
Problem 1 (Warmup)

Suppose gaseous H2 (hydrogen) is heated so that the temperature is increased by ∆T . What is the change in
the internal energy? What if instead of gaseous hydrogen it were gaseous helium (He)? Assume vibrational
degrees of freedom are frozen out.

Solution

The key idea is that the equipartition theorem tells us that the internal energy of a gas U is proportional to
its temperature T . The proportionality constant depneds on the number of degrees of freedom. Let’s first
understand what degrees of freedom are. A gas molecule can translate, rotate, or vibrate. Translation means
“how many components does the velocity have”? If the gas is in 3D (which it generally is), then it can have
3 components (vx, vy, vz). If it were confined to a 2D plane, it would only have 2. This translation can be
thought of as the translation of the center of mass. But we can additional have rotation about the center.
For H2, a linear molecule, we have 2 independent axes of angular rotation. Finally, although vibrational
degrees of freedom are frozen out, meaning we should not count them, let’s go ahead and discuss it anyway.
Vibrational degrees of freedom correspond to displacements along the bonds of a molecule. If we view each
bond as a spring, then it is the stretching and compressing of that spring. Now, let’s write out the total
energy of this molecule:
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where the last term denotes the spring constant and displacement of the bond. Note that each term is
quadratic. The equipartition theorem tells us that for every such term, we should add (1/2)kBT per molecule
to the internal energy U . Of course, now we account for the fact that vibrational degrees of freedom are
frozen out, so we do not count this one. This leaves us with 5 terms. So
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So the change in internal energy per molecule (∆U/N) is
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Now, if this gas had been helium, there would be no rotational degrees of freedom, nor vibrational ones. So
there would only be three degrees of freedom and we would have
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Problem 2 (Isochoric Heating)

Suppose heat Q is added isochorically to N molecules of gaseous H2. Again, assume vibrational degrees of
freedom are frozen out.

1. How much work is done during this process?

2. What is the change in internal energy?

3. What is the change in temperature?

4. What is CV , the heat capacity at constant volume, for this gas?

Solution

1. “Isochoric” means constant volume. Since work is equal to force × displacement or equivalently

W =

Z
PdV (5)

we can see that there can be no work done during this process since there is no change in volume. W = 0

2. Since W = 0 and ∆U = Q−W , we must have ∆U = Q . That is, the change in internal energy comes

solely from the heat added. 3. The key idea is that now that we know ∆U , we can use the fact that internal
energy is proportional to temperature. If we know one, we know the other. The proportionality constant
was found in the previous problem:
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4. The key idea here is that in an isochoric process, the heat added and the resulting change in temperature
are related by the constant CV through

Q = NCV ∆T (9)

In this problem, we were given Q and we know ∆T now. So we are left only with solving for CV :
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Note

This essentially derives a formula you may have seen in lecture:

CV =
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kB (11)
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Problem 3 (Isobaric expansion)

Suppose heat Q is added isobarically to N molecules of gaseous H2. Again, assume vibrational degrees of
freedom are frozen out.

1. What are CV and CP ? Why is CP higher than CV ?

2. What is the change in temperature?

3. What is the change in internal energy?

4. How much work is done by the gas during this process?

Solution

1. “Isobaric” means constant pressure. The change in temperature during such a process is related to the
heat added through the proportionality constant CP . From lecture you know that

CP = CV + kB (12)

For us, CV = 5/2kB , so CP = 7/2kB . Clearly CP is always larger than CV . In this process, the pressure

is constant but the volume may change. This means that generally, some amount of work is done by the
gas. But since the change in temperature is proportional to the change in internal energy, and the change
in internal energy is Q − W , that means that to raise the temperature of the gas by a certain amount, it
will take more heat to do it isobarically than to do it isochorically because when it is done isobarically, some
nonzero amount of work will take energy out of the system at the same time as the heat is added. Therefore
more heat is needed and CP > CV . 2. For an isobaric process,
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3. Remember again, internal energy is proportional to temperature, so their changes are proportional too.
Whenever we know one, we typically know the other.
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This shows exactly what we explained above: not all of the Q gets stored in the gas, only 5/7ths of it does.
Where does the other 2/7ths go? It must be lost as work. Let’s check that now. 4. Since

∆U = Q−W (16)

we have
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Problem 4 (Thermodynamic Cycle 1)

A cyclic thermodynamic process is one in which the system ends up in the same state as it started. We
often draw these as a PV diagram composed of individual subprocesses. Here we have a rectangular cycle
composed of 4 processes. Suppose N molecules of an ideal gas begin at pressure P0 and temperature T0.

Figure 2: Process (a) is bottom leg. Process (b) is right-most leg. Process (c) is top leg. Process (d) is
left-most leg.

The gas undergoes the following cycle depicted above.

1. Process a: isobaric expansion to volume V1

2. Process b: isochoric heating to temperature T1

3. Process c: isobaric compression to the initial volume

4. Process d: isochoric cooling to the initial temperature

What is the work done during each of the four processes?
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Solution

First, it is a good idea to label all of the vertices of the process in the PV diagram with the known quantities
at each point. This gives us a sense of what variables we do know an which ones we would need to solve for:

Figure 3: Process (a) is bottom leg. Process (b) is right-most leg. Process (c) is top leg. Process (d) is
left-most leg.

Next, we can deal with all of the isochoric processes. Since the change in volume is zero in any isochoric

processes, W = 0 for processes b and d.
Now, let us compute the work done in process a. In process a, the pressure is constant, P0. However, the
inital volume is not given. But the initial pressure and temperature are given, so we can use the ideal gas
law to solve for it:

Vf = V1 (18)
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Next, let us compute the work done in process c. In process c, the pressure is constant but it is unknown.
However, we know the volume (V1) and temperature (T1) at the initial point, so we can use the ideal gas
law to determine the pressure. I will denote this pressure P1. Note that the final volume of this process is
the volume of the gas at the beginning which we found above.
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Tips

1. For most thermodynamic quantities, there are usually at least two ways of computing them. Whenever
you need to find such a quantity, you should ask yourself what ways you could go about it. Usually
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one of them is simpler and allows you to use the information you already have at hand. For example,
you might have ∆U = (5/2)kB∆T but also ∆U = Q −W . Which one should you use? Depends on
what variables you already know. You might have W =

R
PdV but also ∆U = Q − W . Which one

should you use? Depends on what variables you already know.

2. When you come across a thermodynamic cycle, first draw it in the PV plane. Then note down what
quantities are given for each vertex of the cycle. Use that to determine what quantities need to be filled
in (e.g. by using ideal gas law) to calculate everything else (e.g. work, heat, change in temperature,
change in internal energy).
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