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1 Problems

1.1 Entropy and Efficiency

Problem

N molecules of an ideal gas with adiabatic coefficient γ undergo the following cycle: 1. Isothermal compres-
sion at from volume V1 to V2 < V1 at temperature T1 2. Isochoric heating 3. Adiabatic expansion Draw the
PV -diagram. Calculate the efficiency. Calculate the change in entropy ∆S3 for step 3. Calculate the heat
added in step 2. Calculate the change in entropy ∆S2 for step 2.

Solution

First we draw the PV diagram. Process (1) is the isothermal compression, process (2) is the isochoric
heating, process (3) is the adiabatic expansion. We also go ahead and label all the information availble at
each vertex: The key observation is that we have enough information to the find the pressures at the bottom

Figure 1: PV diagram for Problem 1

two vertices as well. First, to calculate the efficiency, To find the effiency η, we need to calculate Wnet and
Qadded:

η =
Wnet

Qadded
(1)
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First, we calculate Wnet = W1 +W2 +W3. W2 is zero because it is an isochoric process.

W1 =

∫
PdV = NkBT

∫
V1

V2
1

V
dV = NkBT ln

(
V2

V1

)
(2)

Observe that W1 < 0 because the gas is compressed (mathematically, V2 < V1, so ln(V2/V1) < 0. The work
in the adiabatic leg is found using the adiabatic relationship and the ideal gas law. The pressure at the
beginning of step 1 is:

P1,i =
NkBT1

V1
(3)

In adiabatic process, PV γ = constant, so we can evaluate the constant at this point in the cycle:

PV γ = P1,iV
γ
1 = NkBT1V

γ−1
1 (4)

W3 =

∫ V1

V2

P1,i
V γ
1

V γ
dV = NkBT1V

γ−1
1

∫ V1

V2

V −γdV (5)

=
1

1− γ
NkBT1V

γ−1
1 V 1−γ

∣∣∣∣V1

V2

(6)

=
1

γ − 1

((
V1

V2

)γ−1

− 1

)
NkBT1 (7)

which is positive as expected because γ > 1 and V1 > V2.

Wnet = W1 +W3 =

(
ln

(
V2

V1

)
+

1

γ − 1

((
V1

V2

)γ−1

− 1

))
NkBT1 (8)

For the total heat added, we note that process 3 is adiabatic, so Q = 0, and process 1 has ∆U = Q1−W1 = 0,
so Q1 = W1. But we noted earlier that W1 < 0. So Q1 < 0. We only need to calculate Q2. But actually
we don’t need to do any more calculation! To see this, look at the total change in internal energy around a
cycle:

∆U = Q1 −W1 +Q2 −W2 +Q3 −W3 = 0 (9)

Now, Q1 = W1 (isothermal compression), W2 = 0 (isochoric) and Q3 = 0 (adiabatic). This makes conserva-
tion of energy give us

∆U = Q2 −W3 = 0 (10)

So
Q2 = W3 (11)

and the efficiency η:

η =
Wnet

Qadded
= 1 +

W1

W3
= 1− (γ − 1) ln(V1/V2)

(V1/V2)γ−1 − 1
(12)

As expected, the efficiency is less than 1. The change in entropy in step 3 is zero because it is an adiabatic
process.

∆S3 = 0 (13)

To find the change in entropy in step 2, note that because S is a state function

∆S1 +∆S2 +∆S3 = 0 (14)

but we just said that the entropy change in step 3 is zero, so

∆S2 = −∆S1 (15)
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In an isothermal process, dU = dQ− dW = 0 so dQ = dW = PdV .

∆S1 =

∫
dQ

T
=

∫ V2

V1

P

T
dV =

∫ V2

V1

NkB
V

dV = NkB ln

(
V2

V1

)
(16)

Therefore,

∆S2 = NkB ln

(
V1

V2

)
(17)

1.2 Thermal Conduction

Problem

(Taken from Bordel’s Sp 18 MT1) Consider a cylindrical chimney of height h, with inner radius R1 and
outer radius R2. The chimney is made of a homogeneous material whose thermal conductivity is k. The
inner and outer surfaces are maintained at constant temperatures T1 and T2 (T1 > T2) respectively, and you
may assume that a steady state of heat transfer has been reached within the wall of the chimney. You may
ignore any heat loss through the top and bottom caps. Determine the rate of conductive heat flow through
the lateral wall and justify its sign. Determine the temperature profile T (r) through the wall.

Solution

First, let us visualize the setup: Since T1 > T2, heat will flow from the central surface to the outside. We are

Figure 2: Setup for Problem 1.2

told to ignore heat loss through the end caps. This tells us that the direction of the heat flow should be taken
to be purely radial. In that case, we will take our integral over this direction. Note that the cross-sectional
area through which the heat flows is no longer constant. It depends on how far we are from the center. Let
us parameterize this using the variable r′. (It does not matter what we call it, we are going to integrate over
it.). The thermal conduction equation is

dQ

dt
= −kA

dT

dx
(18)

The variable x here refers to the variable which parameterizes our heat flow path. For us, that is r′. A
is the cross-sectional area of the heat flow. That is not constant here, it is A = 2πr′h. k is the thermal
conductivity which is constant here. Now, the goal is to integrate away dT and dr′:

dQ

dt

∫ R2

R1

1

2πr′h
dr′ = −k

∫ T2

T1

dT (19)

dQ

dt

1

2πh
ln

R2

R1
= −k(T2 − T1) (20)

dQ

dt
= −2πhk(T2 − T1)

ln(R2/R1)
(21)
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Let’s check that the answer makes sense. When T1 > T2, dQ/dt is positive. This makes sense because we
defined our direction of heat flow and integration to be radially outward (instead of radially inward). At
steady state, there is a temperature gradient through the wall, T (r). To get this, we want to substitute our
expression for dQ/dt into the conduction equation and then integrate r′ from R1 to r and T from T1 to T (r)
similar to before:

−2πhk(T2 − T1)

ln(R2/R1)
= −k(2πhr′)

dT

dr′
(22)

(T2 − T1)

ln(R2/R1)

∫ r

R1

dr′

r′
=

∫ T (r)

T1

dT (23)

(T2 − T1) ln(r/R1)

ln(R2/R1)
= T (r)− T1 (24)

T (r) = T1 +
(T2 − T1) ln(r/R1)

ln(R2/R1)
(25)

Let’s check that the answer makes sense: at r = R2, we should get T (r) = T2, and we do. At r = R1, we
should get T (r) = T1, and we do. If T2 = T1, we should get T (r) = T1 = T2, and we do.

1.3 Equilibrium Point between Two Charges

Problem

Two point charges of value Q and 3Q are placed a distance d away from each other as in fig. 3. If a third
test charge of value Q′ is to be placed such that it experiences no net force, where should it be placed? Does
the sign or magnitude of the test charge matter?

Figure 3: Setup for Problem 1.3

Solution

Let us think about the net force on a charge Q′ placed on the axis of Fig. 3 at a distance x to the right of
charge Q (and so a distance d− x to the left of charge 3Q). The force due to each of two charges will be:

F⃗Q = k
QQ′

x2
î (26)

F⃗3Q = −k
3QQ′

(d− x)2
î (27)

The net force Fnet is then:

F⃗net = F⃗Q + F⃗3Q = k
QQ′

x2
î− k

3QQ′

(d− x)2
î (28)
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The condition we are looking for is F⃗net = 0. Solving for x:

k
QQ′

x2
î− k

3QQ′

(d− x)2
î = 0 (29)

1

x2
=

3

(d− x)2
(30)

±
√
3x = d− x (31)

x =
d

1±
√
3

(32)

The “-” solution cannot be physical as it places point charge to the left of charge Q. The reason this solution
is not valid is that the net force on the test charge Q′ is different than Eq. 28 above when Q′ is to the left
of charge Q. So our equation above does not apply. Instead, the true solution for zero net force is

x =
d

1 +
√
3

(33)

Note that the answer does not depend on the sign or magnitude of Q′. This is an indicator of the utility of
thinking in terms of electric fields instead of forces and test charges: we could have ignored the value of the
test charge and calculated where the electric field created by the two charges Q and 3Q is zero.

1.4 Electric Dipole

Problem

Two point charges with values Q and −Q are separated by a distance d as shown below. Calculate the
electric field at any point P along the axis halfway between them as a function of z. Sktech the field lines
assuming Q > 0.

Figure 4: Setup for Problem 1.4
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Solution

Since by the principle of superposition, the total electric field at a point P at a height z will be the sum of
the electric fields due to the two charges individually, we can first try to visualize what each field will look
like at that point. Without loss of generality, let’s imagine Q > 0. Then the field due to charge Q at point
P will point up and to the right. The field due to charge −Q would point down and to the right. The two
contributions will have equal magnitude, so we expect the vertical components to cancel and the horizontal
components to add. To calculate the electric field, note that the two vectors are not co-linear, so we must

Figure 5: Sketch of electric field of dipole if Q > 0. Blue lines indicate the individual electric field contribu-
tions at a point P along the y-axis at a height z. Red lines indicate the net electric field.

decompose them into x and y components. Remember that for a vector v⃗ which makes an angle θ with
respect to the x axis, we have

v⃗ = |v⃗| cos θî+ |v⃗| sin θĵ (34)

Let us do this decomposition for each contribution. For the electric field due to charge Q, denoted EQ, we
have

|E⃗Q| = k
Q

(d/2)2 + z2
(35)

Next,

cos(θ) =
d/2√

(d/2)2 + z2
(36)

sin(θ) =
z√

(d/2)2 + z2
(37)

(38)

So, decomposing the field due to Q, we get

E⃗Q = k
Q

((d/2)2 + z2)3/2

(
d

2
î+ zĵ

)
(39)
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Now we carry out this analysis for the field due to charge −Q: For the electric field due to charge Q, denoted
EQ, we have

|E⃗−Q| = k
Q

(d/2)2 + z2
(40)

Next,

cos(θ) =
d/2√

(d/2)2 + z2
(41)

sin(θ) = − z√
(d/2)2 + z2

(42)

(43)

So, decomposing the field due to −Q, we get

E⃗−Q = k
Q

((d/2)2 + z2)3/2

(
d

2
î− zĵ

)
(44)

Finally, adding the two contributions:

E⃗net = E⃗Q + E⃗−Q = k
Qd

((d/2)2 + z2)3/2
î (45)
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