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1 Negative Temperature in Paramagnetism

Once again, consider a system of N spin 1/2 particles which live in a magnetic field of
strength B. From our multiple previous discussions of this system, we know that the energy
is given by:

U = − ~M · ~B = − ~B
N∑
i=1

~mi = −B(N↑ −N↓)m = −2smB

the multiplicity is given by:

g(N, s) =
N !

N↑!N↓!
=

N !

(N/2 + s)!(N/2− s)!
and the dimensionless entropy is given by:

σ(N, s) = ln(g(N, s)) = lnN !− ln

[
(N/2 + s)!

]
− ln

[
(N/2− s)!

]
Using the stirling’s approximation ln(N !) ≈ N lnN−N for large N , and using dimensionless
constant x = 2s/N = −U/(NmB) we find that:

σ(N, x) ≈ −N
[(

1 + x

2

)
ln

(
1 + x

2

)
+

(
1− x

2

)
ln

(
1− x

2

)]
Note that we have the simple formula:

∂σ

∂x
= −N

2
ln

(
1 + x

1− x

)
so that we can find:

1

kBT
=

1

τ
=
∂σ

∂U
=
∂σ

∂x

∂x

∂U
=

1

2mB
ln

(
1 + x

1− x

)
So we have that:

kBT

mB
=

2

ln

(
1−U/NmB
1+U/NmB

)
Plotting kBT/mB as a function of U/2mB we have the graph:
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The important observation is that for this system, it is possible to obtain negative tem-
peratures. A system at negative temperature has the property that if you add more energy,
the entropy of the system goes down (which is abnormal). In the case of paramagnetism,
this is because after a certain point adding more energy decreases the number of microstates
of the system, since the number of microstates is encoded in the number of particles that are
spin up along the magnetic field axis. In other systems (such as an Einstein solid), adding
more energy will always lead to an increase in entropy; and you can put an ’infinite’ amount
of energy into an Einstein solid as well.

For the above situation, if we take the limit as U approaches 0, we find (by manipulation
of taylor series) that:

kBT

mB
≈ −NmB

U

So we see that as U approaches zero from the negative axis, T approaches positive infinity,
and as U approaches 0 from the positive axis, then T approaches negative infinity.

If you have a system at negative temperature and a system at positive temperature, then
energy will flow from the negative temperature object to the positive temperature object
(since energy outflow from a negative temperature object represents an increase in entropy,
and energy inflow into a positive temperature object represents an increase in entropy). So
we can imagine the spectrum of ’hotness’ as starting at 0 kelvin, getting hotter until room
temperature, then hotter and hotter until +∞ degrees, so hot that it loops back around to
−∞ degrees, even hotter and you get negative room temperature and so on.

Now, let’s continue playing with our equations we found earlier. If we use the dimension-
less constants:

α =
mB

kBT
; x =

−U
NmB

we can see that we have the equation:

2α = ln

(
1 + x

1− x

)
1This may well be the first successful latex graph I have drawn
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which, solving for x gives us:
x = tanh(α)

From this we can make the following plot:
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(This graph should be interpreted as a graph of the energy of the system as a function of
it’s temperature; the coefficients should be ignored). To get a better understanding of the
scales, note that for an electron we have

m =
e~

2me

= 5.8 · 10−5eV/T

and in labs, we normally only achieve magnetic fields of strength 1 tesla, at 300K (room
temperature) we have that kBT ≈ 1/40eV, so all in all we have

mB

kBT
<< 1

In normal situations. So α is very small, so we have the approximation tanh(α) ≈ α, so
solving for the net magnetisation (from x = tanh(α)) we find that:

M ≈ Nm2B

kBT

which is known as Curie’s Law.

2 Heat Capacity

We can define a quantity known as the heat capacity:

cB =

(
∂U

∂T

)
N,B

2This may well be the second successful latex graph that I have drawn
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If we find the heat capacity of the system at hand we find that:

cB =
NkB(mB/kBT )2

cosh2(mB/kBT )

We can now plot the following:

0 1 2 3 4

0

0.1

0.2

0.3

0.4

kBT/mB

c B
/(
N
k
B

)

3

4We might be interested in what temperature we would need to have the maximum heat
capacity cB. To this end, we set ∂cB/∂x = 0, and find that:

x =
mB

kBT
≈ 1.2

is a solution. This corresponds to a solution at:

U

NmB
≈ 0.83

which can be interpreted as 83% unalign-ment of the spins with the external magnetic field.

3This may well be the third successful latex graph that I have drawn. It may look funky, but it’s generated
faithfully from the equation.
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