
DNS
Hardwired Root, then professionally managed Top-Level
Domain servers, then locally maintaned authoritative. Root
servers replicated through anycast among locations A,. . .,M with
same address s.t. packets delivered to closest location with that
addr. Hierarchy helps with name resolution (walking up/down)
and name allocation (control over namespace partitioned).
Recursive query asks server to get answer (eg: you to/from local
DNS server), Iterative query asks server who to ask next (local
DNS server to {root DNS, TLD DNS, authoritative DNS}).
DNS servers delete cached entries when TTL expires. (Optional)
negative caching remembers what doesn’t work.
DNS resource record format: (name, value, type, ttl).
Type A=hostname → IP addr. Type NS=domain → hostname of
authoritative name server for this domain. Type PTR=reversed
IP quads → hostname. Type CNAME=alias name for some
”canonical” name → canonical name. Type MX=value is name of
mailserver, includes weight/preference.
Flags for {query, reply}, recursion {desired, available}, reply is
authoritative.
Reliability through replication, using UDP, trying alternate servers
on timeout (exponential backoff when retrying same server), same
identifier for all queries (don’t care which server responds).
Vulnerabilities: recursive resolution, cache poisoning (”additional”
records can be anything! ie: for google.com).

Web
HTTP request: request line (method, resource, protocol ver),
request headers, newline, optional data in body).
HTTP response: status line (protocol ver, status code, status
phrase), response headers, newline, optinal data in body.
Response codes: 1xx informational, 2xx success, 3xx redirection,
4xx client error, 5xx server error.
Performance for fetching objects: one at a time (naive, incurs
≥ 2 RTTs per object), concurrent (in parallel, unordered
responses, makes more network traffic), pipelined (batching
requese and respones reduces connection overhead, maintains
order of responses, in single TCP conn), persistent (default in
HTTP/1.1, maintain TCP conn across multiple requests to avoid
connection overhead, allow TCP to learn more accurate RTT
estimate, allow TCP congection window to increase).
HTTP caching: use ”If-modified-since” in GET requests (server
returns ”304 Not Modified” in response or ”200 OK” with latest
object), response headers have ”Expires” (how long safe to cache)
or ”No-cache” (always get from server)
Reverse proxies cache close to server, decrease server load, only
for static content.
Forward proxies cache close to clients, reduce network traffic
and latency, done by ISPs or LANs.
CDNs integrate forward and reverse caching, processes dynamic
web pages and transcodes (ie: modify embedded URLs to
reference CDN domains).
Multiple sites per machine: include ”Host” header to
disambiguate. Multiple machines per site (helps handle load or
when content isn’t cacheable): load balancer to ensure packets
from single TCP conn goes to same replica. Multiple addresses,
multiple machines: DNS server returns different addrs.

Interdomain Routing
Internet is made of set of ”Autonomous Systems” (ASes
sometimes called ”domains”).

Border Gateway Protocol (BGP) makes destination prefix to
egress point. Interior Gateway Protocol (IGP) computes paths
within AS by mapping agress point to outgoing link.
Autonomous ASes choose internal routing protocol, rotue
externally based on policy, want to keep connections and policies
private.
Business relationships {customer, provider, peer}: ”when
sending traffic, route through customers over peers, and peers over
providers” and don’t carry traffic from one provider to another
provider.
Path-vector routing sends distance matric per destination along
with the entire path. Selection policy says which paths I want
my traffic to take. Export policy says whose trafic I am willing to
carry (ie: let customers use any of my routes, let anyone route
through me to my customer, don’t export route to someone on
that route, block all else) P-V issues: reachability (connected
graph doesn’t assure reachability), security (”blackhole”: AS can
claim to serve prefix that don’t have route to), performance
(nonissue: policy-chosen paths aren’t shortest; real issue:
convergence times (never converging due to policy oscillations),
path changes must be re-advertized to every upstream node, each
BGP router must know path to every other IP prefix and # of
prefix growth more than linear)

Routing Challenges
Policy dispute resolution: if policies follow normal business
practices (”Gao-Rexford conditions” are essentially
provider/peer/customer policy categories), stability is guaranteed.
Precedence to solve policy oscillation: Computed local
”precedence” is higher for less preferred routes. Incoming
precedence carried by packet, and local determined by past
history. Most preferred route picked from the lowest incoming
precedence values. Outgoing precedence is sum of incoming and
local. Not deployed!.
Routing resilience: routing needs to be both
consistent/convergent and timely. Multipath routing provides
more than one path for S-D pair, and allows endpoints to choose,
but has large delay while endpoints detect failure (RTT).
Failure-Carrying Packets (FCP): ensure routers have
consistent view of network, even if it’s out of date. Use reliable
flooding. Each map has sequence number. Routers write this
number into packet headers, and only decrement the counter.
When packet arrives and next-hop link for the path computed
with consistent state is down, insert failure information into packet
header. if failure persists, it will be included in next consistent
picture of network. Guarantees packet delivery if valid path exists
during failure process. Problems: requires changes to packet
header, header could get long, requires fast recomputation of
routes, doesn’t address traffic engineering.
Traffic engineering distributes load on the network.
Connectivity is necessary, but also needs to provide decent service,
requiring links to not be overloaded.
Routing Along DAGs (RAD): routing tables are
per-destination. Directed-acyclic graph gaurantee loop-free, local
decision for failure recovery, and adaptive load balancing. Local
decision chooses which outgoing links to use, decides how to
spread load, and pushes back when all outgoing links are
congested (send congestion signal on incoming links to upstream
nodes). Theorem: when all traffic goes to a single destination,
local load balancing leads to optimal throughput. Computation
for destination v: shortest-path computation with consistent

method of breaking ties. Algorithm: when packet arrives, send out
any outgoing link. When outgoing link fails (or is reversed): if
another outgoing links exist, do nothing, else reverse all incoming
links to outgoing. Link reversal guarantees connectivity. Proof :
DAG guarantees no loop at beginning, and link reversal never
creates loop. Problems: computation takes time, packets can be
lost in meantime, link reversals are on ”control plane”
Data-Driven Connectivity (DDC): define link reversal as event
of packet arriving in ”reverse” direction, and action of removing
that link from outgoing set.

Ethernet
Originally broadcast, but now ”switched”, so no sharing channel.
Switches (switch on frames in Link Layer) enable concurrent
comm while completely avoiding collissions (if hosts directly
attached). Switches map destination MAC to outgoing interface,
construct switch table automatically, and floods when no entry in
table. Use spanning tree to avoid flooding through links that form
loops. Spanning tree algo: pick a root (destination for all
shortest paths) with the smallest identifier (MAC addr). Compute
shortest paths to the root, only keep links that are on shortest
path. To break ties: choose path that uses neighbor swith with
lower ID. Messages in format (Y, d, X) propose Y as root from
node X, with distance d. Steps: each switch proposes itself as
root[∀x ∈ Switches, x announces (x,0,x)]. Switches update their
view of root. Upon receiving message (Y, d, Z) from Z, if Y’s id is
smaller, view Y as new root. Switches compute distance from root
by adding 1 to distance received from neighbor. Identify interfaces
not on shortest path to root, and exclude from spanning tree. If
root or shortest distance to it changed, ”flood” updated message
(Y, d+1, X). Robustness: root switch periodically reannounces
itself as root, detecting failures through timeout (soft state; if no
word from root, time out and claim to be root).
Negatives: network unuseable until tree rebuilt, and forwarding
is only over spanning tree (unused bandwidth)

Broadcast vs. Point-to-Point
Point-to-point is dedicated pairwise communication, like
Ethernet switch to host.
Broadcast is shared wire or medium, like traditional Ethernet.

Multiple Access Algorithms
Time Division Multiple Access: time-slot length is packet
transmission time, unused slots idle, each station gets fixed length
slot in each round.
Frequency Division Multiple Access: channel divided into
frequency bands, each station assigned fixed band, unused bands
go idle.
Polling: master node invites slave nodes to transmit, but sucks
because of polling overhead, latency, and single point of failure.
Token passing: control token passed from one node to next
sequentually, node must have token to send, but sucks because of
token overhead, latency, being at mercy of any node.

Random Access MAC Protocols

Node transmits packet at full channel data rate without previous
coordination. Collisions result in data loss. Carrier sense is
checking if someone else is already sending data and wait until
other node is done. Collision detection is if someone else starts
talking at the same time, stop, and make sure everyone knows
there was a collision. Randomness is waiting for a random time
before trying again.

Aloha Signaling: channel for random access and another for
broadcast. Sites send packets to hub on random, and resends if no
ACK received. Hub broadcasts packets to all sites, and sites can
receive while sending. Resent with probability p. Max efficiency is
approx 1/3. Pros of Slotted Aloha: single active node can
continuously transmit at full rate, highly decentralized since only
need slot synchronization, simple. Cons of Slotted Aloha:
wasted slots from idle and collisions, collisions consume entire slot,
and clock synchronization.
Carrier Sense Multiple Access: listen before transmit. If
channel sensed idle, transmit entire frame, else if sensed busy, defer
transmission. Reduces, but doesn’t eliminate all collisions because
of nonzero propagation delay. CSMA/CD: collisions detected
within short time, and colliding transmissions aborted to reduce
wastage. CD easy in wired LANs, but not in WLANs. Imposes
restrictions on maximum length of wire and minimum length of
frame. Performance: time wasted in collisions proprtional to
distance d. Time spend tramsitting packet is packet length p

divided by bandwdith b. For some constant K, efficiency ≈
p
b

p
b
+kd

.

Since E decreases as b increases, high-speed LANs are all switched.
Ethernet Multiple Access: CSMA/CD protocol has carrier
sense, collision detection (on collisiosn, abort and send jam signal),
and binary exponential back-off random access (after m-th
collision, choose K randomly from 0 to 2m − 1, and wait K * 512
bit times before retry. In reality, it performs well, not optimal, and
is mostly irrelevant, since current ethernet is switched. Stability
for finite N, so Ethernet can handle nonzero traffic load without
collapse. For infinite N, all backoff algorithms unstable.
When 2 hosts, each with infinite packets to send, compete, there is
chance the first to successfully transmit will never relinquish the
channel, and the other host will never send. If hosts have finite #
of packets to send, time waiting for loser to start is proprtional to
time winner was sending. Exponential backoff has channel capture
and efficiency less than 1. Superlinear polynomial backoff has
channel capture and effiency is 1 (for finite # of hosts N).
Sublinear polynomial backoff has no channel capture (loser not
shut out) and efficiency is less han 1 (goes to 0 for large N) since
time is wasted resolving collisions.

Congestion Control
Flow control keeps 1 fast sender from overwhelming a slow
receiver. Congestion control keeps a set of senders from
overloading the network. Internet traffic is bursty, so if many
packets arrive in short time period, there are delays or buffer may
overflow. End hosts adjust sending rate based on feedback from
network. Drawbacks is suboptimal efficiency, relying on end
system cooperation, and messy dynamics (all end systems
simultaneously adjusting). Detect congestion from network telling
source (risky, since signal itself could be dropped or add to
congestion), packet delays going up (tricky because of noisy
signal), and packet loss (but there are non-congestive losses like
checksum errors). Adjust CWND because consequences of
over-sized window (packets dropped and retrans) much worse than
under-sized window (lower throughput), so gently increase and
rapidly decrease. AIMD increases by one MSS on success of last
window, and divides window in half on packet loss, creating TCP
sawtooth. Slow-Start: AIMD starts too slowly, so start with
small congestion window (ie: CWND=1 MSS), but increase
exponentially until first loss. Congestion Avoidance gently
increases CWND by fraction of MSS per received ACK: CWMD
+= MSS divided by # packets per window. Fast

Retransmission: halve CWND when sender sees 3 dup ACKs.
Timeout: sender starts timer for RTO seconds, restarting timer
whenever ACK arrives. If timer expires, sets Slow-Start Threshold
SSTHRESH to CWND/2, set CWND to 1 MSS, retransmit first
lost packet, and execute Slow Start until CWND > SSTHRESH,
then switch to Additive Increase.
Throughput = (MSS / RTT) * sqrt(3/2p) with packet drop rate
p. Why AIMD? congestion control challenges: when single flow
adjusting to bottleneck bandwidth (slow-start can result in many
loses when CWND is double pipe-filling value), single flow
adjusting to bandwidth variations (AIAD=gentle inc+gentle dec;
AIMD=gentle inc+drastic dec; MIAD=drastic inc+gentle dec(too
many loses); MIMD=drastic inc+drastic dec), and when multiple
flows must share bandwidth ”fairly” and without overloading
network (eliminates MIMD and AIAD). AIMD is only ”fair”
choice, but hosts that send more flows get more bandwidth.
Random Early Drop (RED) drops packets before queue is full
with drop probability D (function of queue size) to keep queue
average small, but tolerate bursts, and reducing synch between
flows. Explicit Congestion Notification (ECN) is bit in IP
packet header that is set instead of RED router dropping, so
corruption isn’t confused with congestion and recovery isn’t
confused with rate adjustment.

Router-Assisted Congestion Control
Isolation by giving each flow its own FIFO queue, and router
services flow round-robin. Fair Queuing (FQ) is round-robin
generalized to case where not all packets are MTUs, where
weighted fair queueing (WFQ) lets router assign different flows
different shares. Flows can pick whatever CC scheme, bandwidth
share doesn’t depend on RTT. Adjustment helps flows get speed.
Isolation protects flows from cheaters and allows innovation in CC
algos. Rate-Control Protocol (RCP): router inserts Fair Share f
into packet header s.t. total bandwidth C = sum(min(f,
bandwidth demanded ri))
Frank Kelly suggested using ECN as congestion markers,
charging money when ECN bit set, since giving equal bandwidth
shares to ”flows” doesn’t make sense (if i have more flows than
you?, if you use more congested hops?, is a flow a TCP conn or
source-destination pair or just source?)

Odds & Ends
Delayed Acknowledgements set timer upon receiving packet so
that if application generates data, it can piggyback the ACK. If
timer expires or out-of-order segment arrives, send
non-piggybacked ACK. ACK-splitting: growing window by 1
packet for each ACK received, and sending M distinct ACKs for 1
packet caues growth factor proprtional to M. High Speed TCP:
increase CWDN by more on each success, and decrease CWDN by
less.

Link-Layer
Services: encoding (into binary), framing (packet into frame,
adding header, trailer), error detection (from signal attenuation,
noise, and receiver may ask for repeat), resolving contention (for
shared media), flow control (pacing between sender and receiver).
Link-level broadcast uses addr ff:ff:ff:ff:ff:ff. IP-level broadcast can
only do ”local” broadcast using 255.255.255.255. Link-layer
adapters only understand MAC. Sending packet to same ”local”
(local if netmask with IP addr the same as our own masked addr)
subnet uses MAC addr of dest, to other subnet uses MAC addr of
first-hop router (do local case for router’s ip, instead of ultimate

dest ip). Determine whether host is on same subnet by using
netmask (with DHCP).
Determine MAC addr using Address Resolution Protocol.
Each node has ARP table of IP addr and MAC addr pair. If IP
addr not in table, sender broadcasts requested IP (ie, for gateway)
, receiver responds with MAC, and sender caches result in its ARP
table. Impersonation is easy because any node can say whatever
they want, and legit receiver never realizes.

Internet Control Messages Protocol
Triggered when IP packet encounters a problem. ICMP packet
sent back to source IP with error info and excerpt from original
packet. Source inspects except to identify socket. ICMP packet
not sent if problem packet is ICMP, and only sent for fragment 0
of fragment groups. Types: Need Fragmentation (too large, and
DF set), TTL Expired (if TTL decrements to 0), Unreachable
(subtypes for network, host, and port), Source Quench (old signal
asking sender to slow down), Redirect (tells source to use different
local router). Path MTU is minimum end-to-end Maximum
Transmission Unit, found by trying desired value with DF set,
then trying smaller after receiving Need Frag. Traceroute sends
packet with TTL ranging from 1 to n, and each router along path
sends Time Exceeded, and is identified by the IP source addr (the
router).

Multicast
At routers, copy data s.t. a most one copy of a data packet per
link. LANs do link layer multicast by broadcasting. Receivers join
multicast group with address G, sender(s) send data to address G,
and network routes data to each receiver. Senders don’t know list
of receivers. Barriers: hard to change IP, not consistent with ISP
economic model Link Layer: NIC normally listens for unicast
addr A and broadcast addr B, but after joining group G, listens to
packets to multicast addr G. Packets to group G flooded on all
LAN segments like broadcast. IP Layer:
Reverse Path Flooding: if incoming link is shortest path to
source, send on all links except incoming, else drop. Issues: links
can receive multiple copes, and every link receives each multicast
packet. Reverse Path Broadcast: choose single parent (based
on distance, lower addr for tie-breaking) for each link along reverse
shortest path to source, and only the parent forwards to child link.
Pruning: prune (source, group) at leaf if no members by sending
Non-Membership Report (NMR) up tree, and if all children of
router R send NMR, propagate prune for (S,R) to parent R.
Core-Based Tree: build tree from all members to core/root
(spanning tree of members), packets are broadcast on tree,
requires knowing root per group.

Wireless
MACA needed because nodes can’t hear hidden terminals, so
Carrier Sense by itself is ineffective. Exposed node: Carrier sense
prevents successful transmission because node hears other
transmission and doesn’t send even though it won’t cause
interference. MACA: no concept of global collision, collisions are
at receiver (not sender) (doesn’t matter if sender hears someone
else), detect if receiver can hear sender, tells senders who might
interfere with receiver to stop. Since we need ACKs, use
carrier-sense for sender congestion, and MACA for receiver
congestion. Send RTS-CTS-DATA-ACK. RTS/CTS (request to
send, clear to send): shut up when hear either CTS or current
transmission is over (hear ACK) (carrier sense). If only hear RTS
and not CTS, you can send.

