User Tools

Site Tools


math121a-f23:hw_8

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math121a-f23:hw_8 [2023/10/20 22:08]
pzhou
math121a-f23:hw_8 [2023/10/24 21:43] (current)
pzhou
Line 5: Line 5:
 Suppose you are given a function on an interval, f(x):[0,1]Rf(x): [0, 1] \to \R. Such function f(x)f(x) can be expressed as a sum of 'sine waves' and cosine waves and constant Suppose you are given a function on an interval, f(x):[0,1]Rf(x): [0, 1] \to \R. Such function f(x)f(x) can be expressed as a sum of 'sine waves' and cosine waves and constant
  
- f(x) = a_0 + \sum_{n=1}^\infty a_n \cos(\pi x) + b_n \sin(\pi x). + f(x) = a_0 + \sum_{n=1}^\infty a_n \cos(2n \pi x) + b_n \sin(2n \pi x).
  
 Can you figure out a way to determine the coefficients ana_n and bnb_n Can you figure out a way to determine the coefficients ana_n and bnb_n
Line 16: Line 16:
  
 find a0,a1,b1a_0, a_1, b_1 and plot the truncated Fourier series find a0,a1,b1a_0, a_1, b_1 and plot the truncated Fourier series
-a0+a1cos(πx)+b1sin(πx). a_0 + a_1 \cos(\pi x) + b_1 \sin(\pi x).  + a_0 + a_1 \cos(\pi x) + b_1 \sin(\pi x).  
-How does the resemble your original given function? +How does this resemble your original given function? 
  
    
math121a-f23/hw_8.1697864930.txt.gz · Last modified: 2023/10/20 22:08 by pzhou