User Tools

Site Tools


math104-s22:s:jdamaj

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math104-s22:s:jdamaj [2022/02/04 00:08]
50.115.87.182 [Homework]
math104-s22:s:jdamaj [2022/05/12 19:55] (current)
jdamaj [Jad Damaj]
Line 6: Line 6:
  
  
-{{ :math104-s22:s:jdamaj:math_104.pdf | Course Notes}} +{{  :math104-s22:s:jdamaj:104_notes.pdf | Course Notes}} 
 ===== Course Journal ===== ===== Course Journal =====
  
Line 41: Line 41:
   * Subseqeunces   * Subseqeunces
   * Cantor's Diagonal trick to produce a convergent subsequence   * Cantor's Diagonal trick to produce a convergent subsequence
 +
 +==== Feb 3 ====
 +
 +  * All sequences have a monotone subsequence 
 +  * All bounded sequences have a convergent (monotone) subsequence 
 +  * If SS is the set of subsequential limits of sns_n, then supSS = limsupsns_n and infSS = liminfsns_n
 +
 +==== Feb 8 ====
 +  * limsup(a_nb_n) = lim(a_n)limsup(b_n) for convergent series ana_n with limit greater than 0
 +  * Introduced Series
 +  * "Sanity Check" and Comparison Test
 +  * Root and Ratio Tests
 +
 +==== Feb 10 ====
 +  * Series
 +  * Summation by Parts
 +  * Power Series
 +
 +==== 5 Questions ====
 +  * What is a good way to approach coming up with inequalities to use in proof, as in the Rudin exercises this week. 
 +  * What are some good counterintuitive counterexamples to keep in mind when working on problems. 
 +  * What specific properties of absolute convergence should we be familiar with for the exam, eg. rearrangements etc. 
 +  * What properties does multiplication in limsup(a_nb_n) have in general.
 +  * Is there a good way to get intuition for accumulation of infinite series, eg. the case of sum(1\n)
 +
 +==== February 22 ====
 +  * Definition of Metric Space + examples
 +  * Topology 
 +  * Open Sets
 +
 +==== February 24 ====
 +  * More Metric Space examples
 +  * Sequences + Cauchy Criterion 
 +  * Closure/ Closed Sets
 +
 + ==== March 1 ====
 +  * Continuous Maps (open cover def and sequential def)
 +  * Inherited Topology 
 +
 +==== March 3 ====
 +  * Open cover compactness
 +  * Sequential compactness
 +
 +==== March 8 ====
 +  * Sequential Compactness \to Open Cover Compactness
 +
 +==== March 10 ====
 +  * Connectedness
 +
 +==== March 15 ====
 +  * Continuous maps preserve compactness and connectedness
 +  * Uniform Continuity
 +  * Discontinuity
 +
 +==== March 17 ====
 +  * Sequences and Series of Functions
 +  * Uniform Convergence 
 +
 +==== March 29 ====
 +  * Differentiation
 +  * Rolle's Theorem
 +
 +==== March 31 ====
 +  * Generalized Mean Value Theorem
 +  * L'Hopital's rule
 +
 +==== April 7 ====
 +  * Higher Derivatives
 +  * Taylor's Theorem
 +
 +==== April 12 ====
 +  * Taylor Series
 +  * Power Series
 +  * Reimann Integral
 +
 +==== April 14 ====
 +  * Integration
 +  * Reimann - Stieltjes Integral
 +
 +==== April 19 ====
 +    Reimann - Stieltjes Integral
 +
 +==== April 21 ====
 +  * Properties of Integrals
 +
 +==== April 26 ====
 +  * Uniform Convergence with Integration
 +  * Uniform Convergence with Differentiation
 ===== Homework ===== ===== Homework =====
  
Line 46: Line 134:
   * {{ :math104-s22:s:jdamaj:math_104_hw2.pdf |Hw 2}}   * {{ :math104-s22:s:jdamaj:math_104_hw2.pdf |Hw 2}}
   * {{ :math104-s22:s:jdamaj:math_104_hw3.pdf |Hw 3}}   * {{ :math104-s22:s:jdamaj:math_104_hw3.pdf |Hw 3}}
 +  * {{ :math104-s22:s:jdamaj:math_104_hw4.pdf |Hw 4}}
 +  * {{ :math104-s22:s:jdamaj:math_104_hw5.pdf |Hw 5}}
 +  * {{ :math104-s22:s:jdamaj:math_104_hw6.pdf |Hw 6}}
 +  * {{ :math104-s22:s:jdamaj:math_104_hw7.pdf |Hw 7}}
 +  * {{ :math104-s22:s:jdamaj:math_104_hw8.pdf |Hw 8}}
 +  * {{ :math104-s22:s:jdamaj:math_104_hw9.pdf |Hw 9}}
 +  * {{ :math104-s22:s:jdamaj:math_104_hw10.pdf |Hw 10}}
 +  * {{ :math104-s22:s:jdamaj:math_104_hw11.pdf |Hw 11}}
math104-s22/s/jdamaj.1643962112.txt.gz · Last modified: 2022/02/04 00:08 by 50.115.87.182