User Tools

Site Tools


math104-s22:hw:hw9

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

math104-s22:hw:hw9 [2022/04/08 13:28]
pzhou created
math104-s22:hw:hw9 [2022/04/13 17:41] (current)
pzhou [HW 9]
Line 7: Line 7:
 Exercises: Exercises:
   * Read Ross p257, Example 3 about smooth interpolation between 00 for x0x \leq 0 and e1/xe^{-1/x} for x>0x>0. Construct a smooth function f:RRf: \R \to \R such that f(x)=0f(x)=0 for x0x\leq 0 and f(x)=1f(x)=1 for x1x\geq 1, and f(x)[0,1]f(x) \in [0,1] when $x \in (0,1)$.    * Read Ross p257, Example 3 about smooth interpolation between 00 for x0x \leq 0 and e1/xe^{-1/x} for x>0x>0. Construct a smooth function f:RRf: \R \to \R such that f(x)=0f(x)=0 for x0x\leq 0 and f(x)=1f(x)=1 for x1x\geq 1, and f(x)[0,1]f(x) \in [0,1] when $x \in (0,1)$. 
-  * Rudin Ch 4, Ex 4 (hint: apply Rolle mean value theorem to the primitive) +  * Rudin Ch 5, Ex 4 (hint: apply Rolle mean value theorem to the primitive) 
-  * Rudin Ch 4, Ex 8 (ignore the part about vector valued function. Hint, use mean value theorem to replace the difference quotient by a differential) +  * Rudin Ch 5, Ex 8 (ignore the part about vector valued function. Hint, use mean value theorem to replace the difference quotient by a differential) 
-  * Rudin Ch 4, Ex 18 (alternative form for Taylor theorem) +  * Rudin Ch 5, Ex 18 (alternative form for Taylor theorem) 
-  * Rudin Ch 4, Ex 22+  * Rudin Ch 5, Ex 22
  
  
math104-s22/hw/hw9.1649449737.txt.gz · Last modified: 2022/04/08 13:28 by pzhou