
AC Circuits

Karthik Siva

May 3, 2018

1 AC Circuits - An Introduction

So far, we have only dealt with voltage sources which do not vary in time, such as batteries. Circuits
containing only these elements are referred to as “DC” circuits, meaning “direct current”. However, most
interesting applications of circuit design and power transmission rely on alternating currents, which are
driven by voltages which vary sinusoidally in time. Generally, these are driven by voltage sources of the form

V (t) = V0 cos(ωt) (1)

Let us understand how this works by setting up a simple RL circuit. This circuit alone will prove to be a
useful exercise in creating a physically useful device.

Kirchoff’s loop rule for this circuit reads:

V (t)− IR− LdI
dt

= V0 cos(ωt)− IR− LdI
dt

= 0 (2)

where I(t) is the function we are trying to find. This is a linear, inhomogeneous differential equation–
generally, these are challenging to solve. Luckily, we can make such circuits quite easy. To do this, we will
make some simple transformations and use a useful fact about oscillatory functions. The main trick is to
represent all of the observable quantities (voltages, currents, charges) as complex -valued quantities. Euler’s
identity says

eix = cos(x) + i sin(x) (3)
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where
i =
√
−1 (4)

From now on, when we replace an observable quantity (voltage, current, charge) with a complex-valued
counterpart, what we really mean is that the value you would measure in lab is the real part of it. For
example, we will write the voltage source above as

Ṽ (t) = V0e
iωt (5)

which makes sense because if we plug in Euler’s identity,

Ṽ (t) = V0 cos(ωt) + iV0 sin(ωt) (6)

If we take the real part of this, we recover the original V (t). Similarly, we will substitue I → Ĩ, where the
tildes remind us that these are the complex-valued versions of the quantities. Kirchoff’s law for this circuit
becomes

V0e
iωt − ĨR− LdĨ

dt
= 0 (7)

Now, we need to use another fact. It turns out that the only possible solutions to such an equation are given
by functions which are also proportional to eiωt. To get some intuition for why this is true, see the note at
the end. This means that we can use an ansatz, a guess for what the function Ĩ(t) looks like:

Ĩ(t) = Ĩ0e
iωt (8)

where Ĩ0 is a complex-valued, unknown amplitude which we will now try to determine by solving the
differential equation. While we are at it, let us go ahead and calculate dĨ/dt:

dĨ

dt
= iωĨ0e

iωt = iωĨ(t) (9)

This makes the back EMF of the inductor

− LdĨ
dt

= −iωLĨ(t) (10)

Substituting these into Kirchoff’s rule,

V0e
iωt − Ĩ0eiωtR− LiωĨ0eiωt = 0 (11)

Now, this is the important point. We can divide out all of the eiωt’s:

V0 − Ĩ0R− LiωĨ0 = 0 (12)

and what we are left with is no longer a differential equation at all! In fact, this just looks like a regular
Kirchoff’s rule with a resistor with a resistance R and some weird object with imaginary resistance iωL.
This quantity is referred to as the impedance of an inductor. Impedance is just a generalization of resistance
to inductors and capacitors so that you can write the voltage across each of those objects as a quantity
proportional to the current in the same way that Ohm’s law says that the voltage drop across a resistor is
proportional to the current through it. The impedance of a component is usually denoted Z, and in this
form, Kirchoff’s law above takes the form

V0 − Ĩ0ZR − Ĩ0ZL = 0 (13)

where ZR = R is the impedance (resistance) of a resistor and ZL = iωL is the impedance of an inductor.
Back to our goal: we want to solve for Ĩ0. Here’s the beauty of this approach: having written everything
in terms of impedance, we can take our usual approach to circuits that only contain resistors. That is, we
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find an equivalent impedance for the circuit by combining them together in the right ways. The substitution
above tells us that when components are wired in series, as the resistor and inductor are in this circuit, the
equivalent impedance is simply the sum of the impedances:

Zeq =
∑
i

Zi (14)

So here,
Zeq = ZR + ZL = R+ iωL (15)

and we write Kirchoff’s rule for the equivalent circuit as

V0 − Ĩ0Zeq = 0 (16)

Ĩ0 =
V0
Zeq

=
V0

R+ iωL
(17)

Now comes the algebra. We want to get this into a more useful form. One good way to write complex
numbers is as a real magnitude times a phase (henceforth referred to as polar form):

Ĩ0 = |Ĩ0|eiφ (18)

To find |Ĩ0|,

Ĩ0 =
V0

R+ iωL
× R− iωL
R− iωL

=
V0(R− iωL)

R2 + ω2L2
(19)

So

|Ĩ0| =
V0

R2 + ω2L2

√
R2 + ω2L2 =

V0√
R2 + ω2L2

(20)

(or just remember that the magnitude of a fraction of two complex numbers |a/b| is the fraction of the
magnitudes of those complex numbers |a|/|b|)and the phase φ here is

φ = tan−1

(
−ωL
R

)
(21)

Putting it all together,

Ĩ(t) =
V0√

R2 + ω2L2
ei(ωt+φ) (22)

where φ is the value found above. Here’s a question. If we connected a voltmeter across the inductor as
shown below, what would we read?
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If this were a resistor, we would use Ohm’s law (V = IR) to find the voltage drop across the resistor since
we now know the current through it. The equivalent statement using impedances is

Ṽ = ĨZ (23)

So for an inductor,

ṼL = Ĩ(t)ZL =
V0√

R2 + ω2L2
ei(ωt+φ)(iωL) (24)

What is the magnitude of this voltage?

|ṼL| =
V0ωL√

R2 + ω2L2
=

V0√
R2

ω2L2 + 1
(25)

Let us now stop and study the physics of this. What happens at low frequencies, as ω → 0? Study this
carefully and you will see that |ṼL| → 0. What about at high frequencies, as ω →∞? |ṼL| → V0. So at low
frequencies, none of the input voltage V0 is seen across the inductor, and at high frequencies all of it is seen.
This object is called a high-pass filter because it allows high frequencies to pass through. This has many
engineering and experimental research applications. For example, if you want to isolate high frequencies for
a speaker which is designed to reproduce high frequency sounds with high fidelity, you would want to pass
the signal through such a filter first before passing it on to the speaker hardware. Or, suppose you are doing
an experiment where there is electronic noise but most of it is at low frequencies. To purify your signal, you
might pass it through a high-pass filter first before recording. Try to think of some more applications of this
on your own.

2 AC Circuits - The next example

If an RL circuit acts as a high-pass filter, you can only imagine what behaves as a low-pass filter. Yes, that’s
right, it’s an RC circuit:

First we need to figure out what the charge on the capacitor looks like as a function of time and determine
the impedance of a capacitor ZC . Well, if the current is

Ĩ(t) = Ĩ0e
iωt =

dQ̃

dt
(26)

then we guess

Q̃(t) =
1

iω
Ĩ0e

iωt =
1

iω
Ĩ(t) (27)
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Check that if you take the time derivative of this, you indeed get Ĩ0e
iωt. The voltage VC (see the diagram

above) drop across a capacitor is, in its familiar form,

VC =
Q

C
(28)

so

ṼC =
Q̃

C
=

1

iωC
Ĩ(t) = − i

ωC
Ĩ(t) (29)

and now we know what the impedance of the capacitor is, because we have gotten this equation in the form
of Eq. 23:

ZC = − i

ωC
(30)

Alright, so that means that the equivalent impedance here is

Zeq = ZR + ZC = R− i

ωC
(31)

and Kirchoff’s rule for our equivalent circuit reads

V0 − Ĩ0Zeq = 0 (32)

So

Ĩ0 =
V0
Zeq

=
V0

R− i
ωC

(33)

Work through the rest of the steps now, finding the magnitude and phase. You should get

φ = tan−1

(
1

RωC

)
(34)

and

|Ĩ0| =
V0√

R2 + 1
ω2C2

(35)

so that the total, time-dependent complex current is

Ĩ(t) =
V0√

R2 + 1
ω2C2

ei(ωt+φ) (36)

Now, find the voltage drop across the capacitor as a function of time and calculate its magnitude. You
should get

|ṼC | =
V0

ωC
√
R2 + 1

ω2C2

=
V0√

R2ω2C2 + 1
(37)

Study this equation. What is its behavior at low frequencies? What is its behavior at high frequencies?
What kind of a filter is this?

3 RLC Circuits

It’s time to graduate. Put it all together to determine the magnitude of the voltage drop across the capacitor
and inductor together (Vout) in the following circuit and (qualitatively sketch the magnitude of the voltage
drop as a function of the AC frequency ω by analyzing what happens as ω → 0 and ω → ∞. To simplify
your algebra a little, write

√
1/(LC) as a constant ωLC . Is this a high-pass filter? A low-pass filter? Or

something else? You should find that it is something called a “band-stop” filter: a filter which allows low
frequencies and high frequencies but attenuates frequencies in the middle range!
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Ĩ0(t) =
V0

R+ i
(
ωL− 1

ωC

) (38)

|Ĩ0(t)| = V0√
R2 +

(
ωL− 1

ωC

)2 =
V0√

R2 + L2
(
ω − 1

ωLC

)2 (39)

|Vout| =
V0√
1

( ω
R/L )

2
(
1−

ω2
LC
ω2

)2 + 1
(40)

4 Parallel Impedances

Naturally, if we have multiple circuit components in parallel, like below, we can find an equivalent circuit
and equivalent impedance

1

Zeq
=
∑
i

1

Zi
(41)

Try working out the current through the voltage source and the voltage drops across components of these
circuits for practice and check with your friends:
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