coordinate) **, the matrix gijg_{ij} is diagonal, with entries hi2h_i^2 (not to be confused with our notation for dual basis). This is  
 +the case we will be considering mainly.  
 + 
 +===== Section 10.9 ===== 
 +Suppose we have orthogonal coordinate system (x1,x2,x3)(x_1, x_2, x_3), and **unit** basis vectors ei\b e_i, we have 
 +ai=xi=hiei. \b a_i = \frac{\d }{\d x_i} = h_i \b e_i.  
 + 
 +Given a vector field VV, we write its component in the basis of ei\b e_i (warning! this is not our usual notation, we usual write with basis xi\frac{\d }{\d x_i})  
 +V=iViei \b V = \sum_i V^i \b e_i .  
 + 
 +==== Divergence. ==== 
 +Try to do problem 1.  
 + 
 +An important property is the "Leibniz rule" 
 + \b \nabla \cdot (f \b V) = \b \nabla f \cdot \b V + f  \b \nabla  \cdot \b V. 
 + 
 +==== Curl ==== 
 +To compute the curl, we note the following rule 
 +×(fV)=(f)×V+f×V \b \nabla \times (f \b V) = \b \nabla(f) \times \b V + f \b \nabla \times \b V  
 +and  
 +×f=0 \b \nabla \times \nabla f = 0 .  
 + 
 +In the ortho-curvilinear coordinate, we can use the above rule to get a formula for the curl. I will not test on the curl operator in the orthocurvilinear case.  
 + 
 + 
 + 
 + 
  
  
  
math121b/02-10.1581320049.txt.gz · Last modified: 2020/02/09 23:34 by pzhou