
Prove sufficient (”if”), and necessary (”only if”) to prove ”if
and only if”

People
Baran (USAF, survivable netwoks) and Kleinrock advocate
packet switching; Licklicker vision of Galactic Network;
Roberts vision of ARPANET, Kahn advocates Open
Architecture networking (networks should be independent and
not required to change, best-effort connection, routers between
networks, no global control), David Clark was Chief Architect
(authored end-to-end principle, adhered to the basic design
principles)

Circuit Switching
Pros: predictable performance (known delays, no drops);
simple abstraction (reliable communication, no worries about
lost/out-of-order packets), simple forwarding (basedon time or
frequency)
Cons: not resilient (any failure prevents transmission, and
entire transmission has to be restarted), wastes bandwidth,
inefficient for bursty apps, blocked connections (conn. rfused
when insufficient resources)

Packet Switching
”Statistical multiplexing” gambles that packets don’t all arrive
at the same time, so we don’t need capacity for all of them at
peak transmission rates
Pros: easy recovery from failures (routers don’t have
individual flows), efficiency (from multiplexing), deployability
(easy to link different networks together)
Cons: worse service for flows (packet delays, drops,
out-of-order), must deal with congestion, complicated
forwarding

Datagram Network Properties
Latency (delay): propogation time for data sent along link;
Bandwidth (capacity): amount of data sent/received per
unit time; Bandwidth-delay product (BDP): amount of
data ”in flight” at any time; Utilization: arrival/bandwidth;

Networking Delays
Transmission delay: time spent transmitting data, from
first bit pushed to wire until last bit pushed on; Propogation
delay: time a bit spends traversing the link(limited by light);
Queueing delay: time spent waiting in a queue, caused by
burstiness of arrivals and variations in packet lengths; End to
end delay between when sender starts sending and when
receiver finishes receiving; Roundtrip delay (RTT): total
time for packet to reach destination and response to return to
sender; Jitter: difference between min and max delay
Little’s Law: avg. # of packets waiting = average arrival
rate × avg. time packets wait in queue

Clark’s Internet Design Goals
Connect existing networks (using IP), robust (as long as
network not partitioned, 2 hosts should be able to
communicate, and failures should not interfere with endpoint

semantics), support many types of delivery services (build
lowest common demoninator service, application-neutral
network), accomodate variety of networks (successful because
of minimal requirements on networks), allow distributed
maangement (easy deployment, but makes management hard),
host attachment (hosts expensiver because need to be smart,
but administrative cost of adding hosts is low) cost effective
(low end cheaper than circuit switching, expensiver than
circuit switching at high end), resource accountability (failed)

3 Design Principles
Layering
Application: HTTP; Transport (L4) communication
between processes, end-to-end delivery (possibly reliable):
TCP, UDP; Network (L3) global best-effort delivery: IP;
Datalink (L2) local best-effort delivery: ethernet; Physical
bits on wire
All layers must exist at host, routers only implements
everything Network and below

End-to-End Principle
Only-if-sufficient: implement function in lower levels only if
it can be completely implemented at this level;
Only-if-necessary: make network layer absolutely minimal
(increases flexibility), don’t implement anything in the
network that can be done correctly by the hosts;
Only-if-useful: if hosts can implement correctly, implement
it in a lower layer only as a performance enhancement, but
only if it does not impose burden on apps that don’t require
the functionality
Ignores: stakeholders besides users (ISP, commercial,
money-chain), the need for middlebox functionality (some
functions are more easily done in the network)

Fate-Sharing
When storying state in a distributed system, co-locate it with
entities that rely on that state. Keep network state at end
hosts instead of inside routers

Reliable Transport Goals
Goals: correctness, timeliness, efficiency, ”fairness”
Correctness: always resend packet if previous transmission
lost or corrupted, maybe resent at other times;
Window algorithms: takes advantage of bandwidth, limits
bandwidth used, limits buffering needed at receiver; separates
concerns: size of W, nature of feedback ACKs (full
information, individual packets, cumulative), response to loss
(resend on timeout, duplicate ACKs, or NACKs)
Ratelsss Codes: receipt of M packets allows recovery of file
(where M is close to size of file), receiver only sends ACK
when M are receive, sender keeps sending until receives ACK,
is timely and correct
Paradox: majority of flows are short, but majority of bytes
are in long flows
Resending packet until you receive ACK wastes B×RTT
bandwidth

Routing
Forarding decision are deterministic and based on routing
state (table) in switch, mapping packetState (destination,
source, incoming switch port, other info) + rouyingState to
outgoingPort
Destination-Based Routing: paths to same destination
never cross, paths never split once they meet, creates a
spanning tree rooted at destination covering every node once
Local routing state: state in a single router
Global routing state: collection of routing state in each
router, determines which paths packets take
Global routing state is valid iff there are no dead ends (ex:
there is no outgoing port on non-destination node) and no
loops (hard).
Forwarding (data plane) is directing a packet to an outgoing
link in individual router using routing state. Routing (control
plane) is computing paths packets will follow using routing
state jointed created with other routers.

Routing on Spanning Tree
Spanning tree is selection of edges that form a tree spanning
every vertex without forming loops. Only one path from source
to destination. Send packets along all paths. They won’t loop,
and some will hit deadends, but one will reach destination.

Self-Learning Switch

Store mapping from source ID of packet with incoming port to
switch table. Use time-to-live field to eventually forget
mapping. Weaknesses: requires loop-free topology, very little
control over paths, tree must be recomputed after failure,
entries must time out when hosts move

index the switch table using destination ID

if entry found for destination{

if dest on port from which packet arrived { drop packet }

else { forward packet on port indicated }

} else { flood }

Link-State
Each router tracks incident links, and floods it, so each node
has same global view. Each router computes path using same
algo. Global state, local computation. Challenges: scaling,
transient disruptions.
”Least Cost” routes are destination-based and easy way to
avoid loops.
Reliability: ensure all nodes receive link-state info, and all
use latest version; Challenges: packet loss and out-of-order
arrival; Solutions: ACKs, retransmissions, and seqno;
Initiate on: topology change (failure, recovery), config
change, periodically Convergence: forwarding is consistent
after convergence, but before, there is risk of lost, looping, or
out-of-order packets

Distance Vector

Each router knows links to its neighbors and has provisional
”shortest path”. Routes exchange distance-vector info with
neighbors. Routers update their idea of best path using info
from neighbors.



Bellman-Ford Algorithm
Router’s Table: entry in row Y and column Z of node X
means ”best known distance from X to Y, via Z as next hop =
Dz (X,Y )
After X rounds of exchange, we get the best (X+1)-hop paths.
If all nodes minimize same metric, and that metric increases
around loops, convergence is guaranteed. If router lies, all
traffic from nearby routers get sent there.

IP
Steps: accesing network from laptop (wireles/ethernet,
NAT/firewall network management), mapping real world name
to network name (getting host), mapping network name to
location (IP addr), downloading content from location (TCP)
Network Management: most undeveloped part of Internet
architecture; Security concerns: privacy, integrity,
provenance (not imposter)

IP Packet Structure (Bits)
Read packet correctly: version number (4), header length (4),
total length (16)
Get packet to destination and back : source and destination IP
addresses (32 x 2)
Carry data Tell host what to do when packet arrives: protocol
for demuxing at receiver (8) (eg: 6 for TCP, 17 for UDP)
Specify special network handling: type-of-service (8) and
options Deal with path problems: check for header corruption
with checksum (16), loop with TTL (8) (decremented each
hop, discarded when 0), packet too large with fragmentation
(32 bit info for packet identifier, flags(Reserved: ignore, DF:
don’t fragment, MF: more fragments coming), and fragment
offset (in 8-byte units, to allow further fragmentation))

IPv6
Ends deal with problems: removed fragmentation and
checksum, kept TTL; Simplify handling: new options
mechanism (next header), and eliminated header length;
Provide general flow label for packet: not tied to
semantics, gives flexibility

Sender Attacks
Use fake source addr for DOS attack, evading detection, or
framing spoofed host. IP options often processed in router’s
slow path (allowing DOS). If attacker sets TOS, and regular
traffic doesn’t, then network prefers attack traffic. Evade
network management by splitting attack across fragments.
Send fragments exceeding IP datagram limit. State-holding
attack is when attacker doesn’t send all fragments, and
receiver waits.

IP Addressing
Layer 2 addressing uses MAC addresses. Use dotted-quad
notation. IPv4 addresses 32 bits. Add layer of indirection for
flexibility, hierarchical structure for scalability. Prefix is
network address, suffix is hostaddress. ”Slash X” means a
X-bit prefix with 232−X addresses. Subnet is region without
routers,containing addresses within the ”subnet mask”.
Original addrs used 8 bits for network addresses (assumed
256 networks were enough). Classful addrs used opening bits
to determine prefix length (0for /8, 10 for /16, 110 for /24,
1110 for multicast), routers ended up knowing many class C’s
(/24), wasted addr space. CIDR: Classless Interdomain
Routing. Must specify both addr and mask.
Aggregation not possible when multi-homed customer has 2
providers.

DHCP
uses UDP. Only uses local broadcast. Allocation of addr is
”soft state” (forgotten if no refresh received when timer
expires), so if request isn’t refreshed, server takes addr back
(in case host doesn’t release).
DHCP discover (broadcast): client sends on layer 2.
DHCP offer (broadcast): multiple servers send
configuration parameters with lease time
DHCP request (broadcast): client sends request echoing
params
DHCP ACK (boardcast): server confirms, and so other
servers see they weren’t chosen

Network Address Translation
Many hosts can share single address. Uses port numbers
(fields in transport layer) to multiplex single address. Early
exmaple of middlebox injecting functionality into network.

Forwarding
If no match in forwarding table, take default route (ie: if not
on subnet, send to ISP). Because can’t tell where network addr
ends in CIDR, we must use LPM. Longest Prefix Match:
record port associatd with first math, and only over-ride when
it matches another prefix during walk down tree. Decreases
size of routing table.

Transport
Communication between application processes on different
hosts. Sender breaks app messages into segments, passes to
network layer. UDP uses destination port (and addr). TCP
uses source/destination ports & addrs.

UDP
IP plus port numbers to support de/muxing. Optional error
checking on packet contents. Finer control over when data is
sent. No delay for connection establishment. No connection
state. Small packet header overhead (8 bytes). Used by DNS.

TCP
Checksum: detect corrupted data at receiver, and drop.
Sequence numbers: detect missing data, and putting back
in order. Receiver sends ACK with the # of the next expected
seqno.
Retransmission: sender retransmits with timout based on
estimate of rount-trip time. Rapid retransmission with fast
retransmit algo.
Sliding Window flow control: advertised window W (can
send W bytes beyond next expected byte), receiver uses W to
limit number of bytes sender can have in flight. If W

RTT
< B,

transfer has speed W
RTT

. Else, the transfer has speed B. Left
edge of window for sender is beginning of unACK’d data, for
receiver is beginning of undelivered data. Window advances
for sende when new data ack’d, for receiver when receiving
process consumes data. Receiver advertises to sender where
the receiver window ends (righthand edge), and sender does
not exceed.
Segment: IP packet smaller than Maximum Transmission
Unit ( 1500 bytes). TCP packet has TCP header ≥ 20 bytes.
TCP segment smaller than Maximum Segment Size bytes.
MSS = MTU − (IPheader)− (TCPheader) Initial
Sequence Number: since port #s might get used again,
TCP requires changing ISN (set from 32 bit clock tick every 4
ms, wraps around once per 4.55 hours). Hosts exchange ISNs.
Connection Establishment: 3-way handshake. A’s SYN
(seqnum x) to B. A sets timer (default 3 sec, sometimes 6) and
waits for SYNACK. B’s SYNACK (seqno y, ack x+1) to A.
A’s ACK (ack y+1) to B, and then A’s data to B. Each host
tells its ISN to the other.
Connection Teardown: A sends FIN to B. B sends ACK.
Connection now half-closed. A sends ACK to B. A sets
timeout to avoid reincarnation, and then closes connection.
Or, it can go FIN (from A), FIN+ACK (from B), ACK (from
A). Abrupt termination: A sends RESET to B. B does not
ACK RST, so RST is not delivered reliably. If B sends
anything else, A sends another RST.
Retransmission: set retransmission timeout (RTO) based on
RTT. Karn/Partridge algo measures SampleRTT for original
transmissions, and uses exponential backoff (when RTO timer
expires, double it up to max ≥ 60 sec. After successful original
trans, collapse RTO back to computed value). Exponential
averaging:
estimate (n) = αestimate (n− 1) + (1− α) value(n).

estimate (n) = (1− α)Sum
(
αkvalue (n− k)

)
. RTT

estimation with α = 7
8

. Jacobson/Karels algo:
Deviation=abs of sampleRTT - estimatedRTT.
EstimatedDeviation is exp average of Debiation.
RTO=EstimatedRTT + 4xEstimatedDeviation.


