User Tools

Site Tools


math104-s22:notes:lecture_4

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math104-s22:notes:lecture_4 [2022/01/27 09:22]
pzhou
math104-s22:notes:lecture_4 [2022/01/27 10:46] (current)
pzhou [Lecture 4]
Line 6: Line 6:
   * Cauchy sequence.    * Cauchy sequence. 
  
-Discussion time: Ex 10.1, 10.in Ross+Discussion time: Ex 10.1, 10.7, 10.8 in Ross
  
 ==== limit goes to ++\infty? ==== ==== limit goes to ++\infty? ====
Line 34: Line 34:
  
 ==== lim inf\liminf and lim sup\limsup ==== ==== lim inf\liminf and lim sup\limsup ====
-Recall the definition of sup\sup+Recall the definition of sup\supFor SS a subset of R\R, bounded above, we define sup(S)\sup(S) to be the real number aa, such that aa is \geq than any element in SS, and for any $\epsilon>0$, there is some sSs \in S such that s>aϵs > a-\epsilon.  
 + 
 +Also, for a sequence (an)n=m(a_n)_{n=m}^\infty, we can define the 'value set' {an}n=m\{a_n\}_{n=m}^\infty, which is the 'foot print' of the 'journey'.  
 + 
 +Also, for a sequence (an)n=1(a_n)_{n=1}^\infty, we can define the tail (an)n=N(a_n)_{n=N}^\infty, and we only care about the tail of a sequence.  
 + 
 +We want to define a gadget, that captures the 'upper envelope' of a sequence, what does that mean? Let (an)(a_n) be a seq, we want define first an auxillary sequence 
 +Am=supnman A_m = \sup_{n \geq m} a_n  
 +then we define  
 +lim supan=limAm(=infAm) \limsup a_n = \lim A_m (= \inf A_m)  
 + 
 +Time for some examples, an=(1)n(1/n)a_n = (-1)^n (1/n).  
 + 
 + 
 + 
  
  
math104-s22/notes/lecture_4.1643304127.txt.gz · Last modified: 2022/01/27 09:22 by pzhou