Thomas Dahlke Notes are organized by topic collected together with both Ross and Rudin. ====== Thomas Dahlke ====== ===== Links to resources and rages I have found helpful: ===== Youtube Channels: Wrath of Math: Large Real Analysis Playlist that goes over many definitions and proof explanations. [[https://www.youtube.com/playlist?list=PLztBpqftvzxWo4HxUYV58ENhxHV32Wxli|Link to W.o.M. youtube playlist]] Dr. Peyam (Used to teach math at UC Berkeley!): Extremely large bank of Real and Complex Analysis. Videos are broken up by topic where he goes into more explanation and examples for each subject. Topics with sub-playlists include: - Real Numbers - Sequences - Topology - Series - Limits and Continuity [[https://www.youtube.com/c/DrPeyam/playlists|Link to Dr. Peyam's Youtube playlists ]] Other Misc. Links : ====== Midterm #1 ====== Ross Chapter 1 - §1 The set N of Natural Numbers - §2 The set Q of Rational Numbers - §3 The Set R of Real Numbers - §4 The completeness Axiom Link to Textbook Notes: {{ math104-s21:s:midterm_1_ch_1.pdf |}} Ross Chapter 2 - §7 Limits of Sequences - §9 Limit Therorems for Sequences - §10 Monotone Sequences and Cauchy Sequences - §11 Subsequences - §12 lim sup's and lim inf's - Exrta: Intro to Proofs Link to Textbook Notes: {{ math104-s21:s:midterm_1_ch_2.pdf |}} ====== Midterm #2 ====== Rudin Ch.2, Ross §13 Rudin Ch.2 Basic Topology - Finite, Countable, and Uncountable Sets - Metric Spaces - Compact Sets - Perfect Sets - Connected Sets Ross Ch 2. Sequences §13 *Some Topological Concepts in Metric Spaces Link to Textbook Notes: {{ math104-s21:s:rudin_ch_2_ross_13.pdf |}} Ross Ch 2. Sequences - §14 Series - §15 Alternating Series and Integral Tests Link to Textbook Notes: {{ math104-s21:s:ross_14_15.pdf |}} Rudin Ch. 4 Continuity - Limits of Functions - Continuous Functions - Continuity and Compactness - Continuity and Connectedness - Discontinuities - Montotonic Functions - Infinite Limits and Limits at Infinity Link to Textbook Notes: {{ math104-s21:s:rudin_ch_4.pdf |}} Ross Ch. 4 §24, §25, §26; Rudin Ch. 7 (sections 1-2) Ross Ch. 4 - Sequences and Series of Functions - §24 Uniform Convergence - §25 More on Uniform Convergence - §26 Differentiation and Integration of Power Series Rudin Ch. 7 - Sequences and Series of Functions - Uniform Convergence - Uniform Convergence and Continuity Link to Textbook Notes: {{ math104-s21:s:ross_24_25_26_rudin_7.pdf |}} ====== Midterm 2 - Final ====== Rudin Ch. 5 - Differentiation - The Derivative of Real Functions - Mean Value Theorems - The Continuity of Derivatives - L'Hospital's Rule - Derivatives of Higher Order - Taylor's Theorem {{ math104-s21:s:rudin_chapter_5.pdf |}} Rudin Ch. 6 - The Riemann-Stieltjes Integral - Definition and Existence of the Integral - Properties of the Integral - Integration and Differentiation {{ math104-s21:s:rudin_chapter_6.pdf |}} Rudin Ch. 7 - Sequences and Series of Functions 7.16-7.18 - Uniform Convergence and Continuity - Uniform Convergence and Integration {{ math104-s21:s:rudin_chapter_7.pdf |}}