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1 Chemical Potential

Recall from last time that we derived the chemical potential for a gas to be:

Mint = τ ln

(
n

nQ

)
Suppose now that the particles have a magnetic moment, and are placed in a magnetic

field of strenght B in the ’up’ direction. Then, our chemical potential is altered for spin up
and spin down particles:

Mtot(↑) = τ ln

(
n

nQ

)
−mB

Mtot(↑) = τ ln

(
n

nQ

)
+mB

In equilibrium, we must have that these two chemical potentials are equal. Setting these
equal, we find that:

n↑
n↓

= e2mB/τ

Now, from our earlier equations, we also have that:

n↑
nQ

= e(M(↑)+mB)/τ

If we enforce that n↑ + n↓ = n0 at B = 0, then we can solve for nQ in terms of n0, and
subsituting back in and solving the equation:

n↑(B) =
n0

2
emB/τ ; n↓(B) =

n0

2
e−mB/τ

so now, adding the two equations together, we find that:

n(B) = n↑(B) + n↓(B) = n0 cosh(mB/τ)

In the limit where mB/τ is very small, we have that:
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n(B) ≈ n0

(
1 +

1

2

(
mB

τ

)2)
Let’s come back to the theory for a while. For now, our working definition of chemical

potential is:

M =

(
∂F

∂N

)
τ,V

we know a relationship between entropy and free energy though, F = U−τσ, so we’d like
to substitute this in to find a relationship between the chemical potential and the entropy
of a system. Note that we also have:(

∂σ

∂N

)
τV

=

(
∂σ

∂U

)
V,N

(
∂U

∂N

)
τ,V

+

(
∂σ

∂V

)
U,N

(
∂V

∂N

)
τ,V

+

(
∂σ

∂N

)
U,V

We can clean this formula up by realising ∂σ/∂U = 1/τ , ∂σ/∂V = 0 (Not doing any
work on the system). Hence, if we substitute all of this into our formula for the chemical
potential, we find that:

M = −τ
(
∂σ

∂N

)
U,V

Or, if we wanted to hold entropy constant, we also have:

M =

(
∂U

∂N

)
σ,V

Now, returning to our formula for an infinitessimal in entropy, we have:

dσ =

(
∂σ

∂U

)
V,N

dU +

(
∂σ

∂V

)
U,N

dV +

(
∂σ

∂N

)
U,V

dN

subsituting in our known quantities:(
∂σ

∂U

)
V,N

=
1

τ
;

(
∂σ

∂V

)
U,N

=
p

τ
;

(
∂σ

∂N

)
U,V

=
−M
τ

so finally we have:

τdσ = dU + pdV −MdN

rearranging, we have:

dU = τdσ − pdV +MdN

which holds for a reversible process. Now, remember that we derived the partition func-
tion in the case where the system was in contact with a thermal resevoir, but was not
allowed to exchange particles. Now, let’s free ourselves from that constraint! Suppose we
have a system connected to a big reservoir, so that the entropy of the system is just given
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by the entropy of the reservoir. Now, the probability of a state occuring is proportional to
the multiplicity of that state, so we have:

P (N1, ε1)

P (N2, ε2)
=
eσ(N0−N1,U0−ε1)

eσ(N0−N2,U0−ε2
= e∆σ

Now, to first order, we have that:

∆σ = −(N1 −N2)

(
∂σ

∂N0

)
U0

− (ε1 − ε2)

(
∂σ

∂U0

)
N0

=
(N1 −N2)M

τ
− (ε1 − ε2)

τ

So now we have derived the Gibbs factor, (the analog for the boltzmann factor in the
case where particles can be exchanged):

P (N1, ε1)

P (N2, ε2)
=
e(N1M−ε1)/τ

e(N2M−ε2)/τ

Now, just as before where we got the Partition Function by summing over the Boltzmann
Factors, we can form the Gibbs Sum (some call it the ”Grand Sum”):

ζ(M, τ) =
∞∑
N=0

∑
S(N)

e(NM−εS(N))/τ

where the S(N) denotes the possible energy states for a particle number N . This serves
the exact same thing as the Partition function, so we might as well throw that idea out.
Now, we have that the probability of finding ourselves in a state:

P (N1, ε1) =
e(N1M−ε1)/τ

ζ

We can calculate averages the usual way, now that we have a probability distribution.
Some results are nice though, for instance:

〈N〉 =

∑
Ne(NM−ε)/τ

ζ
= τ

∂ ln ζ

∂M
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