User Tools

Site Tools


math121a-f23:october_13_friday

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math121a-f23:october_13_friday [2023/10/14 00:25]
pzhou created
math121a-f23:october_13_friday [2023/10/14 01:13] (current)
pzhou [convlution in xx space]
Line 7: Line 7:
 f(x)=RF(p)eipxdp. f(x) = \int_\R F(p) e^{ipx} dp.  f(x)=RF(p)eipxdp. f(x) = \int_\R F(p) e^{ipx} dp.
 F(p)=(1/2π)Rf(x)eipxdx. F(p) = (1/2\pi) \int_\R f(x) e^{-ipx} dx.  F(p)=(1/2π)Rf(x)eipxdx. F(p) = (1/2\pi) \int_\R f(x) e^{-ipx} dx.
 +
 +Discrete Fourier transformation
 +
 +Fix a positive integer NN. x,px,p are valued in the 'discretized circle'  
 + \Z / N\Z \cong \{0,1,\cdots, N-1\}. 
 +
 +f(x)=pZ/NZF(p)e2πipx/N. f(x) = \sum_{p \in \Z / N\Z} F(p) e^{2\pi i \cdot px/N}.
 +F(p)=(1/N)xZ/NZf(x) e2πipx/N. F(p) = (1/N) \sum_{x \in \Z / N\Z} f(x)  e^{-2\pi i \cdot px/N}.
 +
 +==== Norm in the Continous Fourier transformation ====
 +Let f(x)f(x) be a complex valued function on xRx \in \R, we define
 +fx2:=(1/2π)Rf(x)2dx \| f\|_x^2 := (1/2\pi) \int_\R |f(x)|^2 dx  
 +
 +Let F(p)F(p) be a complex valued function on pRp \in \R, we define
 +Fp2:=RF(p)2dp \| F\|_p^2 := \int_\R |F(p)|^2 dp  
 +
 +==== Norm in the Discrete Fourier transformation ====
 + \| f\|_x^2 := (1/N) \sum_{x=0}^{N-1} |f(x)|^2   
 +
 +Let F(p)F(p) be a complex valued function on pRp \in \R, we define
 + \| F\|_p^2 := \sum_{p=0}^{N-1} |F(p)|^2   
 +
 +==== Parseval Equality ====
 +If F(p)F(p) is the Fourier transformation of f(x)f(x), then Fp2=fx2.\|F\|^2_p = \|f\|^2_x.
 +We proved in class the discrete case. The continuous case is similar in spirit, but harder to prove. 
 +
 +===== Convolution =====
 +Consider two people, call them Alice and Bob, they each say an integer number, call it a and b. Suppose aa and bb both have equal probability of taking value within $\{1,2,\cdots, 6\},wecanaskwhatistheprobabitydistributionof, we can ask what is the probabity distribution of a+b$? 
 +
 +We know P(a=i)=1/6P(a=i) = 1/6, P(b=i)=1/6P(b=i) = 1/6 for any $i=1,\cdots, 6$, otherwise the probabilit is 0.  Then 
 +P(a+b=k)=i+j=kP(a=i)P(b=j). P(a+b = k) = \sum_{i+j=k} P(a=i) P(b=j).
 +
 +This is an instance of convolution.
 +
 +==== convlution in xx space ====
 +Convolution is usually denoted as \star
 +
 +If ff and gg are functions on the xx space, then we define
 +(fg)(x)= x1f(x1)g(xx1)dx1 (f \star g)(x) =  \int_{x_1} f(x_1) g(x-x_1) dx_1
 +If FF and GG are functions on the pp space, then we define
 +(FG)(p)= p1F(p1)G(pp1)dp1 (F \star G)(p) =  \int_{p_1} F(p_1) G(p-p_1) dp_1
 +
 +Fourier transformation sends convolution of functions on one side to simply multiplication on the other side. 
 +(1/2π)FT(fg)=FG. (1/2\pi) FT(f \star g) = F \cdot G.
 +FT(fg)=FG. FT(f \cdot g) = F \star G.
 +
 +
 +
 +
 +
 +
 +
  
math121a-f23/october_13_friday.1697268335.txt.gz · Last modified: 2023/10/14 00:25 by pzhou