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1 Chemical Potential

Recall from last time that we derived the chemical potential for a gas to be:

M, = 71n (ﬁ)
nQ

Suppose now that the particles have a magnetic moment, and are placed in a magnetic
field of strenght B in the 'up’ direction. Then, our chemical potential is altered for spin up

and spin down particles:

n

Miot(T) = 71n (—) —mB
nQ

n
Mot (1) = 71n (—) +mB
nqQ
In equilibrium, we must have that these two chemical potentials are equal. Setting these
equal, we find that:
ﬂ _ 62mB/T
n,
Now, from our earlier equations, we also have that:
M _ (M) +mB)/7
ng
If we enforce that ny +n; = ny at B = 0, then we can solve for ng in terms of ng, and
subsituting back in and solving the equation:

n n
n(B) = BT ny(B) = embl
so now, adding the two equations together, we find that:

n(B) = ny(B) + ny(B) = ng cosh(mB/1)

In the limit where mB/7 is very small, we have that:
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Let’s come back to the theory for a while. For now, our working definition of chemical

potential is:
OF
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we know a relationship between entropy and free energy though, F' = U — 70, so we’d like
to substitute this in to find a relationship between the chemical potential and the entropy
of a system. Note that we also have:

o0\ (00 (aU\ (o0 (V) (o0
ON ) v \OU)yy\ON/ WV Jyun\ON /.,y N Juy

We can clean this formula up by realising 0o /0U = 1/7, 0o/0V = 0 (Not doing any
work on the system). Hence, if we substitute all of this into our formula for the chemical

potential, we find that:
do
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Or, if we wanted to hold entropy constant, we also have:

ou
M=-—
(aN) o,V

Now, returning to our formula for an infinitessimal in entropy, we have:

o oo oo
= (o7 = =) N
do (8U> AT (aV) ot <6N) o

subsituting in our known quantities:

do 1 oo P do —M
oU V’N_T7 oV U’N_T’ ON Uy_ T
so finally we have:

Tdo = dU + pdV — MdN

rearranging, we have:

dU = tdo — pdV + MdN

which holds for a reversible process. Now, remember that we derived the partition func-
tion in the case where the system was in contact with a thermal resevoir, but was not
allowed to exchange particles. Now, let’s free ourselves from that constraint! Suppose we
have a system connected to a big reservoir, so that the entropy of the system is just given



by the entropy of the reservoir. Now, the probability of a state occuring is proportional to
the multiplicity of that state, so we have:

P(N17€1) _ eo’(No—Nl,Uo—el) Ao
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Now, to first order, we have that:

So now we have derived the Gibbs factor, (the analog for the boltzmann factor in the
case where particles can be exchanged):

P(Nl,fl) e(NlM—El)/T

P(NQ,EQ) - e(NQM—EQ)/T

Now, just as before where we got the Partition Function by summing over the Boltzmann
Factors, we can form the Gibbs Sum (some call it the ”Grand Sum”):

C(M,7) = i Z e(NM—es(N))/7

N=05(N)

where the S(NN) denotes the possible energy states for a particle number N. This serves
the exact same thing as the Partition function, so we might as well throw that idea out.
Now, we have that the probability of finding ourselves in a state:

6(N1M7<51)/‘r
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We can calculate averages the usual way, now that we have a probability distribution.
Some results are nice though, for instance:
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