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The goal of this note is to derive at a more rigorous, albeit not fully motivated, level the Maxwell-
Boltzmann distribution velocities. The result is cited immediately for convenience:

f(u) = 4π

(
m

2πkBT

)3/2

u2 exp

(
− mu2

2kBT

)
(1)

This equation has the following meaning. For a gas satisfying the assumptions of the kinetic theory, with
mass per molecule m and at a temperature T , the probability that a particle has velocity of magnitude u
is given by f(u)du. With a little careful integration, you can check that

∫∞
0
f(u)du = 1, as a probability

density function should.
This note is purely to explain in more detail how to derive the Maxwell-Boltzmann distribution of

velocities and how the assumptions of the kinetic theory of ideal gases are used mathematically. You will not
be held responsible for reproducing results like this or mastering the mathematics used in this derivation.

1 Probability of finding a particular state

Here we state a more fundamental postulate for our treatment of this topic. Its justification will be deferred
to a separate note. Suppose we have a system S in contact with a much larger (really, infinitely larger)
system, termed the “bath”, and the two are in thermal equilibrium so that the temperature of the system
and the temperature of the bath are equal. Call that temperature T . In this setup, the system can exchange
energy with the bath, so the energy of the system S will fluctuate as the system evolves in time. Here is the
postulate:

Postulate 1. The probability P that the system S is in a particular state X which has an energy E(X) is
given by P (S) = c(T ) exp(−E(S)/kBT ) where c(T ) is a factor that depends on the system’s temperature
but does not depend on the state S of the system.

The unspecified factor c(T ) (the same factor is used for all states Xi) such that the probabilities sum to
1. This is made clearer in the example below:

Example 1.1 (Two-level system). Suppose a system S at temperature T has only two possible states, X1

and X2 with energies E1 = E and E2 = −E, respectively. What is the probability of finding the system in
each state? That is, what is P (X1) and what is P (X2)? Postulate 1 says that

P (X1) = c(T )e
− E

kBT (2)

and
P (X2) = c(T )e

− −E
kBT = c(T )e

E
kBT (3)

But we know that the probabilities must sum to 1. So

P (X1) + P (X2) = c(T )e
− E

kBT + c(T )e
E

kBT = 1 (4)
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c(T )(e
− E

kBT + e
− −E

kBT ) = 1 (5)

c(T ) =
1

e
− E

kBT + e
E

kBT

(6)

So the probabilities are:

P (X1) =
e
− E

kBT

e
− E

kBT + e
E

kBT

=
1

1 + e
2E

kBT

(7)

P (X2) =
e

E
kBT

e
− E

kBT + e
E

kBT

=
1

1 + e
− 2E

kBT

(8)

To summarize, the postulate says that the more energetic a particular state X is, the less likely it is to
occur–in fact, exponentially so.

2 Applying this in the Kinetic Theory

In the kinetic theory of gases, the gas is made up of N molecules of equal mass m and the only type of energy
they carry is kinetic energy. Recall that the kinetic energy of a molecule of mass m moving at a velocity ~v
with magnitude |~v| is given by

EK =
1

2
m|~v|2 (9)

In three dimensions, the velocity vector ~v has three components, which we will label vx, vy, vz. Consider a
system of just one particle. What is the probability that it has a particular velocity ~v = (vx, vy, vz)? As in
the example above, we know that the probability P (~v) will look like:

P (~v) = c(T )× exp

(
−m|~v|

2

2kBT

)
= c(T )× exp

(
−
m(v2x + v2y + v2z)

2kBT

)
(10)

To make the probabilities add up to 1, we need to set c(T ) appropriately. This time, our probabilities form
a continuous function of the parameters vx, vy, vz instead of the discrete case of the two-state system in
Example 1.1. So we demand:∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞

f(vx, vy, vz)dvxdvydvz =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

c(T )× exp

(
−
m(v2x + v2y + v2z)

2kBT

)
dvxdvydvz (11)

We now change variables to spherical coordinates(u, θ, φ)1, and use u to denote the magnitude of ~v:

u2 = v2x + v2y + v2z (12)

vx = u sin θ cosφ (13)

vy = u sin θ sinφ (14)

vz = u cos θ (15)

dvxdvydvz = u2 sin θdudθdφ (16)

Substituting all of these relations into the integral 11,

1For more on how to do conversions like this (from rectangular coordinates (x, y, z) to spherical coordinates (u, θ, φ) or other
coordinate systems), please see the Wikipedia page.
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∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

c(T )× exp

(
−
m(v2x + v2y + v2z)

2kBT

)
dvxdvydvz (17)

=

∫ 2π

0

∫ π

0

∫ ∞
0

c(T )× exp

(
− mu2

2kBT

)
u2 sin θdudθdφ (18)

= 4πc(T )

∫ ∞
0

u2 exp

(
− mu2

2kBT

)
du (19)

The time has come to learn how to do this integral. Luckily, here’s a neat trick. Let α = m/(2kBT ). Then
this integral can be written as

4πc(T )

∫ ∞
0

u2 exp(−αu2)du (20)

= 4πc(T )

∫ ∞
0

(
− d

dα
exp(−αu2)

)
du (21)

= −4πc(T )
d

dα

(∫ ∞
0

exp(−αu2)du

)
(22)

One last time, let w =
√
αu so that the integral inside the parentheses can be written as∫ ∞

0

exp(−αu2)du =
1√
α

∫ ∞
0

exp(−w2)dw (23)

In discussion, you learned a trick to evaluate the integral of a Gaussian! So if we applied that trick here, we
get that ∫ ∞

0

exp(−w2)dw =

√
π

2
(24)

and

4πc(T )

∫ ∞
0

u2 exp

(
− mu2

2kBT

)
du (25)

= −4πc(T )
d

dα

(√
π

2
α−1/2

)
= c(T )× π3/2α−3/2 = c(T )×

(
2πkBT

m

)3/2

(26)

At long last,∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

c(T )× exp

(
−
m(v2x + v2y + v2z)

2kBT

)
dvxdvydvz = c(T )×

(
2πkBT

m

)3/2

= 1 (27)

and therefore

c(T ) =

(
m

2πkBT

)3/2

(28)

Now we can assemble all of the pieces to get the Maxwell-Boltzmann distribution. Look back at Eq. 17. We
substitute c(T ) now: ∫ ∞

0

4π

(
m

2πkBT

)3/2

u2 exp

(
− mu2

2kBT

)
du (29)

The integrand is the quantity known as the Maxwell-Boltzmann distribution, and it describes the probability
of finding a particle with magnitude of velocity (otherwise known as speed) u. Observe that this distribution
is skewed, and the lower the temperature is, the more the distribution is skewed towards slower speeds:
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3 Average Energy, RMS Velocity, etc.

For a system of a gas of N molecules moving essentially independently, we are interested in the average energy
of the system denoted 〈Etotal〉. Etotal is the total energy of the system, the sum of the kinetic energies of
the individual molecules:

Etotal =

N∑
i=1

1

2
m|~vi|2 (30)

So we want to take the expectation value of this energy with respect to the probability distributions found
above:

〈Etotal〉 =

〈
N∑
i=1

1

2
m|~vi|2

〉
=

N∑
i=1

1

2
m〈|~vi|2〉 =

1

2
mN〈u2〉 (31)

To calculate 〈u2〉 with respect to the Maxwell-Boltzmann distribution specified by the integrand in Eq. 29,
we just need to do the integral:

〈u2〉 = 4π

(
m

2πkBT

)3/2 ∫ ∞
0

u4 exp

(
− mu2

2kBT

)
du (32)

And we can use the same trick used back in Eq. 20, writing α = m/(2kBT ),

〈u2〉 = 4π

(
m

2πkBT

)3/2
d2

dα2

∫ ∞
0

exp(−αu2)du = 4π

(
m

2πkBT

)3/2 √
π

2

d2

dα2
(α−1/2) (33)

where I have used the result in Eq. 24. Taking the derivatives,

〈u2〉 = 4π

(
m

2πkBT

)3/2 √
π

2

3

4
α−5/2 =

3

2

(
m

2kBT

)3/2(
2kBT

m

)5/2

= 3
kBT

m
(34)

Substituting this result back into Eq. 31,

〈Etotal〉 =
1

2
mN

(
3
kBT

m

)
=

3

2
NkBT (35)

The RMS speed refers to
√
〈u2〉, which is given by Eq. 34:

uRMS =
√
〈u2〉 =

√
3kBT

m
(36)

We might also be interested in the average speed 〈u〉, which we can compute as

〈u〉 = 4π

(
m

2πkBT

)3/2 ∫ ∞
0

u3 exp

(
− mu2

2kBT

)
du =

√
8kBT

πm
(37)
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4 Equipartition Theorem

Definition 1. A degree of freedom is termed “quadratic” if it is parameterized by a variable x and its
contribution to the total energy is proportional to x2.

This definition is not too restrictive because if the energy is some function U(x) is sufficiently smooth,
then we can always perform a series expansion of it around some value x0 where U(x) has a local minimum:

U(x) = c0 + c1(x− x0) +
1

2
c2(x− x0)2 + . . . (38)

and if (x − x0) < 1, we can approximate the behavior of this function around x0 pretty well, since higher-
order terms will get smaller. For example, if we are interested in the potential energy of a spring, we know
that there is some natural length to the spring, L0 for which the potential energy stored in the spring is
minimized. From there, we are interested in what the potential looks like around that minimum. So:

U(L) ≈ c0 + c1(L− L0) +
1

2
c2(L− L0)2 (39)

But remember that

cn = f (n)(L)

∣∣∣∣
L=L0

(40)

so since we are expanding around a minimum at L0, c1 = f (1)(L0) = 0. So now we are down to

U(L) ≈ c0 +
1

2
c2(L− L0)2 (41)

Another feature of physics is that additive offsets in energies are not meaningful. To clarify what this means,
only differences in energy can be measured. Another way to view this is that forces are related to the gradient
of the potential energy:

~F = − ∂

∂x
U(x, y, z)̂i− ∂

∂y
U(x, y, z)̂j− ∂

∂z
U(x, y, z)k̂ (42)

So even if I modify U(x, y, z) by a constant to U(x, y, z) + const, the derivatives with respect to x, y, z will
not change. Therefore the forces will not change either. This means that we can always take the constant
term in the series expansion of U(x) to be c0 = 0, leaving us with

U(x) ≈ 1

2
c2(x− x0)2 (43)

which is purely quadratic.
Since this analysis is completely general and this formulation is ubiquitous in physics and chemistry, we

often begin an analysis by assuming that the potential has a simple quadratic form. The potential energy is
generally not exactly quadratic, as there are higher-order terms, but including them tends to make problems
difficult to solve analytically. Continuing forward, we look at what happens to 〈Etotal〉. Suppose that a gas
molecule has D quadratic degrees of freedom. Indexing each of those degrees of freedom by j,

〈Etotal〉 = N

D∑
j=1

1

2
cj〈x2j 〉 (44)

For example, if we are talking about a gas of H2, which we may model as two spheres connected by a spring,
then at high temperatures, D = 6 because the molecule has 3 translational velocity components (so x1, x2, x3
are the three components of velocity vx, vy, vz and c0, c1, c2 are the mass m), 2 angular velocity components
(so x4, x5 are the two components of angular velocity ωx, ωy and c4, c5 are the moment of inertia I), and 1
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vibrational degree of freedom (so x6 is the bond length ∆L and c6 is the spring constant k). To calculate
〈x2j 〉, we think back to what the distribution for a single velocity component would have looked like.

f(vx) =

(
m

2πkBT

)1/2

exp

(
− mv2x

2kBT

)
(45)

We were once interested in 〈u2〉 = 〈v2x + v2y + v2z〉 = 〈v2x〉 + 〈v2y〉 + 〈v2z〉. The average value of one of these
components was: ∫ ∞

−∞
v2xf(vx)dvx =

(
m

2πkBT

)1/2 ∫ ∞
−∞

v2x exp

(
− mv2x

2kBT

)
=
kBT

m
(46)

After multiplying this by Nm/2, we conclude that it contributes kBT/2 to 〈Etotal〉. What about a rotational
velocity? The energy term for that looks like

E =
1

2
Iω2

x (47)

By making the substitution m→ I and vx → ωx:

f(ωx) =

(
I

2πkBT

)1/2

exp

(
− Iω2

x

2kBT

)
(48)∫ ∞

−∞
ω2
xf(ωx)dωx =

(
I

2πkBT

)1/2 ∫ ∞
−∞

ω2
x exp

(
− Iω2

x

2kBT

)
=
kBT

I
(49)

After multiplying this by NI/2, we conclude that it contributes kBT/2 to 〈Etotal〉. In general, following the
general form for 〈Etotal〉 in Eq. 44, we see that its distribution will be:

f(xj) =

(
cj

2πkBT

)1/2

exp

(
−
cjx

2
j

2kBT

)
(50)

and ∫ ∞
−∞

x2jf(xj)dxj =

(
cj

2πkBT

)1/2 ∫ ∞
−∞

x2j exp

(
−
cjx

2
j

2kBT

)
=
kBT

cj
(51)

Substituting into Eq. 44,

〈Etotal〉 = N

D∑
j=1

1

2
cj
kBT

cj
=

1

2
NDkBT (52)

This yields the equipartition theorem.

Theorem 1. Let xj be a quadratic degree of freedom. Then the average total energy contribution due to
that degree of freedom is given by 1

2kBT .

This is termed “equipartition” because each degree of freedom contributes the same amount, NkBT/2.
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