User Tools

Site Tools


math121a-f23:october_13_friday

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math121a-f23:october_13_friday [2023/10/14 00:32]
pzhou [FT Conventions]
math121a-f23:october_13_friday [2023/10/14 01:13] (current)
pzhou [convlution in xx space]
Line 24: Line 24:
  
 ==== Norm in the Discrete Fourier transformation ==== ==== Norm in the Discrete Fourier transformation ====
- \| f\|_x^2 := (1/N) \sum_x |f(x)|^2   + \| f\|_x^2 := (1/N) \sum_{x=0}^{N-1} |f(x)|^2   
  
 Let F(p)F(p) be a complex valued function on pRp \in \R, we define Let F(p)F(p) be a complex valued function on pRp \in \R, we define
- \| F\|_p^2 := \sum_p |F(p)|^2   + \| F\|_p^2 := \sum_{p=0}^{N-1} |F(p)|^2    
 + 
 +==== Parseval Equality ==== 
 +If F(p)F(p) is the Fourier transformation of f(x)f(x), then Fp2=fx2.\|F\|^2_p = \|f\|^2_x.  
 +We proved in class the discrete case. The continuous case is similar in spirit, but harder to prove.  
 + 
 +===== Convolution ===== 
 +Consider two people, call them Alice and Bob, they each say an integer number, call it a and b. Suppose aa and bb both have equal probability of taking value within $\{1,2,\cdots, 6\},wecanaskwhatistheprobabitydistributionof, we can ask what is the probabity distribution of a+b$?  
 + 
 +We know P(a=i)=1/6P(a=i) = 1/6, P(b=i)=1/6P(b=i) = 1/6 for any $i=1,\cdots, 6$, otherwise the probabilit is 0.  Then  
 +P(a+b=k)=i+j=kP(a=i)P(b=j). P(a+b = k) = \sum_{i+j=k} P(a=i) P(b=j).  
 + 
 +This is an instance of convolution. 
 + 
 +==== convlution in xx space ==== 
 +Convolution is usually denoted as \star.  
 + 
 +If ff and gg are functions on the xx space, then we define 
 +(fg)(x)= x1f(x1)g(xx1)dx1 (f \star g)(x) =  \int_{x_1} f(x_1) g(x-x_1) dx_1  
 +If FF and GG are functions on the pp space, then we define 
 +(FG)(p)= p1F(p1)G(pp1)dp1 (F \star G)(p) =  \int_{p_1} F(p_1) G(p-p_1) dp_1  
 + 
 +Fourier transformation sends convolution of functions on one side to simply multiplication on the other side.  
 +(1/2π)FT(fg)=FG. (1/2\pi) FT(f \star g) = F \cdot G.  
 +FT(fg)=FG. FT(f \cdot g) = F \star G.  
 + 
 + 
 + 
 + 
 + 
  
  
math121a-f23/october_13_friday.1697268729.txt.gz · Last modified: 2023/10/14 00:32 by pzhou