User Tools

Site Tools


math121a-f23:october_16_monday

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math121a-f23:october_16_monday [2023/10/13 09:04]
pzhou created
math121a-f23:october_16_monday [2023/10/14 00:21] (current)
pzhou
Line 1: Line 1:
-====== October 13 (Friday) ======+====== October 16 (Monday) ======
  
   * What is Laplace transform?    * What is Laplace transform? 
Line 15: Line 15:
   * f(t)=eatf(t) = e^{a t}, F(p)=1/(pa),F(p) = 1/(p-a), valid for Re(pa)>0Re(p-a) > 0   * f(t)=eatf(t) = e^{a t}, F(p)=1/(pa),F(p) = 1/(p-a), valid for Re(pa)>0Re(p-a) > 0
   * f(t)=cos(at)f(t) = \cos(at) $F(p) = (1/2)[1/(p-ia) + 1/(p+ia)] = p/(p^2 + a^2). validfor valid for Re(p)>0if if a$ is real.    * f(t)=cos(at)f(t) = \cos(at) $F(p) = (1/2)[1/(p-ia) + 1/(p+ia)] = p/(p^2 + a^2). validfor valid for Re(p)>0if if a$ is real. 
 +
 +That was about function with (linear) exponential decay or growth at infinty
 +
 +How about Gaussian? 
 +  * If f(t)=et2f(t) = e^{-t^2}, then 
 + F(p) = \int_0^\infty e^{-t^2} e^{-pt} dt = \int_0^\infty e^{-(t+p/2)^2 + p^2/4} dt = e^{p^2/4} \int_{p/2}^\infty e^{-t^2} dt.
 +OK, that's not nice, you can express the result using Gaussian error function, which is about 0aet2dt\int_0^a e^{-t^2} dt, but let's not worry about it.
 +
 +How about rational function? 
 +  * If f(t)=1/(1+t)f(t) = 1/(1+t), we know F(p)F(p) exists, and it is holomorphic (at least) for $Re(p)>0$. 
 +
  
 ==== properties ==== ==== properties ====
Line 20: Line 31:
  
 We can do integration by part We can do integration by part
- LT(f') =  \int_0^\infty e^{-pt} (d/dt) f(t) dt =  \int_{t=0}^{t=\infty} e^{-pt} df = \int_{t=0}^{t=\infty} d[e^{-pt} f] - d[e^{-pt}] f= e^{-pt} f(t)|_0^\infty + \int_0^\infty p e^{-pt} f(t) dt = -f(0) + pF(p). + LT(f') =  \int_0^\infty e^{-pt}  \frac{df}{dtdt =  \int_{t=0}^{t=\infty} e^{-pt} df = \int_{t=0}^{t=\infty} d[e^{-pt} f] - d[e^{-pt}] f= e^{-pt} f(t)|_0^\infty + \int_0^\infty p e^{-pt} f(t) dt = -f(0) + pF(p).
    
 +==== inverse? ====
 +f(t)=12πicic+ieptF(p)dp.c0 f(t) = \frac{1}{2\pi i} \int_{c - i\infty}^{c+i \infty} e^{pt} F(p) dp. \quad c \gg 0
 +We want to take cc large enough so that there is no singularity of F(p)F(p) for Re(p)>cRe(p) > c
 +
 +For example, if F(p)=1/pF(p) = 1/p, or 1/(pa)1/(p-a), we can get f(t)=1f(t) = 1 and f(t)=eatf(t)=e^{at} respectively. 
 +
 +===== What's Laplace transformation good for? =====
 +If you have a differential equation about f(t)f(t) on some domain t>0t > 0, and you know the initial conditions, say f(t=0)f(t=0) etc, then you can use it to compute the Laplace transform of ff. We have
 +
 +Example
 +f(t)+f(t)=3,f(0)=1 f'(t) + f(t) = 3, \quad f(0) = 1
 +We apply Laplace transform to the equation, we get
 +pF(p)f(0)+F(p)=3/p. pF(p) - f(0) + F(p) = 3 / p.
 +Then, we get
 +F(p)(p+1)=(3/p+1)F(p)=3+pp(p+1) F(p) (p+1) = (3/p + 1) \Rightarrow F(p) = \frac{3+p} {p (p+1)}
 +
 +Then, we may apply the inverse Laplace transformation, to get
 +f(t)=Resp=0(ept3+pp(p+1))+Resp=1(ept3+pp(p+1))=e0t(3+0)0+1+e1t311=2et+3. f(t) = Res_{p=0} (e^{pt} \frac{3+p} {p (p+1)}) + Res_{p=-1} (e^{pt} \frac{3+p} {p (p+1)}) = \frac{e^{0t} (3+0)}{0+1} + e^{1t} \frac{3-1} {-1} = -2 e^{-t} + 3.
 +Double check
 +f(t)+f(t)=2et+(2et+3)=3,f(0)=1. f'(t) + f(t) = 2 e^{-t} + (-2 e^{-t} + 3)=3, \quad f(0) = 1.
 +yeah.
 +
 +
math121a-f23/october_16_monday.1697213091.txt.gz · Last modified: 2023/10/13 09:04 by pzhou