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Equations

F = qv×B (1)∮
B · ds = µ0Ienclosed (2)

B(r) =
µ0

4π

∫
d~̀× r̂
|r|2 (3)

I = KL = JA (4)∮
E · ds = E = −dΦB

dt
(5)

Problem 1

Statement

A hollow cylinder of radius R centered on the z-axis carries a uniform surface current density K(t) = αtφ̂
on its surface. The cylinder is infinitely long. Find the magnetic field everywhere created by this current
as a function of time, and find the electric field induced by the changing current.
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Solution

The hollow cylinder can be thought of as the continuum limit of a solenoid. For a solenoid with n turns
per unit length, the magnetic field is zero outside and has magnitude

|B| = µ0nI (6)

inside. The direction of B can be found using any of the right hand rules you know so far, but a
convenient one is to wrap your fingers (2-4) in the direction of the flow of current and the direction of
your thumb is the direction of the resulting magnetic field. To take the continuum limit, the amount of
current flowing through a length L of solenoid is

InL (7)

To find the current, remember that K is the current per unit length, so

InL = KL (8)

Making this substituion, the field for r < R is

B(t) = µ0K(t)ẑ = µ0αtẑ (9)

and the field for r > R is
B = 0 (10)

Next, we use the induced electric field equation (Eq. 5) to solve for |E|. This is pretty much like Ampere’s
law. For a circular contour of radius r inside the solenoid, the flux enclosed will be

ΦB(t) = |B(t)|πr2 = µ0K(t)πr2 = µ0αtπr
2 (11)

Finally,

− dΦB

dt
= −µ0απr

2 (12)

The left hand side of Eq. 5 gives ∮
E · ds = |E|2πr (13)

Setting these two equal:

E(r) = −µ0αr

2
φ̂ (r < R) (14)

For r > R, a circular contour of radius r encloses a nonzero magnetic field only for r < R, so the total
flux is

ΦB = µ0αtπR
2 (15)

and

− dΦB

dt
= −µ0απR

2 (16)

The LHS of Faraday’s law is unchanged though, as this only depends on the geometry of our imaginary
circular contour: ∮

E · ds = |E|2πr (17)

Setting these two equal:

E(r) = −µ0αR
2

2r
φ̂ (r > R) (18)

2



Problem 2

Statement

A square loop of wire of side length L is rotated at constant angular velocity ω in the presence of a
constant magnetic field in two scenarios, A and B. The wire has cross sectional area a and resistivity
ρ. In both scenarios, the magnetic field is constant and points upward, B = B0ŷ. How much electrical
energy is dissipated in the wire as a result of rotating the loop in the field for one cycle?

Fig. 1. Scenario A on the left, scenario B on the right.

Solution

The total energy dissipated in the loop over one cycle in each scenario is

Etotal = 0 (scenario A) (19)

Etotal =
B2

0L
3ω2a

8ρ
(scenario B) (20)

Problem 3

Statement

An infinitely long wire runs along the y-axis carrying a current I in the +ŷ direction. A square loop of
wire with side length L is initially positioned so that its left edge is parallel to the current-carrying wire
and is a distance d from it. The square loop of wire has resistance R. If the loop is pulled to the right at
a constant velocity v = v0, determine the direction and initial amount of current that flows in the loop.
“Initial” meaning when the left edge of the loop is at a distance d from the infinite wire.
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Solution

I =
E
R

= − 1

R

dΦB

dt
=
µ0v0I

2πR

L2

d(d+ L)
clockwise (21)

Problem 4 - A Paradox To Show Something is Amiss

This is not a Faraday’s law problem, so if you are trying to practice problems with induced EMF, skip
this. This problem is intended to reveal a hint that something is not complete about our understanding
of electromagnetism so far.

Statement

Two infinitely long wires, each carrying net positive linear charge density λq run parallel to each other,
separated by a distance d. The charges in these wires both move in the same direction along the wires
with the same speed u. The wires also have mass per unit length λm.

• What is the electric force per unit length exerted by the wires on each other?

• What is the magnetic force per unit length exerted by the wires on each other?

• What is the net acceleration of one of the wires due to these two forces?

• Without rederiving the electric and magnetic forces, determine the following. If you run at speed
u (sketched as observer 2 running) in the same direction that the charges are moving, what net
acceleration should you see for one of the wires?

• As a runner at speed u, how fast are the charges moving relative to you?

• Now, calculate the electric force per unit length exerted by the wires on each other as you, the
runner, would calculate.

• Now, calculate the magnetic force per unit length exerted by the wires on each other as you, the
runner, would calculate.

• Now, calculate the net acceleration of one of the wires due to these two forces as you, the runner,
would calculate.

Compare the acceleration you expected to get to the acceleration you derived by rederiving the forces.
Will a person who is running alongside the charges agree with a person who is standing still about how
fast the wires accelerate away from each other? By what multiplicative factor do these answers disagree?
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Solution

In the first case, the observer calculates electric force per unit length

FE

L
=

λ2q
2πε0d

x̂ (22)

and magnetic force per unit length
FM

L
= −

µ0λ
2
qu

2

2πd
x̂ (23)

The acceleration is therefore

a =
Fnet

m
=
FE − FM

λmL
=

λ2q
2πλmdε0

(
1− µ0ε0u

2
)
x̂ (24)

If we run alongside the charges in the wire at speed u, the charges do not appear to move along the wire
relative to us. But the acceleration perpendicular to the direction of wires is should be unchanged. On
the other hand, if the speed of the charges is zero for the runner, they see only an electric force

F′
E

L
=

λ2q
2πε0d

x̂ (25)

because there is no current to create a magnetic field. Now,

a′ =
Fnet

m
=
F ′
E − F ′

M

λmL
=

λ2q
2πλmdε0

x̂ (26)

The accelerations a and a′ disagree by a factor of

|a′|
|a|

=
1

1− µ0ε0u2
=

1

1− u2/(1/√µ0ε0)2
(27)
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Evidently a′ 6= a, and a running observer and a standing observer will disagree about how fast the wires
accelerate away from each other. At this point in your study of electricity in magnetism, there is no
way for us to reconcile this–it is only a hint that this cannot be the whole story. However, this factor in
Eq. 27 has a special place in the theory of special relativity. If we make the identification that

√
1/µ0ε0

must have units of speed, it is not unreasonable that it turns out that this is the speed of light

c =
1

√
µ0ε0

(28)

and the factor in Eq. 27 is the square of a special factor γ that shows up in special relativity:

γ =
1√

1− u2/c2
(29)

If you study E& M or special relativity in a higher level course, you will at some point learn how the
two theories are related, and this factor describes how spatial lengths and durations of time transform
between the standing observer and the running observer.
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