User Tools

Site Tools


math121a-f23:october_13_friday

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
math121a-f23:october_13_friday [2023/10/14 01:00]
pzhou
math121a-f23:october_13_friday [2023/10/14 01:13] (current)
pzhou [convlution in xx space]
Line 43: Line 43:
 ==== convlution in xx space ==== ==== convlution in xx space ====
 Convolution is usually denoted as \star Convolution is usually denoted as \star
- 
-Due to our normalization convention, we have some funny 1/2π1/2\pi factor there. Again, this may differ from conventions in other places.  
  
 If ff and gg are functions on the xx space, then we define If ff and gg are functions on the xx space, then we define
- (f \star g)(x) = (1/2\pi) \int_{x_1} f(x_1) g(x-x_1) dx_1 + (f \star g)(x) =  \int_{x_1} f(x_1) g(x-x_1) dx_1
 If FF and GG are functions on the pp space, then we define If FF and GG are functions on the pp space, then we define
 (FG)(p)= p1F(p1)G(pp1)dp1 (F \star G)(p) =  \int_{p_1} F(p_1) G(p-p_1) dp_1  (FG)(p)= p1F(p1)G(pp1)dp1 (F \star G)(p) =  \int_{p_1} F(p_1) G(p-p_1) dp_1
  
 Fourier transformation sends convolution of functions on one side to simply multiplication on the other side.  Fourier transformation sends convolution of functions on one side to simply multiplication on the other side. 
-FT(fg)=FG. FT(f \star g) = F \cdot G. + (1/2\pi) FT(f \star g) = F \cdot G.
 FT(fg)=FG. FT(f \cdot g) = F \star G.  FT(fg)=FG. FT(f \cdot g) = F \star G.
  
math121a-f23/october_13_friday.1697270425.txt.gz · Last modified: 2023/10/14 01:00 by pzhou