Section 3.11

The exponential expressions

$$\frac{e^x - e^{-x}}{2}$$
 and $\frac{e^x + e^{-x}}{2}$

occur in advanced applications of calculus. The properties are similar in many ways to those of $\sin x$ and $\cos x$.

Definition: The **hyperbolic sine function**, denoted by <u>sinh</u>, and the **hyperbolic cosine function**, denoted by **cosh**, are defined by

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
 and $\cosh x = \frac{e^x + e^{-x}}{2}$

for every real number x.

Exercise 1. Prove that $\cosh^2 x - \sinh^2 x = 1$. (Swok Page 441)

Definition: The **hyperbolic tangent**, **hyperbolic cotangent**, **hyperbolic secant**, and **hyperbolic cosecant** functions, denoted by tanh, coth, sech, and csch, respectively, are defined as follows.

(i) $\tanh x = (\sinh x)/(\cosh x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ (ii) $\coth x = (\cosh x)/(\sinh x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}, x \neq 0$ (iii) $\operatorname{sech} x = 1/(\cosh x) = \frac{2}{e^x + e^{-x}}$ (iv) $\operatorname{csch} x = 1/(\sinh x) = \frac{2}{e^x - e^{-x}}, x \neq 0$

Class Exercise 1. Prove: (a) $\sinh(-x) = -\sinh x$ (b) $\cosh(-x) = \cosh x$ (c) $1 - \tanh^2 x = \operatorname{sech}^2 x$ (d) $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$ (e) $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$.

Exercise 2. Prove: (a) $\frac{d}{dx}(\sinh x) = \cosh x$ (b) $\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$. (Swok Page 444)

Class Exercise 2. Prove: (a) $\frac{d}{dx}(\operatorname{csch} x) = \operatorname{-csch} x \operatorname{coth} x$ (b) $\frac{d}{dx}(\operatorname{cosh} x) = \sinh x$ (c) $\frac{d}{dx}(\operatorname{sech} x) = \operatorname{-sech} x \tanh x$ (d) $\frac{d}{dx}(\operatorname{coth} x) = \operatorname{-csch}^2 x$.

Exercise 3. If $f(x) = \cosh(x^2 + 1)$, find f'(x). (Swok Sec 8.3 Ex 1)

Class Exercise 3. Find the derivative (#30-38 even) (a) $f(x) = \tanh(1 + e^{2x})$ (b) $g(x) = \cosh(\ln x)$ (c) $y = x \coth(1 + x^2)$ (d) $f(t) = \operatorname{csch} t \ (1 - \ln \operatorname{csch} t)$ (e) $y = \sinh(\cosh x)$

We now define some inverse hyperbolic functions:

 $y = \sinh^{-1}x$ if and only if $\sinh y = x$

 $y = \cosh^{-1}x$ if and only if $\cosh y = x$ and y > 0

 $y = \tanh^{-1}x$ if any only if $\tanh y = x$

Exercise 4. Prove that $\sinh^{-1}x = \ln(x + \sqrt{x^2 + 1})$. (Swok Page 448)

Class Exercise 4. Prove that $\cosh^{-1}x = \ln(x + \sqrt{x^2 - 1}).$

Class Exercise 5. Prove that $\tanh^{-1}x = \frac{1}{2}\ln(\frac{1+x}{1-x})$.

We now find derivatives of inverse hyperbolic functions:

Exercise 5. Prove: $\frac{d}{dx} (\sinh^{-1}x) = \frac{1}{\sqrt{1+x^2}}$ (Swok Page 449)

Class Exercise 6. Prove: (a) $\frac{d}{dx} (\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}$ (b) $\frac{d}{dx} (\tanh^{-1}x) = \frac{1}{1 - x^2}$ (c) $\frac{d}{dx} (\operatorname{csch}^{-1}x) = -\frac{1}{|x|\sqrt{x^2 + 1}}$ (d) $\frac{d}{dx} (\operatorname{sech}^{-1}x) = -\frac{1}{x\sqrt{1 - x^2}}$ (e) $\frac{d}{dx} (\operatorname{coth}^{-1}x) = \frac{1}{1 - x^2}$

Exercise 6. If $y = \sinh^{-1}(\tan x)$, find dy/dx. (Swok Sec 8.4 Ex 1)

Class Exercise 7. Find the derivative. (#42, 44)(a) $y = x \tanh^{-1}x + \ln(\sqrt{1-x^2})$ (b) $y = \operatorname{sech}^{-1}(e^{-x})$ Homework: 1, 5, 13-25 (every 4th), 33-49 (every 4th), 57