A real-valued function \(f\) on the interval \([a,b]\) is called a step function if there exists a partition \(x_0,x_1,...x_N\) of \([a,b]\) such that \(f\) is constant on each open subinterval \((x_0,x_1),(x_1,x_2),...(x_{N-1},x_N)\).
If \(f\) is an integrable real-valued function on the interval \([a,b]\), we set
$$\int_b^af(x)dx = - \int_a^bf(x)dx$$
and, for any \(c \in [a,b]\),
$$\int_c^cf(x)dx = 0$$