Section 4.5

Here are the guidelines for sketching the graph of f(x):

1. Domain of f: Find the domain of f- that is, all real numbers x such that f(x) is defined.

2. Continuity of f: Determine whether f is continuous on its domain, and, if not, find and classify the discontinuities.

3. x- and y- intercepts: The x-intercepts are solutions of the equation f(x) = 0; the y-intercept is the function value f(0), if it exists.

4. **Symmetry**: If f is an even function, the graph is symmetric with respect to the *y*-axis. If f is an odd function, the graph is symmetric with respect to the origin.

5. <u>Critical numbers and local extrema</u>: Find f'(x) and determine the critical numbers- that is, the values of x such that f'(x) = 0 or f'(x) does not exist. Use the first derivative test to help find local extrema. Employ the sign of f'(x) to find intervals on which f is increasing (f'(x) > 0)or is decreasing (f'(x) < 0). Determine whether there are corners or cusps on the graph.

6. Concavity and points of inflection. Find f''(x), and use the second derivative test whenever appropriate. If f''(x) > 0 on an open interval I, the graph is concave upward. If f''(x) < 0, the graph is concave downward. If f is continuous at c and if f''(x) changes sign at c, then P(c, f(c)) is a point of inflection.

7. Asymptotes

Horizontal: If $\lim_{x\to\infty} f(x) = L$ or $\lim_{x\to-\infty} f(x) = L$, then the line y = L is a horizontal asymptote.

Vertical: If $\lim_{x\to a^+} f(x)$ or $\lim_{x\to a^-} f(x)$ is either ∞ or $-\infty$, then the line x = a is a vertical asymptote.

Exercise 1. Graph $f(x) = \frac{2x^2}{9-x^2}$. (Swok Sec 4.5 Ex 1)

Exercise 2. Graph $f(x) = \frac{x^2}{x^2 - x - 2}$. (Swok Sec 4.5 Ex 2)

Exercise 3. Graph $f(x) = \frac{x^2 - 9}{2x - 4}$. (Swok Sec 4.5 Ex 3)

Class Exercise 1. Graph the function. (#2-18 even) (a) $y = 2 + 3x^2 - x^3$ (b) $y = x^4 - 8x^2 + 8$ (c) $y = x^5 - 5x$ (d) $y = (4 - x^2)^5$ (e) $y = \frac{x^2 - 4}{x^2 - 2x}$ (f) $y = \frac{x}{x^2 - 9}$ (g) $y = \frac{x^2}{x^2 + 9}$ (h) $y = 1 + \frac{1}{x} + \frac{1}{x^2}$ (i) $y = \frac{x}{x^3 - 1}$

Exercise 4. Graph the function $f(x) = \frac{2x}{\sqrt{x^2+1}}$. (Swok Sec 4.5 Ex 4)

Class Exercise 2. Graph the function. (#22-34 even) (a) $y = 2\sqrt{x} - x$ (b) $y = \sqrt{x^2 + x} - x$ (c) $y = x\sqrt{2 - x^2}$ (d) $y = \frac{x}{\sqrt{x^2 - 1}}$ (e) $y = x^{5/3} - x^{2/3}$ (f) $y = \sqrt[3]{x^3 + 1}$ (g) $y = x + \cos x$

Homework: 1-15 ODD