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1 Problems

See accompanying PDFs for figures to show setup for each problem.

1.1 Continuous Charge

Problem 1

A straight wire of length L carries a uniform linear charge density λ. One end of the wire is a distance d
away from a point charge Q. What is the net force of the wire on the point charge?

Solution

To set this up, we first set a coordinate system. Let x1 denote a position along the wire and x1 = 0 denote
the left side of the wire. Next, we identify the force on the point charge Q due to an infinitesimal chunk of
charge dq at a location x1:

dF = k
Qdq

(L− x1 + d)2
(1)

To do this integral, we need to re-express dq as λdx1:

F =

∫
dF =

∫ L

0

k
Qλ

(L− x1 + d)2
dx1 = kQλ

1

L− x1 + d

∣∣∣∣x1=L

x1=0

= kQλ

(
1

d
− 1

L+ d

)
(2)

Let’s check our units: λ has units of charge/length, and it is multiplied by a charge and divided by another
length, so we get k times a charge2/length2 as expected for electric force. Let us also introduce the appropriate
vector notation and check that the sign of our answer makes sense when Q > 0 and λ > 0. We are expecting
that in this case, the force should be some positive number times î (since that means the line and the point
charges have the same sign, they should repel).

F⃗ = kQλ

(
1

d
− 1

L+ d

)
î (3)

Since 1/d > 1/(d+ L), we indeed get the correct sign for the force.

Problem 2

Now imagine that two wires of length L each carry a uniform linear charge density λ. The two wires are laid
as in the accompanying figure. What is the net electric force of wire 1 on wire 2?
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Solution

This time we will need to first find the force on an infinitesimal chunk of charge dq2 at a position x2 on wire
2 due to an infinitesimal chunk of charge dq1 at x1. This will be

dF = k
dq1dq2

(x2 − x1)2
(4)

The total force of wire 1 on the chunk of charge dq2 will follow from the first problem, but with d → x2 −L:

dF = kdq2λ

(
1

x2 − L
− 1

x2

)
(5)

Next, dq2 = λdx2 as before, and the integration limits of x2 correspond to the endpoints of wire 2, (L +
d, 2L+ d):

F =

∫ 2L+d

L+d

kλ2

(
1

x2 − L
− 1

x2

)
dx2 (6)

= kλ2 ln(x2 − L)

∣∣∣∣x2=2L+d

x2=L+d

− ln(x2)

∣∣∣∣x2=2L+d

x2=L+d

(7)

= kλ2 ln

(
(L+ d)2

d(2L+ d)

)
(8)

Let us again check the sign of the answer. It should be positive since both wires carry the same charge
density in this problem. For this to be true, we need to check that the argument of ln is larger than 1:

(L+ d)2

d(2L+ d)
=

L2 + 2Ld+ d2

2Ld+ d2
=

L2

2Ld+ d2
+ 1 > 1 (9)

So the answer has the correct sign:

F⃗ = kλ2 ln

(
(L+ d)2

d(2L+ d)

)
î (10)

Problem 3

A straight wire carrying uniform linear charge density λ lies along the x-axis. A point charge Q is placed
somewhere at a distance d away from the end of the wire along the x-axis and at a height y above the x-axis.
Find the net electric force of wire 1 on wire 2.

Solution

This problem is a generalization of the first. Now the force of a chunk of charge on wire 1 on a chunk of
charge on wire 2 will have separate î and ĵ components. It is very important that we solve these two
components separately. The magnitudes cannot simply be added up.Recall that for a vector in a
2D plane, v⃗ = vx î+ vy ĵ and vx = |v⃗| cos(θ) and vy = |v⃗| sin(θ). First, we do the x-component

dFx = k
Qdq1

(L− x1 + d)2 + y2
(L− x1 + d)√

(L− x1 + d)2 + y2
(11)

Substituting dq1 = λdx1:

Fx = kQλ

∫ L

0

(L− x1 + d)

((L− x1 + d)2 + y2)3/2
dx1 (12)

= kQλ
1

((L− x1 + d)2 + y2)1/2

∣∣∣∣d
0

= kQλ

(
1

(d2 + y2)1/2
− 1

((L+ d)2 + y2)1/2

)
(13)
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Note that if y = 0, this reduces to the answer we obtained in the first problem. Next, we solve for the
y-component:

dFy = k
Qdq1

(L− x1 + d)2 + y2
y√

(L− x1 + d)2 + y2
(14)

Substituting dq1 = λdx1:

Fy = kQλ

∫ L

0

y

((L− x1 + d)2 + y2)3/2
dx1 (15)

= kQλ
1

((L− x1 + d)2 + y2)1/2

∣∣∣∣d
0

= kQλ

(
1

(d2 + y2)1/2
− 1

((L+ d)2 + y2)1/2

)
(16)

We make the substitution u = L − x1 + d so du = −dx1 and the integration limits become u = L + d and
u = d:

Fy = −kQλy

∫ d

L+d

1

(u2 + y2)3/2
du (17)

= −kQλ
1

y2

∫ d

L+d

1

((u/y)2 + 1)3/2
du (18)

Making another substitution v = u/y:

Fy = −kQλ
1

y

∫ d/y

(L+d)/y

1

(v2 + 1)3/2
dv (19)

= −kQλ
1

y

v√
v2 + 1

∣∣∣∣v=d/y

v=(L+d)/y

(20)

= −kQλ

(
d

y2
√
d2/y2 + 1

− L+ d

y2
√

(L+ d)2/y2 + 1

)
(21)

= −kQλ

(
d

y
√
d2 + y2

− L+ d

y
√
(L+ d)2 + y2

)
(22)

Note that limy→0 Fy = 0 as expected. So the total force on charge Q is:

F⃗ = Fx î+ Fy ĵ (23)

= kQλ

(
1

(d2 + y2)1/2
− 1

((L+ d)2 + y2)1/2

)
î− kQλ

(
d

y
√
d2 + y2

− L+ d

y
√
(L+ d)2 + y2

)
ĵ (24)

1.2 Electric Flux and Gauss’s Law

Problem 4

A solid sphere of radius R carries uniform charge density (charge per unit volume) ρ. Find the electric field
as a function of the distance r from the center of the sphere.

Solution

Remember that whenever the charge distribution changes discontinously across a region, such as at the
boundary of the sphere, you need to stop and solve the problem in the two regions separately, i.e. one
solution for r < R and one for r > R. First we do r < R:
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First, we determine the direction of the field. By symmetry, the field must point radially outward. Next
we determine along what surfaces the magnitude of the field would be constant. Those would be spherical
surfaces centered on the center of the sphere. Remember, the goal is to pick an imaginary (Gaussian) surface
such that the field and the normal vector to the imaginary surface are either aligned or perpendicular along
the surface. In this case, we can choose our imaginary surface S to be a sphere of radius r centered on the
center of the sphere. This means that the electric flux simplifies as follows:

Φ =

∫
S

E⃗ · dA⃗ =

∫
S

|E|d|A| = |E|
∫
S

d|A| = |E|(4πr2) (25)

Next, we find another expression for Φ using Gauss’s law. How much charge does our surface S enclose?
qenc = ρ4πr3/3. So

Φ =
1

ε0

4

3
ρ4πr3 (26)

Setting these two values for the flux equal to each other:

|E|(4πr2) = 1

ε0

4

3
ρ4πr3 (27)

We get

E⃗ =
ρr

3ε0
r̂ (if r < R) (28)

If we repeat this exercise for r > R, all the geometric steps and arguments remain the same. But the charge
enclosed is constant: qenc = ρ(4πR3/3), so the last step becomes

|E|(4πr2) = 1

ε0

4

3
ρ4πR3 (29)

E⃗ =
ρR3

3r2ε0
r̂ (if r > R) (30)

Problem 5

Now imagine a spherical shell of radius R carrying total charge Q spread uniformly on its surface. There is
no charge inside the shell. What is the electric field inside and outside?

Solution

Following the same symmetry arguments as before, all of the geometric steps remain the same. But the
charge enclosed for r < R will be zero. So we will have

|E|(4πr2) = 0 (31)

and so

E⃗ = 0 (if r < R) (32)

while for points outside the sphere (r > R), the total charge enclosed will be the total charge of the spherical
shell, Q:

|E|(4πr2) = 1

ε0
Q (33)

So

E⃗ =
Q

4πε0r2
r̂ (if r > R) (34)
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Problem 6

A solid sphere of radius R carries uniform charge density (charge per unit volume) ρ. However, now a
spherical cavity of radius R/2 is carved out as shown below. What is the electric field at all points on the
positive x axis?

Solution

Before you can jump into applying Gauss’s law, you must always analyze the symmetry and determine what
the direction of the field is and what imaginary surface would have a constant magnitude of field and a
constant angle between the field and the normal vector of the surface. The only symmetry we have here
is rotation about the x axis. It is very hard to imagine what the direction of the field would be and what
the constant magnitude surfaces would be. There is an easier way to deal with this problem. We can
view theabsence of charge as the superposition of positive and negative charge densities. In other words,
imagine that the “cavity” is replaced by a superposition of solid spheres of radius R/2 carrying charge ρ
and −ρ. The reason this is useful is because if we take into account the rest of the solid sphere of radius R
carrying charge density ρ, then together with our first imaginary solid sphere of radius R/2, it now becomes
a complete solid sphere of radius R, carrying charge ρ with no cavity. This problem has complete spherical
symmetry and indeed we solved it above. Next, we have to deal with the imaginary solid sphere of charge
density −ρ. But again this has complete spherical symmetry and we know how to use Gauss’s law to find its
field. So we just need to add the contribution due to both spheres in the regions x < R and x > R. There’s
no real Gauss’s law problem to solve: we already did it above.
Case x < R:

E⃗(x) =

(
ρx

3ε0
− ρ(x−R/2)

3ε0

)
î =

ρR

6ε0
î (if x < R) (35)

Case x > R:

E⃗(x) =

(
ρR3

3x2ε0
− ρ(R/2)3

3(x−R/2)2ε0

)
î =

(
ρR3

3x2ε0
− ρR3

24(x−R/2)2ε0

)
î (if x > R) (36)
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