Section 3.10

Definition: If f is differentiable at x = a, then the approximating function

$$L(x) = f(a) + f'(a)(x - a)$$

is the <u>linearization</u> of f at a. The approximation

$$f(x) \approx L(x)$$

of f by L is the **standard linear approximation** of f at a. The point x = a is the **center** of the approximation.

Exercise 1. Find the linearization of $f(x) = \sqrt{1+x}$ at x = 0. (Hass Sec 3.11 Ex 1)

Exercise 2. Find the linearization of $f(x) = \sqrt{1+x}$ at x = 3. (Hass Sec 3.11 Ex 2)

Class Exercise 1. Find the linearization L(x) of f(x) at x = a. (Waits Sec 4.5 #1-6) (a) $f(x) = x^3 - 2x + 3$, a = 2 (b) $f(x) = \sqrt{x^2 + 9}$, a = -4(c) $f(x) = x + \frac{1}{x}$, a = 1 (d) $f(x) = \ln(x + 1)$, a = 0(e) $f(x) = \tan x$, $a = \pi$ (f) $f(x) = \cos^{-1}x$, a = 0

Definition: If y = f(x), where f is a differentiable function, then the **differential** dx is an independent variable; that is dx can be given the value of any real number. The differential dy is then defined in terms of dx by the equation

$$dy = f'(x) dx$$

Definition: Let y = f(x) and let $\triangle x$ be an increment of x. The increment $\triangle y$ of y is

$$\Delta y = f(x + \Delta x) - f(x).$$

Exercise 3. Let $y = 3x^2 - 5$ and let $\triangle x$ be an increment of x. (Swok Sec 3.5 Ex 1) (a) Find general formulas for $\triangle y$ and dy.

(b) If x changes from 2 to 2.1, find the values of Δy and dy.

Exercise 4. If $y = x^3$ and $\triangle x$ is an increment of x, find the following (Swok Sec 3.5 Ex 2) (a) $\triangle y$ (b) dy(c) $\triangle y - dy$ (d) the value of $\triangle y - dy$ if x = 1 and $\triangle x = 0.02$

Exercise 5. (a) Use differentials to approximate the change in sin θ if θ changes from 60° to 61°. (b) Find a linear approximation to sin 61°. (Swok Sec 3.5 Ex 3)

Class Exercise 2. Find dy, and evaluate dy for the given value of x and dx. (Waits Sec 4.5 #19-26)

(a) $y = x^3 - 3x$, x = 2, dx = 0.05 (b) $y = \frac{2x}{1+x^2}$, x = 2, dx = 0.1(c) $y = x^2 \ln x$, x = 1, dx = 0.01 (d) $y = x\sqrt{1-x^2}$, x = 0, dx = -0.2(e) $y = e^{\sin x}$, $x = \pi$, dx = -0.1 (f) $y = 3 \csc(1-\frac{x}{3})$, x = 1, dx = 0.1(g) y + xy - x = 0, x = 0, dx = 0.01 (h) $y = \sec(x^2 - 1)$, x = 1.5, dx = 0.05

Homework: 1, 3, 11-31 ODD, 35