Section 5.2

We now lay the foundation for the definition of the *definite integral*. In our development of the definite integral, we shall employ sums of many numbers. To express such sums compactly, it is convenient to use <u>summation notation</u>. Given a collection of numbers $\{a_1, a_2, \ldots, a_n\}$, the symbol $\sum_{k=1}^{n} a_k$ represents their sums as follows.

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots + a_n.$$

The Greek capital letter \sum (sigma) indicates a sum, and a_k represents the kth term of the sum. The letter k is the **index of summation**, or the **summation variable**, and assumes successive integer values. The integers 1 and n indicate the extreme values of the summation variable.

Exercise 1. Evaluate: $\sum_{k=1}^{4} k^2(k-3)$.

Exercise 2. Evaluate: $\sum_{k=0}^{3} \frac{2^k}{k+1}$.

Class Exercise 1. Evaluate the sum. (a) $\sum_{j=1}^{4} (j^2 + 1)$ (b) $\sum_{j=1}^{4} (2^j + 1)$ (c) $\sum_{k=0}^{5} k(k-1)$ (d) $\sum_{k=0}^{4} (k-2)(k-3)$ (e) $\sum_{n=1}^{10} [1+(-1)^n]$ (f) $\sum_{n=1}^{4} (-1)^n (\frac{1}{n})$

<u>Theorem</u>: $\sum_{k=1}^{n} c = nc$.

Exercise 3. Evaluate $\sum_{k=1}^{4} 5$.

<u>Theorem</u>: If n is any positive integer and $\{a_1, a_2, \dots, a_n\}$ and $\{b_1, b_2, \dots, b_n\}$ are sets of real numbers, then

(i)
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

Exercise 4. Evaluate $\sum_{k=1}^{5} (\frac{1}{2})^k + 1$.

(ii) $\sum_{k=1}^{n} ca_k = c(\sum_{k=1}^{n} a_k)$ for every real number c

(iii)
$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

Theorem:

(i) $\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$ (ii) $\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ (iii) $\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \dots + n^3 = \lfloor \frac{n(n+1)}{2} \rfloor^2$

Exercise 5. Evaluate $\sum_{k=1}^{90} k$ and $\sum_{k=1}^{15} k^2$.

Class Exercise 2. Evaluate $\sum_{k=1}^{100} k$ and $\sum_{k=1}^{20} k^2$.

Class Exercise 3. Evaluate $\sum_{k=1}^{n} (k^2 - 4k + 3)$ in terms of *n*.

Exercise 6. Express 1 + 5 + 9 + 13 + 17 in summation notation.

Exercise 7. Express 2 + 5 + 8 + 11 + 14 in summation notation.

Class Exercise 4. Express the following sums in summation notation. (a) $\frac{1}{2} + \frac{2}{5} + \frac{3}{8} + \frac{4}{11}$ (b) $\frac{1}{4} + \frac{2}{9} + \frac{3}{14} + \frac{4}{19}$ (c) $1 - \frac{x^2}{2} + \frac{x^4}{4} - \frac{x^6}{6} + \dots + (-1)^n \frac{x^{2n}}{2n}$ (d) $1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}$ **Definition of a Definite Integral**: If f is a function defined for $a \le x \le b$, we divide the interval [a,b] into n subintervals of equal width $\triangle x = (b-a)/n$. We let $x_0 (=a), x_1, x_2, \ldots, x_n (=b)$ be endpoints of these subintervals, so x_i^* lies in the ith subinterval $[x_{i-1}, x_i]$. Then the definite integral of f from a to b is

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \bigtriangleup x$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is **integrable on** [a, b].

Notation: The symbol \int was introduced by Leibniz and is called an **integral sign**. It is an elongated S and was chosen because an integral is a limit of sums. In the notation $\int_a^b f(x) dx$, f(x) is called the **integrand** and a and b are called the **limits of integration**; a is the **lower limit** and b is the **upper limit**. For now, the symbol dx has no meaning by itself; $\int_a^b f(x) dx$ is all one symbol. The dx simply indicates that the independent variable is x. The procedure of calculating an integral is called **integration**.

Notation: The sum

$$\sum_{i=1}^{n} f(x_i^*) \bigtriangleup x$$

that occurs in the above definition is called a **<u>Riemann sum</u>**.

<u>**Theorem</u>**: If f is continuous on [a, b], or if f has only a finite number of jump discontinuities, then f is integrable on [a, b]; that is, the definite integral $\int_a^b f(x) dx$ exists.</u>

Theorem: If f is integrable on [a, b], then

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \, \triangle \, x$$

where $\triangle x = \frac{b-a}{n}$ and $x_i = a + i \triangle x$.

Exercise 8. Express

 $\lim_{n\to\infty}\sum_{i=1}^n (x_i^3 + x_i \sin x_i) \bigtriangleup x$ as an integral on the interval $[0, \pi]$.

Class Exercise 5. Express the limit as a definite integral on the given interval.

- (a) $\lim_{n\to\infty} \sum_{i=1}^{n} x_i \ln(1+x_i^2) \bigtriangleup x$, [2,6] (Section 5.1 # 17)
- (b) $\lim_{n\to\infty} \sum_{i=1}^{n} (\cos x_i)/x_i \bigtriangleup x, [\pi, 2\pi]$ (Section 5.1 # 18)
- (c) $\lim_{n\to\infty} \sum_{i=1}^{n} [5(x_i^*)^3 4x_i^*] \bigtriangleup x, [2,7]$ (Section 5.1 #19)
- (d) $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{x_i^*}{(x_i^*)^2+2} \bigtriangleup x$, [1,3] (Section 5.1 #20)

Exercise 9. If $f(x) = 16 - x^2$, find the area of the region under the graph of f from 0 to 3.

Class Exercise 6. Use the form of the definite integral to evaluate the integral (a) $\int_{1}^{4} (x^2 - 4x + 2) dx$. (b) $\int_{0}^{2} (2x - x^3) dx$.

Exercise 10. Evaluate the integral by interpreting it in terms of areas. (a) $\int_{-2}^{4} \frac{1}{2}(x+3) dx$.

(a) $\int_{-2}^{4} \frac{1}{2}(x+3) dx.$ (b) $\int_{-4}^{4} \sqrt{16-x^2} dx.$ (c) $\int_{4}^{4} \sqrt{16-x^2} dx.$

<u>Formula</u>: If $f(x) \leq 0$ on [a, b], $\int_a^b f(x) dx = -($ area of the region between the graph of y = f(x) and the x-axis).

Class Exercise 7. Evaluate the integral by interpreting it in terms of areas.

(a) $\int_0^9 (\frac{1}{3}x - 2) dx$. (b) $\int_0^{10} |x - 5| dx$.

Here are some properties of the integral:

1. $\int_{a}^{b} c \, dx = c(b-a)$, where c is any constant

2.
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

- 3. $\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$, where c is any constant
- 4. $\int_{a}^{b} [f(x) g(x)] dx = \int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx$
- 5. $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$

Exercise 11. If it is known that $\int_0^7 f(x) dx = 5$ and $\int_0^3 f(x) dx = 4$, find $\int_3^7 f(x) dx$.

Class Exercise 8. If $\int_{1}^{5} f(x) dx = 12$ and $\int_{4}^{5} f(x) dx = 3.6$, find $\int_{1}^{4} f(x) dx$.

Class Exercise 9. Evaluate: $\int_{-5}^{5} x - \sqrt{25 - x^2} dx$.

Class Exercise 10. Find $\int_0^5 f(x) dx$ if $f(x) = \begin{cases} 3 & x < 3 \\ x & x \ge 3 \end{cases}$

Here are some comparison properties of the integral:

- 6. If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$.
- 7. If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$.

8, If $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

Exercise 12. Estimate the value of the integral: $\int_0^2 \frac{1}{1+x^2} dx$.

Class Exercise 11. Estimate the value of the integral: $\int_0^2 (x^3 - 3x + 3) dx$.

Class Exercise 12. Estimate the value of the integral: $\int_{\pi}^{2\pi} (x - 2 \sin x) dx$.

Exercise 13. Evaluate the integral: $\int_{-2}^{2} -\sqrt{4-x^2} dx$.

Class Exercise 13. Evaluate the integral: $\int_0^{10} 2 - x \, dx$.

Class Exercise 14. Evaluate the integral: $\int_0^6 |x-3| - 2 dx$. Homework: 1-11 ODD, 19-35 (every 4th), 41, 45, 51-75 (every 4th)