Section 3.3

Here are some limits we will use to find derivatives of trigonometric functions:

$$\lim_{\theta \to 0} (\sin \theta)/\theta = 1$$

$$\lim_{\theta \to 0} (\cos \theta - 1)/\theta = 0$$

Exercise 1. Find $\frac{d}{dx}$ (sin x) using the definition of the derivative.

Class Exercise 1. Find $\frac{d}{dx}$ (cos x) using the definition of the derivative.

Exercise 2. Find $\frac{d}{dx}$ (tan x) using the Quotient Rule.

Class Exercise 2. Find $\frac{d}{dx}$ (cot x) using the Quotient Rule.

Exercise 3. Find $\frac{d}{dx}$ (sec x) using the Quotient Rule.

Class Exercise 3. Find $\frac{d}{dx}$ (csc x) using the Quotient Rule.

In summary, here are the derivatives of the six trigonometric functions:

- 1. $\frac{d}{dx} (\sin x) = \cos x$ 2. $\frac{d}{dx} (\cos x) = -\sin x$ 3. $\frac{d}{dx} (\tan x) = \sec^2 x$ 4. $\frac{d}{dx} (\cot x) = -\csc^2 x$ 5. $\frac{d}{dx} (\sec x) = \sec x \tan x$ 6. $\frac{d}{dx} (\csc x) = -\csc x \cot x$

Exercise 4. Find y' if $y = e^x \sin x$. (Hass Sec 3.5 Ex 1(b))

Exercise 5. Find y' if $y = (\sin x)/(1 + \cos x)$. (Swok Sec 3.4 Ex 1)

Exercise 6. Find g'(x) if $g(x) = \sec x \tan x$. (Swok Sec 3.4 Ex 2)

Exercise 7. Find $dy/d\theta$ if $y = \sec \theta \cot \theta$. (Swok Sec 3.4 Ex 3)

Class Exercise 4. Find dy/dx. (Waits Sec 3.5 #1-10)

- (a) $y = 1 + x \cos x$ (b) $y = 2 \sin x \tan x$ (c) $y = \frac{1}{x} + 5 \sin x$ (d) $y = x \sec x$ (e) $y = 4 x^2 \sin x$ (f) $y = 3x + x \tan x$
- (g) $y = 4/(\cos x)$ (h) $y = x/(1 + \cos x)$
- (i) $y = (\cot x)/(1 + \cot x)$ (j) $y = (\cos x)/(1 + \sin x)$

Exercise 8. Show that $\lim_{x\to 0} (\sin 2x)/5x = \frac{2}{5}$. (Hass Sec 2.4 Ex 5)

Exercise 9. Find $\lim_{t\to 0} (\tan t \sec 2t)/3t$. (Hass Sec 2.4 Ex 6)

Class Exercise 5. Find the limit. (#40-48 even) (a) $\lim_{x\to 0} (\sin 4x)/(\sin 6x)$

- (b) $\lim_{\theta \to 0} (\cos \theta 1)/(\sin \theta)$ (c) $\lim_{x \to 0} (\sin 3x \sin 5x)/x^2$
- (d) $\lim_{x\to 0} (\sin(x^2))/x$ (e) $\lim_{x\to 1} \sin(x-1)/(x^2+x-2)$

Homework: 1, 7, 15, 19, 23, 27, 31, 35, 39