
Additional Problems in Thermodynamics

February 5, 2018

Problem 1 - Isothermal Expansion of Non-Ideal Gas

Statement

In discussion, we brought up two possible corrections to the ideal gas law. First, we observed that the
particles have a weak attraction between them, so when they hit the walls of the container, their force is
less than if they did not have any mutual attraction. The attractions are pairwise, so the corrections should
be proportional to the density of attractions, N2/V . Second, we observed that particles take up a non-zero
effective volume. So the total volume accessible to the particles is less than the volume of the container.
These corrections are parameterized by empirical constants a, b in the van der Waals equation of state:(

P +
N2

V
a

)
(V −Nb) = NkBT (1)

Suppose that a gas with known a, b is isothermally compressed at temperature T0 from V0 to V1 < V0. How
much work is done on the gas?

Solution

To calculate the work, we can use

W =

∫
P (V )dV (2)

Solving for P in Eq. 1,

P (V ) =
NkBT

V −Nb
− N2a

V
(3)

W = NkBT ln

(
V1 −Nb

V0 −Nb

)
−N2a ln

(
V1
V0

)
(4)

Problem 2 - First Law in Different Processes

Statement

Heat Q is added to a system of H2. Suppose the heat is added (a) isothermally, (b) isochorically, or (c)
isobarically. What is the change in the internal energy and the work done in each case? Assume that all
temperatures involved are around room temperature.
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Solution

For each part, we need to use the first law of thermodynamics (conservation of energy):

∆U = Q−W (5)

(a) Isothermally means ∆T = 0. Recall that the internal energy U is proportional to temperature. So
∆U = 0 as well. Therefore W = Q (using the sign convention that W > 0 when the system does work on
the environment.
(b) Isochorically means that δV = 0. Looking at Eq. 2, if the volume never changes, the integral must be
zero. Therefore W = 0 and so ∆U = Q.
(c) Isobarically means that the pressure is constant. We can use the corresponding heat transfer equation
to determine ∆T :

Q = mcP∆T = NCP∆T (6)

We need to be a little careful with units. Since N is the number of molecules, not the number of moles,
we want to use the extensive heat capacity. We need to count the number of degrees of freedom on H2. At
room temperature, the vibrational degrees of freedom are frozen out. So we effectively have 3 translational
degrees of freedom and 2 rotational degrees of freedom. So by the equipartition theorem

CV =
5

2
kB (7)

and since CP = CV + kB :

CP =
7

2
kB (8)

So

∆T =
Q

NCp
=

2

7

Q

NkB
(9)

By the same reasoning,

U =
5

2
NkBT (10)

so

∆U =
5

2
NkB∆T =

5

2
NkB

2

7

Q

NkB
=

5

7
Q (11)

Finally, using Eq. 5,

W = Q− ∆U =
2

7
Q (12)

Problem 3a - Getting Comfortable with Thermodynamic Cycles

So far we have looked at adding heat to a system, extracting work from a system, and general processes that
involve a combination of heat and work. We can go further to now chain multiple processes together. An
interesting case of chaining processes together is cycles–chains of processes where the state of the system at
the end of the chain is the same as the state of the system at the start. In such cases, all state functions are
zero. But there are plenty of quantites that are not state functions.

Let us begin with a simple process and get comfortable with the motions. N molecules of an ideal gas
with heat capacity per molecule at constant volume CV = 3kB is initially at pressure P0 and temperature
T0 undergoes the following cycle:

1. Isobaric expansion to volume V1.

2. Isochoric cooling to temperature T1.

3. Isobaric compression to the original volume.
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4. Isochoric heating to T0.

Sketch the PV -diagram for this process. Calculate the total work extracted in the cycle. Indicate the
graphical meaning of the total work on your diagram. Calculate the heat added in each step of the cycle.
Check that the calculations agree with the first law of thermodynamics.

Solution

The work done in step 1, henceforth denoted W1 is given by Eq. 2:

V0 =
NkBT0
P0

(13)

W1 = P0

∫
dV = P0(V1 − V0) = P0

(
V1 −

NkBT0
P0

)
(14)

Since the second step is isochoric, the work done in this step W2 = 0. The pressure at the end of this step
is given by

P1 =
NkBT1
V1

(15)

The work in the third step is then

W3 = P1

∫
dV =

NkBT1
V1

(V0 − V1) =
NkBT1
V1

(
NkBT0
P0

− V1

)
(16)

Since the fourth step is isochoric, the work done in this step W4 = 0. Adding these four pieces together,
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Wtotal = P0

(
V1 −

NkBT0
P0

)
+
NkBT1
V1

(
NkBT0
P0

− V1

)
=

(
P0 −

NkBT1
V1

)(
V1 −

NkBT0
P0

)
(17)

The total heat exchange in one cycle will be Qtotal = Wtotal by the first law. To calculate the heat in each
step, though, we need to know the temperature at the beginning and end of each process. We can then use
Q = NCV ∆T and Q = NCP∆T for each step. At the end of step 1, the volume of the gas is V1 and its
pressure is P0. Therefore, the change in temperature during step 1 is

∆T =
P0V1
NkB

− T0 (18)

This step occurs isobarically, so

Q1 = NCP∆T = N(3kB + kB)

(
P0V1
NkB

− T0

)
= 4NkB

(
P0V1
NkB

− T0

)
(19)

The second step is isochoric cooling to temperature T1, so

Q2 = NCV ∆T = 3NkB

(
T1 −

P0V1
NkB

)
(20)

The change in temperature in the third step is given by

∆T =
1

NkB

(
NkBT1
V1

)(
NkBT0
P0

)
− T1 (21)

So

Q3 = NCP∆T = 4NkB

(
NkBT1T0
P0V1

− T1

)
(22)

Finally, the heat in the fourth step is

Q4 = NCV ∆T = 3NkB

(
T0 −

NkBT1T0
P0V1

)
(23)

So if we have done everything correctly, Q1 +Q2 +Q3 +Q4 = W :

Qtotal = P0V1 −NkBT1 +
N2k2BT0T1
P0V1

−NkBT0 (24)

If you expand Eq. 17, you can see that it indeed will expand to Qtotal above!

Problem 3b - Brayton Cycle

Statement

For this thermodynamic cycle, we will use N molecules of an ideal monoatomic gas at around room temper-
ature. The Brayton cycle is composed of four steps as depicted below:
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1. Process cd is isobaric expansion at pressure P2

2. Process da is adiabatic expansion

3. Process ab is isobaric compression at pressure P1

4. Process bc is adiabatic compression

In terms of the values given above and fundamental constants, find the ratio of the volume at state c to the
volume at state b. Also find the ratio of the volume at state a to the volume at state d. Now suppose that
the volume at state d is known to be V0. Find the work done in the process da. Comment on the physical
meaning of the sign of the work. Hints: Recall that for an adiabatic process, Q = 0 and PV γ is a constant,
where γ = CP /CV , the “adiabatic coefficient” which in general differs between gases.

Solution

Let Va, Vb, Vc, Vd be the volumes of the gas at points a,b,c, and d, respectively. First, we want to find Vc/Vb.
Since the process bc is adiabatic, PV γ is constant. Since the gas is monoatomic,

CV =
3

2
kB (25)

so

γ =
CP
CV

=
3/2 + 1

3/2
=

5

3
(26)

This means that
P1V

γ
b = P2V

γ
c (27)

So

Vc
Vb

=

(
P1

P2

)3/5

(28)

Similarly,
P2V

γ
d = P1V

γ
a (29)
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Va
Vd

=

(
P2

P1

)3/5

(30)

To find the work along the process da, we use the definition of work in Eq. 2. But we need to write pressure
as a function of volume. Luckily we have a simple way to do that for an adiabatic process. First, the end
points of my process occur at Vd and Va, where

Va =

(
P2

P1

)3/5

Vd (31)

Second, the condition that PV γ is constant holds everywhere during an adiabatic process. This means that
if we know what that constant is at any point during the process, we know what it is for every point. In this
case, we know the pressure and volume at the beginning, so

P (V ) =

(
Vd
V

)5/3

P2 (32)

Now we can assemble the pieces:

W =

∫
P (V )dV = P2V

5/3
d

∫ Va

Vd

V −5/3dV = −3

2
P2V

5/3
d V −2/3

∣∣∣∣Va

Vd

(33)

= −3

2
P2V

5/3
d

((
P2

P1

)−2/5

V
−2/3
d − V

−2/3
d

)
=

3

2
P2Vd

((
1 − P1

P2

)2/5
)

(34)

The work is positive because the gas is expanding without gaining heat, so it is losing energy to the envi-
ronment.

Problem 3c - Stirling Cycle

Statement

For this thermodynamic cycle, we will use N molecules of an ideal diatomic gas at around room temperature.
The Stirling cycle is composed of four steps as well:

The steps correspond to

1. Isothermal expansion starting at a known pressure P1 and volume V1
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2. Isochoric cooling ending at a known pressure P2 and volume V2

3. Isothermal compression

4. Isochoric heating

Calculate the step-wise work extracted and total work and heat added in each step.

Solution

The work in the two isochoric legs is zero. The work in an isothermal leg is given by calculating Eq. 2. For
the work in process 1, W1, we need to express the temperature of the process in terms of the given quantities:

T1 =
P1V1
NkB

(35)

PV = NkBT1 (36)

W1 =

∫
P (V )dV =

∫ V2

V1

NkBT1
V

dV = P1V1 ln

(
V2
V1

)
(37)

Likewise, for W3:

W3 =

∫
P (V )dV =

∫ V1

V2

NkBT2
V

dV = P2V2 ln

(
V1
V2

)
(38)

So the total work is then

Wtotal = ln

(
V2
V1

)
(P1V1 − P2V2) (39)

To find the heat added in step 1, we use the first law Eq. 5. Remember that since step 1 is isothermal,
∆U = 0, so Q1 = W1.

Q1 = W1 = P1V1 ln

(
V2
V1

)
(40)

and by the same reasoning

Q3 =

∫ V1

V2

NkBT2
V

dV = P2V2 ln

(
V1
V2

)
(41)

The heat along the isochoric legs can be calculated using the heat capacity CV for a diatomic gas, 5kB/2:

Q2 =
5

2
NkB(T2 − T1) =

5

2
(P2V2 − P1V1) (42)

and

Q4 =
5

2
NkB(T1 − T2) =

5

2
(P1V1 − P2V2) (43)

Other Cycles and Remarks

Naturally there are other cycles that can be constructed, and two major ones I have omitted are the Carnot
cycle and the Otto cycle. I have omitted them because they are covered in the textbook. In discussion, I
mentioned that we can represent a system in PV space or TS space, where S is the entropy of the system.
In PV space, isobaric and isochoric processes are represented by lines perpendicular to the axes. When the
cycle is composed of only isobaric and isochoric processes, such as in Problem 3a, the cycle forms a rectangle
in PV space and the total work extracted is just the area of the rectangle. In TS space, isothermal and
adiabatic processes are represented by lines perpendicular to the axes. When the cycle is composed of only
isothermal and adiabatic processes, such as the Carnot cycle, the cycle forms a rectangle in TS space and
the total heat added is just the area of the rectangle.
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