Final

$$\gdef\gfrak{\mathfrak g}$$


Due Date: May 10th (Sunday) 11:59PM. Submit online to gradescope.

Policy : You can use textbook and your notes. There should be no discussion or collaborations, since this is suppose to be a exam on your own understanding. If you found some question that is unclear, please let me know via email.


1. (15 pt) Let $G$ be a Lie group, $\gfrak = T_e G$ its Lie algebra. Let $TG$ be identified with $G \times \gfrak$ by $$ G \times \gfrak \to TG, \quad (g, X) \mapsto (L_g)_* X $$ Endow $TG$ with the natural induced Lie group structure, $$\rho: TG \times TG \to TG $$ such that if $\gamma_1, \gamma_2: (-\epsilon, \epsilon) \to G$ are two curves in $G$, then $$ \rho(\dot \gamma_1(0), \dot \gamma_2(0)) = (d/dt)|_{t=0} (\gamma_1(t) \gamma_2(t)). $$ Write down the product law of $TG$ using identification with $G \times \gfrak$, i.e. $$ (g, X) \cdot (h, Y) = ? $$

2. (15 pt) Let $\C$ acts on $\C^p \RM \{0\} \times \C^q \RM \{0\} $ by $$ t \cdot (z_1, \cdots, z_p; w_1, \cdots, w_q) \mapsto (e^{it} z_1, \cdots, e^{it} z_p; e^t w_1, \cdots, e^t w_q) $$ Show that the action is free, and the quotient is diffeomorphic to $S^{2p-1} \times S^{2q-1}$.

3. (20 pt) Let $M$ be a smooth manifold, $\nabla$ be a connection on $TM$. Recall the torsion is defined as $$ T: TM \times TM \to TM, \quad T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]. $$

4.(15 pt) Let $\pi: S^3 \to S^2$ the Hopf fibration. Let $\omega$ be a 2-form on $S^2$ such that $[\omega] \in H^2(S^2)$ is non-zero.

5. (10 pt) Let $(M, g)$ be a Riemannian manifold, a closed geodesic is a geodesic $\gamma: [0, 1] \to M$ such that $\gamma(0)=\gamma(1)$ and $\dot \gamma(0) = \dot \gamma(1)$.

6. (15 pt) Let $K \In \R^3$ be a knot, that is, a smooth embedded submanifold in $\R^3$ diffeomorphic to $S^1$.

7. (10 pt) Let $G = SU(2)$. Let $\nabla^{L}$ (resp. $\nabla^{R}$) be the flat connection on $TG$, where the flat sections are left (resp. right)-invariant vector fields. Prove that there is no 1-parameter family of flat connections $\nabla^{(t)}$ connecting $\nabla^{L}$ and $\nabla^{R}$, i.e. $\nabla^{(0)} = \nabla^{L}$ and $\nabla^{(1)} = \nabla^{R}$

1)
a connection $\nabla$ is flat if the associated curvature $F_\nabla = 0$.
2)
a section $s$ is flat, if $\nabla s = 0$
4)
J. Franks proved that, if $S^2$ is equipped with a metric with positive Gaussian curvature, then there are infinitely many closed geodesics. Here we are asking for a much simpler version.
5)
For any point $p \in M$, the exponential map exists for the entire $T_p M$, https://en.wikipedia.org/wiki/Geodesic_manifold