Section 5.3

The Fundamental Theorem of Calculus, Part 1: If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt$$
 $a \le x \le b$

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x).

Exercise 1. Use the Fundamental Theorem to find dy/dx if (a) $y = \int_a^x (t^3 + 1) dt$

(b)
$$y = \int_{x}^{5} 3t \sin t \, dt$$

(c) $y = \int_{1}^{x^{2}} \cos t \, dt$
(d) $y = \int_{1+3x^{2}}^{4} \frac{1}{2+3^{t}} \, dt$

Class Exercise 1. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function.

(a)
$$g(x) = \int_{3}^{x} e^{t^{2}-t} dt$$

(b) $g(r) = \int_{0}^{r} \sqrt{x^{2}+4} dx$
(c) $G(x) = \int_{1}^{1} \cos \sqrt{t} dt$
(d) $h(x) = \int_{1}^{\sqrt{x}} \frac{z^{2}}{z^{4}+1} dz$
(e) $y = \int_{0}^{x^{4}} \cos^{2}\theta d\theta$
(f) $y = \int_{\sin x}^{1} \sqrt{1+t^{2}} dt$

The Fundamental Theorem of Calculus, Part 2: If f is continuous on [a, b], then

 $\int_{a}^{b} f(x) \, dx = F(b) - F(a)$

where F is any antiderivative of f, that is, a function such that F' = f.

Exercise 2. Evaluate $\int_{-2}^{3} (6x^2 - 5) dx$.

Exercise 3. Find the area A of the region between the graph of $y = \sin x$ and the x-axis from x = 0 to $x = \pi$.

Exercise 4. Evaluate $\int_{-1}^{2} (x^3 + 1)^2 dx$.

Exercise 5. Evaluate $\int_{1}^{4} (5x - 2\sqrt{x} + \frac{32}{x^3}) dx$.

Class Exercise 2. Evaluate the integral.

(a)
$$\int_{-1}^{1} x^{100} dx$$

(b) $\int_{0}^{1} (1 + \frac{1}{2}u^4 - \frac{2}{5}u^9) du$
(c) $\int_{1}^{8} x^{-2/3} dx$
(d) $\int_{-5}^{5} e dx$
(e) $\int_{0}^{4} (4 - t)\sqrt{t} dt$
(f) $\int_{0}^{2} (y - 1)(2y + 1) dy$
(g) $\int_{0}^{\pi/4} \sec \theta \tan \theta d\theta$
(h) $\int_{0}^{3} (2 \sin x - e^x) dx$
(i) $\int_{1}^{18} \sqrt{\frac{3}{z}} dz$
(j) $\int_{0}^{1} \cosh t dt$
(k) $\int_{1}^{2} \frac{4 + u^2}{\sqrt{1 - x^2}} du$
(l) $\int_{1/2}^{1/\sqrt{2}} \frac{4}{\sqrt{1 - x^2}} dx$
Homework: 9-53 (every 4th), 73, 75