User Tools

Site Tools


math105-s22:notes:lecture_15

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math105-s22:notes:lecture_15 [2022/03/08 00:28]
pzhou
math105-s22:notes:lecture_15 [2022/03/09 12:37] (current)
pzhou
Line 1: Line 1:
 ====== Lecture 15 ====== ====== Lecture 15 ======
 +
 +[[https://berkeley.zoom.us/rec/share/OvE6Kwx30h9tqRwyGp3PCtUcEp97b98ahuWVfO29jmfOGLRiEiJpwEFrfAPWnC2p.RD0hzsRPKYEE009Z | video ]]
 +
 Last time, we considered the (long and hard) Lebesgue density theorem, which says, given any Lebesgue locally integrable function f:RnRf: \R^n \to \R, then for almost all pp, the density $\delta(p,f)of of fat at pexistsandequalstothevalue exists and equals to the value f(p)$.  Last time, we considered the (long and hard) Lebesgue density theorem, which says, given any Lebesgue locally integrable function f:RnRf: \R^n \to \R, then for almost all pp, the density $\delta(p,f)of of fat at pexistsandequalstothevalue exists and equals to the value f(p)$. 
  
Line 38: Line 41:
 Since ϵ\epsilon is arbitrary, we do get H(a)=H(b)H(a)=H(b) Since ϵ\epsilon is arbitrary, we do get H(a)=H(b)H(a)=H(b)
  
 +-------
 +
 +I will leave Pugh section 10 for presentation project. 
math105-s22/notes/lecture_15.1646728138.txt.gz · Last modified: 2022/03/08 00:28 by pzhou