
Prove sufficient (”if”), and necessary (”only if”) to prove ”if and
only if”

People
Baran (USAF, survivable netwoks) and Kleinrock advocate
packet switching; Licklicker vision of Galactic Network; Roberts
vision of ARPANET, Kahn advocates Open Architecture
networking (networks should be independent and not required to
change, best-effort connection, routers between networks, no
global control), David Clark was Chief Architect (authored
end-to-end principle, adhered to the basic design principles)

Circuit Switching
Pros: predictable performance (known delays, no drops); simple
abstraction (reliable communication, no worries about
lost/out-of-order packets), simple forwarding (basedon time or
frequency)
Cons: not resilient (any failure prevents transmission, and entire
transmission has to be restarted), wastes bandwidth, inefficient
for bursty apps, blocked connections (conn. rfused when
insufficient resources)

Packet Switching
”Statistical multiplexing” gambles that packets don’t all arrive at
the same time, so we don’t need capacity for all of them at peak
transmission rates
Pros: easy recovery from failures (routers don’t have individual
flows), efficiency (from multiplexing), deployability (easy to link
different networks together)
Cons: worse service for flows (packet delays, drops,
out-of-order), must deal with congestion, complicated forwarding

Datagram Network Properties
Latency (delay): propogation time for data sent along link;
Bandwidth (capacity): amount of data sent/received per unit
time; Bandwidth-delay product (BDP): amount of data ”in
flight” at any time; Utilization: arrival/bandwidth;

Networking Delays
Transmission delay: time spent transmitting data, from first
bit pushed to wire until last bit pushed on; Propogation delay:
time a bit spends traversing the link(limited by light); Queueing
delay: time spent waiting in a queue, caused by burstiness of
arrivals and variations in packet lengths; End to end delay
between when sender starts sending and when receiver finishes
receiving; Roundtrip delay (RTT): total time for packet to
reach destination and response to return to sender; Jitter:
difference between min and max delay
Little’s Law: avg. # of packets waiting = average arrival rate
× avg. time packets wait in queue

Clark’s Internet Design Goals
Connect existing networks (using IP), robust (as long as network
not partitioned, 2 hosts should be able to communicate, and
failures should not interfere with endpoint semantics), support
many types of delivery services (build lowest common
demoninator service, application-neutral network), accomodate
variety of networks (successful because of minimal requirements
on networks), allow distributed maangement (easy deployment,
but makes management hard), host attachment (hosts expensiver

because need to be smart, but administrative cost of adding
hosts is low) cost effective (low end cheaper than circuit
switching, expensiver than circuit switching at high end),
resource accountability (failed)

3 Design Principles
Layering
Application: HTTP; Transport (L4) communication between
processes, end-to-end delivery (possibly reliable): TCP, UDP;
Network (L3) global best-effort delivery: IP; Datalink (L2)
local best-effort delivery: ethernet; Physical bits on wire
All layers must exist at host, routers only implements everything
Network and below

End-to-End Principle
Only-if-sufficient: implement function in lower levels only if it
can be completely implemented at this level;
Only-if-necessary: make network layer absolutely minimal
(increases flexibility), don’t implement anything in the network
that can be done correctly by the hosts;
Only-if-useful: if hosts can implement correctly, implement it
in a lower layer only as a performance enhancement, but only if
it does not impose burden on apps that don’t require the
functionality
Ignores: stakeholders besides users (ISP, commercial,
money-chain), the need for middlebox functionality (some
functions are more easily done in the network)

Fate-Sharing
When storying state in a distributed system, co-locate it with
entities that rely on that state. Keep network state at end hosts
instead of inside routers

Reliable Transport Goals
Goals: correctness, timeliness, efficiency, ”fairness”
Correctness: always resend packet if previous transmission lost
or corrupted, maybe resent at other times;
Window algorithms: takes advantage of bandwidth, limits
bandwidth used, limits buffering needed at receiver; separates
concerns: size of W, nature of feedback ACKs (full information,
individual packets, cumulative), response to loss (resend on
timeout, duplicate ACKs, or NACKs)
Ratelsss Codes: receipt of M packets allows recovery of file
(where M is close to size of file), receiver only sends ACK when
M are receive, sender keeps sending until receives ACK, is timely
and correct
Paradox: majority of flows are short, but majority of bytes are
in long flows
Resending packet until you receive ACK wastes B×RTT
bandwidth

Routing
Forarding decision are deterministic and based on routing state
(table) in switch, mapping packetState (destination, source,
incoming switch port, other info) + rouyingState to outgoingPort
Destination-Based Routing: paths to same destination never
cross, paths never split once they meet, creates a spanning tree
rooted at destination covering every node once
Local routing state: state in a single router

Global routing state: collection of routing state in each router,
determines which paths packets take
Global routing state is valid iff there are no dead ends (ex: there
is no outgoing port on non-destination node) and no loops (hard).
Forwarding (data plane) is directing a packet to an outgoing link
in individual router using routing state. Routing (control plane)
is computing paths packets will follow using routing state jointed
created with other routers.

Routing on Spanning Tree
Spanning tree is selection of edges that form a tree spanning
every vertex without forming loops. Only one path from source
to destination. Send packets along all paths. They won’t loop,
and some will hit deadends, but one will reach destination.

Self-Learning Switch

Store mapping from source ID of packet with incoming port to
switch table. Use time-to-live field to eventually forget mapping.
Weaknesses: requires loop-free topology, very little control over
paths, tree must be recomputed after failure, entries must time
out when hosts move

index the switch table using destination ID

if entry found for destination{

if dest on port from which packet arrived { drop packet }

else { forward packet on port indicated }

} else { flood }

Link-State
Each router tracks incident links, and floods it, so each node has
same global view. Each router computes path using same algo.
Global state, local computation. Challenges: scaling, transient
disruptions.
”Least Cost” routes are destination-based and easy way to avoid
loops.
Reliability: ensure all nodes receive link-state info, and all use
latest version; Challenges: packet loss and out-of-order arrival;
Solutions: ACKs, retransmissions, and seqno; Initiate on:
topology change (failure, recovery), config change, periodically
Convergence: forwarding is consistent after convergence, but
before, there is risk of lost, looping, or out-of-order packets

Distance Vector

Each router knows links to its neighbors and has provisional
”shortest path”. Routes exchange distance-vector info with
neighbors. Routers update their idea of best path using info from
neighbors.

Bellman-Ford Algorithm
Router’s Table: entry in row Y and column Z of node X means
”best known distance from X to Y, via Z as next hop =
Dz (X,Y)
After X rounds of exchange, we get the best (X+1)-hop paths. If
all nodes minimize same metric, and that metric increases around
loops, convergence is guaranteed. If router lies, all traffic from
nearby routers get sent there.

IP
Steps: accesing network from laptop (wireles/ethernet,
NAT/firewall network management), mapping real world name to
network name (getting host), mapping network name to location
(IP addr), downloading content from location (TCP)
Network Management: most undeveloped part of Internet
architecture; Security concerns: privacy, integrity, provenance
(not imposter)

IP Packet Structure (Bits)
Read packet correctly: version number (4), header length (4),
total length (16)
Get packet to destination and back : source and destination IP
addresses (32 x 2)
Carry data Tell host what to do when packet arrives: protocol
for demuxing at receiver (8) (eg: 6 for TCP, 17 for UDP)
Specify special network handling: type-of-service (8) and options
Deal with path problems: check for header corruption with
checksum (16), loop with TTL (8) (decremented each hop,
discarded when 0), packet too large with fragmentation (32 bit
info for packet identifier, flags(Reserved: ignore, DF: don’t
fragment, MF: more fragments coming), and fragment offset (in
8-byte units, to allow further fragmentation))

IPv6
Ends deal with problems: removed fragmentation and
checksum, kept TTL; Simplify handling: new options
mechanism (next header), and eliminated header length;
Provide general flow label for packet: not tied to semantics,
gives flexibility

Sender Attacks
Use fake source addr for DOS attack, evading detection, or
framing spoofed host. IP options often processed in router’s slow
path (allowing DOS). If attacker sets TOS, and regular traffic
doesn’t, then network prefers attack traffic. Evade network
management by splitting attack across fragments. Send
fragments exceeding IP datagram limit. State-holding attack is
when attacker doesn’t send all fragments, and receiver waits.

IP Addressing
Layer 2 addressing uses MAC addresses. Use dotted-quad
notation. IPv4 addresses 32 bits. Add layer of indirection for
flexibility, hierarchical structure for scalability. Prefix is network
address, suffix is hostaddress. ”Slash X” means a X-bit prefix
with 232−X addresses. Subnet is region without
routers,containing addresses within the ”subnet mask”.
Original addrs used 8 bits for network addresses (assumed 256
networks were enough). Classful addrs used opening bits to
determine prefix length (0for /8, 10 for /16, 110 for /24, 1110 for
multicast), routers ended up knowing many class C’s (/24),
wasted addr space. CIDR: Classless Interdomain Routing. Must
specify both addr and mask.
Aggregation not possible when multi-homed customer has 2
providers.

DHCP
uses UDP. Only uses local broadcast. Allocation of addr is ”soft
state” (forgotten if no refresh received when timer expires), so if

request isn’t refreshed, server takes addr back (in case host
doesn’t release).
DHCP discover (broadcast): client sends on layer 2.
DHCP offer (broadcast): multiple servers send configuration
parameters with lease time
DHCP request (broadcast): client sends request echoing
params
DHCP ACK (boardcast): server confirms, and so other
servers see they weren’t chosen

Network Address Translation
Many hosts can share single address. Uses port numbers (fields
in transport layer) to multiplex single address. Early exmaple of
middlebox injecting functionality into network.

Forwarding
If no match in forwarding table, take default route (ie: if not on
subnet, send to ISP). Because can’t tell where network addr ends
in CIDR, we must use LPM. Longest Prefix Match: record
port associatd with first math, and only over-ride when it
matches another prefix during walk down tree. Decreases size of
routing table.

Transport
Communication between application processes on different hosts.
Sender breaks app messages into segments, passes to network
layer. UDP uses destination port (and addr). TCP uses
source/destination ports & addrs.

UDP
IP plus port numbers to support de/muxing. Optional error
checking on packet contents. Finer control over when data is
sent. No delay for connection establishment. No connection
state. Small packet header overhead (8 bytes). Used by DNS.

TCP
Checksum: detect corrupted data at receiver, and drop.
Sequence numbers: detect missing data, and putting back in
order. Receiver sends ACK with the # of the next expected
seqno.
Retransmission: sender retransmits with timout based on
estimate of rount-trip time. Rapid retransmission with fast
retransmit algo.
Sliding Window flow control: advertised window W (can
send W bytes beyond next expected byte), receiver uses W to
limit number of bytes sender can have in flight. If W

RTT
< B,

transfer has speed W
RTT

. Else, the transfer has speed B. Left
edge of window for sender is beginning of unACK’d data, for
receiver is beginning of undelivered data. Window advances for
sende when new data ack’d, for receiver when receiving process
consumes data. Receiver advertises to sender where the receiver
window ends (righthand edge), and sender does not exceed.
Segment: IP packet smaller than Maximum Transmission Unit
(1500 bytes). TCP packet has TCP header ≥ 20 bytes. TCP
segment smaller than Maximum Segment Size bytes.
MSS = MTU − (IPheader)− (TCPheader) Initial Sequence
Number: since port #s might get used again, TCP requires
changing ISN (set from 32 bit clock tick every 4 ms, wraps
around once per 4.55 hours). Hosts exchange ISNs.

Connection Establishment: 3-way handshake. A’s SYN
(seqnum x) to B. A sets timer (default 3 sec, sometimes 6) and
waits for SYNACK. B’s SYNACK (seqno y, ack x+1) to A. A’s
ACK (ack y+1) to B, and then A’s data to B. Each host tells its
ISN to the other.
Connection Teardown: A sends FIN to B. B sends ACK.
Connection now half-closed. A sends ACK to B. A sets timeout
to avoid reincarnation, and then closes connection. Or, it can go
FIN (from A), FIN+ACK (from B), ACK (from A). Abrupt
termination: A sends RESET to B. B does not ACK RST, so
RST is not delivered reliably. If B sends anything else, A sends
another RST.
Retransmission: set retransmission timeout (RTO) based on
RTT. Karn/Partridge algo measures SampleRTT for original
transmissions, and uses exponential backoff (when RTO timer
expires, double it up to max ≥ 60 sec. After successful original
trans, collapse RTO back to computed value). Exponential
averaging: estimate (n) = αestimate (n− 1) + (1− α) value(n).

estimate (n) = (1− α)Sum
(
αkvalue (n− k)

)
. RTT estimation

with α = 7
8

. Jacobson/Karels algo: Deviation=abs of
sampleRTT - estimatedRTT. EstimatedDeviation is exp average
of Debiation. RTO=EstimatedRTT + 4xEstimatedDeviation.

Security
Core requirements: availability (will network deliver data),
authentication (who is sending me data, signature), integrity
(messages arrive in original form, hash function), provenance
(responsibility for data is who created, not who sent it; use
signature). Keeping bystanders ignorant: privacy (can others
read my sent data, encryption), anonymity (can i avoid revealing
my ident), freedom from traffic analysis (when and to whom I am
sending?). Itentity is real-world itentities (RWI), names, and
keys. Names must be bound to the other two.

Software-Defined Networking
Abstractions: forwarding (OpenFlow is standardized interface
to switch where switches accept external control messages, use
standardized flow entry format), network state (”Network OS”
runs on replicated servers in network is centralized link-state algo
that computes forwarding state and sends to switches),
specification (control mechanism expresses desired behavior but
doesn’t implement). Network management deals with control
plane: isolation (using VLAN tags in l2 headers for multiple
LANS on single physical network), access control (imposed by
routers using ACLs), traffic engineering (centralized: from
snapshot of topology, compute up MPLS tunnels, adjust weights
in OSPF, then send to network). MPLS: multiprotocol label
switching inserts a label before IP header (at edge routers) for
ability to route on larger aggregates and at finer granularity (in
core routers). SDN networks separate data plane (switches) and
control pane (controllers), so can buy HW switch and SW for
controllers independently, from anyone. Allows users to specify
virtual topology, cloud network to implement policies, and
tenants can migrate VMS to/from own network. Fabric is like
distributed switch that delivers packets to edge ports. For
scaling, use logical xbar LXB. First-hop switch for all VMs is a
Vswitch.

