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Equations

Φ =

∫
E · dA (1)

Φclosed =
Qenclosed

ε0
(2)

Problem 1

Statement

A charge Q sits at the front, top-left vertex of a cube. What is the total flux through the back, right,
and bottom faces of the cube?

Solution

Imagine that the cube in the problem has side length L. Now imagine that we form a larger cube of
side length 2L by putting eight of these smaller cubes together. The charge Q is now at the center of
the large cube. By Gauss’s law, the flux through the entire surface of the large cube is Q/ε0. Observe
that the flux through the surface of each of eight smaller cubes must be the same. Therefore, the flux
through the surface of the small cube in question is Q/(8ε0).

Problem 2

Statement

A sheet of dimensions πR× L is bent into a semicircle:
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Suppose the sheet is centered at x = 0 and there is an electric field E = cx2ĵ where c is a constant.
Although there is a field, there are no source charges near the sheet (as depicted above). Find the
magnitude of the flux piercing the sheet.

Solution

There are two ways of solving this. One is to directly integrate E · dA over the surface of the sheet and
the other is to use Gauss’s law to do a different but equivalent integral. To illustrate the practicality of
Gauss’s law, we will do the second method first. The general approach to solving a problem like this is
to find a closed surface which includes the surface over which we are trying to find the flux. So we need
to find a closed surface that has, as part of it, the sheet bent into a semicircle. Whenever possible, we
want to add surfaces that have no flux going through them. Since the field points in the ĵ direction, we
can add surfaces that are parallel to the xy-plane which will not have any flux through them.

To close the surface, we can add a sheet in the xz-plane. The flux through this is not zero, but at
least the angle between the electric field and the normal vector of the sheet does not vary. So the closed
surface we choose is, in all, the surface of half of a hockey puck. Now,

Φclosed = Φtop + Φbottom + Φfront + Φback = Φtop + Φbottom (3)

Now that we have a closed surface, we can use Gauss’s law. Since there is no charge anywhere near the
sheet, the half-hockey-puck surface encloses on charge, so

Φclosed = Φtop + Φbottom = 0 (4)

So
Φtop = −Φbottom (5)

The flux on the bottom is easy to calculate:

Φbottom =

∫
E · dA =

∫ R

−R
cx2Lĵ · ĵdx =

2

3
cLR3 (6)

So the magnitude of Φtop is

Φtop =
2

3
cLR3 (7)

Now let’s check that naively integrating E · dA over the top sheet would have given us the same result:

Φbottom =

∫
E · dA =

∫ π

0

c(R cos(θ))2LR sin(θ)dθ = cLR3

∫ π

0

cos2(θ) sin(θ)dθ (8)

Observe that d(cos3(θ))/dθ = −3 cos2(θ) sin(θ), so

Φbottom = cLR3

[
−1

3
cos3(θ)

]π
0

=
2

3
cLR3 (9)
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Problem 3

Statement

The shaded rod above extends infinitely in both directions along the z-axis and carries a volume charge
density ρ. Inside the rod, a spherical cavity of radius R/2 has been carved out and contains no charge.
What are the electric fields at point A, point B, and point C?

Solution

Although this problem lacks any useful symmetry, we can use superposition to solve two problems with
high symmetry and superimpose them to get this charge distribution. To create a cavity, we could
superimpose a solid sphere with charge density ρ and a solid sphere of charge density −ρ centered at
point C. Then, the solid sphere with charge density ρ, together with the rest of the rod, forms a complete
rod with no cavities carrying a uniform charge density. We can solve this easily with Gauss’s law. First,
we observe that by symmetry, the electric field from the rod can only point radially outward, and it has
constant magnitude at points that are a fixed distance from the center. This suggests that we should
choose our Gaussian (closed) surface to be a cylinder of radius r < R and arbitrary length L (it will
drop out). Then,

Qenclosed = πr2Lρ (10)

and since the field does not pierce the caps of the cylinder,

Φclosed = |E|(2πrL) =
πr2Lρ

ε0
(11)

Ecyl =
ρr

2ε0
r̂ (12)
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For the solid sphere of charge density −ρ, observe that we only need to evaluate its field on its surface
because points A and C are on its surface and point B is at its center, where the field due to the sphere
will be zero. So applying Gauss’s law again,

|E|(4π(R/2)2) = −4

3
π

(
R

2

)3
ρ

ε0
(13)

Esphere = − ρR
6ε0

r̂ (14)

Finally, we superimpose them to get the fields at each point. At point A, Ecyl = 0. So,

EA =
ρR

6ε0
î (15)

At point C, Esphere = 0, so

EC =
ρR

4ε0
î (16)

For point B, neither field is zero, so we have to add them:

EB =
ρR

4ε0
î +

ρR

6ε0
ĵ (17)

Problem 3

Statement

In the setup sketched above, two infinite sheets carrying uniform surface charge densities −σ and σ are
spaced a distance h away from each other. In between them, an infinite slab carrying uniform volume
charge density ρ has been inserted. The setup sketched above is a cross section of this sandwich. What
is the electric field everywhere?

Solution

We will need to examine this problem for 3 regions: the region above the top sheet, the region in the slab,
and the region below the bottom sheet. In each region, we will want to solve for the total electric field
by solving for the electric fields of the top sheet, bottom sheet, and slab separately and then adding the
3 fields together (superposition). For convenience, let the z-axis point along the direction perpendicular
to the sheets and slab, and let z = 0 be the center of the sandwich (halfway through the slab).
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Above the top sheet, z > h/2

To find the electric field of the top sheet, we observe that by symmetry the electric field must point
directly outwards or inwards and cannot have any component parallel to the sheet. Additionally, its
magnitude must be constant for all points that are a fixed distance away from the sheet. This suggests
that the Gaussian surface we should use is a box or cylinder that intersects the sheet. Then, since the
field points straight out from the sheet, there is no flux through the lateral walls of the box/cylinder. For
the top and bottom caps of the box/cylinder, the E-field will be perpendicular to the Gaussian surface
and will have constant magnitude. Now, suppose the box/cylinder has cross sectional area A, then

Qenclosed = −σA (18)

and
Φclosed = 2|E|A (19)

Applying Gauss’s law,

|E| = − σ

2ε0
(20)

Its direction is −k̂ for z > h/2 and k̂ for z < h/2. By similar reasoning, the field due to the bottom
sheet has magnitude

|E| = σ

2ε0
(21)

and direction k̂ for z > −h/2 and −k̂ for z < −h/2. Take a moment to look at what happens when we
superimpose the fields due to the two sheets. Above the top sheet, the fields cancel. Below the bottom
sheet, the fields cancel.

Esheets = 0 (z < −h/2, z > h/2) (22)

In between the top and bottom sheets, the fields add to give

Esheets =
σ

ε0
k̂ (−h/2 < z < h/2) (23)

Ok now let us concentrate on the z > h/2 for the slab. There are a couple of equivalent ways of thinking
about the slab. You could, for example, view it as a bunch of infinite sheets stacked on top of each
other and use superposition to solve the problem. After all, it is essentially an infinite sheet with some
thickness. So that inspires us to take exactly the same approach as we did with the two sheets:

Qenclosed = ρAh (24)

Φclosed = 2|E|A (25)

E =
ρh

2ε0
k̂ (z > h/2) (26)

So for z > h/2, we add Eq. 22 and Eq. 26 to get:

E =
ρh

2ε0
k̂ (27)

Below the bottom sheet, z < −h/2

We will do the region below the bottom sheet now because the reasoning should be exactly the same
as for the top sheet. The only difference is that the field due to the slab points the opposite way (the
direction of the field due to a slab or sheet flips when you go through it. Convince yourself why this
must be true by symmetry). So Eq. 26 becomes

E = − ρh
2ε0

k̂ (z < −h/2) (28)

and so adding Eq. 22 and Eq. 28, we get:

E = − ρh
2ε0

k̂ (29)
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Inside the slab, −h/2 < z < h/2

We already found the field in the slab due to the sheets. We now need to find the field in the slab due
to the slab. By the same symmetry arguments from before, the field in the slab must point up or down
(depending on ρ), and if it points in the k̂ direction for z > 0, it must point in the −k̂ direction for z < 0
(symmetry of flipping about the xy-plane). This also means that Eslab = 0 in the center of the slab. So
let us choose the Gaussian surface to be a cylinder of cross-sectional area A with one cap in the xy-plane
(at z = 0, where Eslab = 0), and the other cap to be at a height h above the xy-plane. Since the field
points straight up/down, there is no flux through the lateral area of the cylinder. This means that

Qenclosed = ρAz (30)

Φclosed = |E|A (31)

So
Eslab =

ρz

ε0
k̂ (z > 0) (32)

Similarly, you can reason that

Eslab = −ρz
ε0

k̂ (z < 0) (33)

Adding these equations to Eq. 21, we get that

E(z) =

{
σ−ρz
ε0

k̂ z ≥ 0

−σ−ρzε0
k̂ z < 0

(34)
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