===== Welcome to Math104 Real Analysis Study Guide ===== == This page is edited by Darem Bardales == ===== Page Contents ===== -[[darembardales#Chapter 1|Chapter 1:Introduction]] *[[darembardales#Natural,Rational and Real Number Sets|]] -[[darembardales#Rational Zeros Theorem|]] *[[darembardales#§4:The Completeness Axiom|]] -[[darembardales#Chapter 2|Chapter 2:Sequences]] *[[darembardales#§7:Limits of Sequences|]] *[[darembardales#§9:Limit Theorems for Sequences|]] *[[darembardales#§10:Monotone Sequences and Cauchy Sequences|]] *[[darembardales#§11:Subsequences|]] * -[[darembardales#Chapter 3|Chapter 3:Continuity]] -[[darembardales#Chapter 4|Chapter 4:Sequences and Series of Functions]] -[[darembardales#Chapter 5|Chapter 5:Differentiation]] -[[darembardales#Mean Value Theorems|]] -[[darembardales#Chapter 6|Chapter 6:Integration]] -[[darembardales#Proofs| Proofs]] -Ch.1 -Ch.2 -Ch.3 -Ch.4 -Ch.5 -Ch.6 ==== Chapter 1 ==== == Natural, Rational, and Real Number Sets == -Natural Number Set ℕ: the set of all positive integers {1,2,3,4,...} * If 1 is in ℕ, then so is n+1 * 1 is the lowest possible number in ℕ -Set of all Integers ℤ: {0,-1,1,-2,2,...} -Rational Number Set ℚ: numbers of the form m/n, m and n ∈ ℤ -Real Number Set: all real points on the number line, with no gaps == §4: Completeness Axiom == ==== Chapter 2 ==== == §7:Limits of Sequences == ====Chapter 5 ==== == Rolle's Theorem == == Mean Value Theorem ==