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ABSTRACT

The far-infrared linear response of the charge-density-wave (CDW) conductor
(TaSes)sl and polycrystalline samples of the high-T¢ superconductors LaSr; g58rg,.15Cu04
and Laj gsCag.15CuQO4 has been measured. The frequency and temperature range of the
measurements is 8-350 cm! and 5 to 300K. At low temperatures in (TaSeq)71, a mode
with giant oscillator strength was found at 38 cm-!. This giant FIR mode lies between the
pinned mode and the Peierls gap, where significant oscillator strength is not expected in
simple models of the CDW excitation spectrum. It is suggested that a giant FIR mode
distinct from the pinned mode is a common feature of CDW conductors.

At low temperatures in the high-T¢ superconductors, a reflectance edge was observed
near 2.5kgT.. The BCS-like temperature-dependence of the reflectance edge is suggestive
of an energy-gap interpretation. However, a simpie model shows that a BCS-like

temperature dependence is also consistent with an interpretation of the reflectance edge as a



low-frequency plasmon. It is not yet possible to deduce the magnitude of the energy gap
directly from the FIR spectra of polycrystalline sample. |

The radio-frequency nonlinear response of the CDW conductor NbSe3 has also been
measured. In the presence of combined rf- and dc- electric fields, mode-locking occurs in
NbSes. Complete mode-locking in conventional samples is found to dramatically suppress
sliding CDW conduction fluctuations. The application of combined rf and de electric fields
to switching samples of NbSe3 is found to induce a large amf}litude "ac switching noise”
for rf frequencies less than 1 MHz, and a period-doubling route to chaos for rf-frequencies
greater than 1 MHz. The mode-locking behavior of switching and nonswitching NbSe3 is
analyzed in terms of simple differential equations and discrete mappings. A model of CDW
elasticity is also presented. The model qualitatively reproduces all of the experimentally-
observed anomalies which occur for de-, ac- and combined ac- and de- electric fields. Itis
suggested that, during mode-locking, the number of degrees of freedom active in CDW

transport is reduced.
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Part I: Far infrared linear response of charge density wave conductors

and high T, superconductors



1. Introduction

In most condensed matter systems, electrical conduction can be well described by a
nearly-free-electron picture. In conventional metals and semiconductors, the charge
carriers are successfully modeled as weakly interacting charged fermions. However, there
are certain condensed matter systems in which strong correlations between the charge-
carriers cause the nearly-free-electron picture to break down completely. Two such
systems are charge-density-wave (CDW) conductors and superconductors. Well-above a
transition temperature Tc, both CDW conductors and superconductors are metals in which
thé charge is carried by relatively weakly-correlated electrons. Below T¢ in CDW
conductors and in conventional Bardeen-Cooper-Schrieffer! (BCS) superconductors, the
electrons become strongly-correlated in collective-mode ground states. In the
superconducting ground state, electrons with opposite spin and momentum are correlated in
Cooper pairs. In the CDW groﬁnd state, electrons and holes on opposite sides of the Fermi
surface are correlated to cause a static modulation of the electronic density. At low
temperatures in CDW conductors and high-T superconductors, an energy gap oCcurs at the
Fermi surface. Energy gaps in conventional superconductors and CDW conductors are
typically in the far- and near-infrared, respectively.

For frequencies less than the energy gap, there are great differences between the low-
and high-temperature excitation spectra of CDW conductors? and conventional
superconductors. At high temperatures, free carriers contribute nonzero frequency-
dependent conductivity at frequencies from dc to the free-carrier relaxation rate. At low
temperatures, the free-carrier contribution to the frequency-dependent conductivity is absent
for frequencies less than the energy gap. A conductivity sum rule3 requires the integral of
the frequency-dependent conductivity (the total oscillator strength) to be a constant
dependent only on the number of electrons in the conduction band, and hence independent

of temperature. In a BCS superconductor, the oscillator strength removed from the free



3
carriers is shifted to a delta function at zero frequency. In a CDW conductor, the oscillator

strength removed from the free carriers is shared between discrete modes in the energy gap
and an enhancement of the conductivity continuum just above the energy gap.

Part 1 of this thesis is concerned with the linear response of CDW conductors and high-
T, superconductors to weak far-infrared radiation. CDVY conductors have highly
anisotropic conductivities. Thus it is necessary to use polarized radiation for any
measurement of the linear response function. Chapter 2 describes an apparatus developed
for FIR reflectance measurements. The apparatus enables the measurement of polarized
reflectance and transmittance of a sample from room temperature to SK.

Chapter 3 describes measurements of the FIR excitation spectrum of the CDW
conductor (TaSes);] . By combining our measurements with the measurements of other
groups at lower and higher frequencies, we have for the first time completed the excitation
spectrum of a CDW conductor. In the classic picture of the CDW gxcitation spectrum
proposed by Lee, Rice and Anderson (LRA), a mode corresponding to translation of the
CDW center of mass relative to the lattice is expected at very low frequencies. This
"pinned” mode is expected to have a large oscillator strength. In the LRA picture, only
relatively weak IR-active phonons are expected between the pinned mode and the gap. We
have observed at low temperatures a giant FIR mode at 38 cm-1, This mode has larger
oscillator strength than any other mode in the energy gap, including the pinned mode. The
giant FIR mode is clearly distinct from the pinned mode observed at 1.2 em-! and the
energy gap at 2000 cml. Two possible interpretations for the FIR mode are discussed.

Chapter 4 describes attempts to measure the energy gap of polycrystalline samples of
the high-T¢ superconductors Laj gs5Srp.15Cu04 and Laj g5Cay g5CuQy4. At low
temperatures, a reflectance edge was observed at 60 cm-1. The temperature-dependence of
this edge fits the temperature dependence of the BCS gap. We and other groups initially
interpreted the edge as an energy gap. However, an alternative interpretation? suggests that

the reflectance edge is caused by a low-frequency plasmon. A simple model is solved in
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Chapter 4, and the temperature-dependence of the reflectance edge is found to be consistent

with the plasmon interpretation. We conclude that the magnitude of the energy gap cannot
yet be deduced directly from the FIR spectra of polycrystalline samples.

Part 2 o-f this thesis is concerned with the nonlinear response of CDW conductors to
combined strong radio-frequency and dc electric fields. An introduction to relevant
experimental results and theoretical models is to be found in Chapter 3. Superconductors

are not discussed in Part 2.
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2. Far infrared equipment

At far-infrared (FIR) frequencies, it is not possible to directly measure the dielectric
response function of a material. The reflectance, transmittance or absorption must be
measured. The dielectric response function is then deduced using linear response theory.
Since CDW conductors have highly anisotropic conductivity, it is necessary to use
polarized radiation in order to deduce their dielectric properties. This chapter describes the
apparatus used to measure the polarized reflectance of the charge-density-wave conductor
(TaSes)7! and the high-T, superconductors Laj g5(Sr)o.1 5Cu0y4 and Lay gsCap,15CuO4. In
section 2.1, the problems associated with polarizing radiation in light pipe optics are
discussed. In section 2.2, a transmittance-reflectance apparatus ("the T-R apparatus”) is
described. Using the T-R apparatus, the polarized reflectance or transmittance of a sample
may be measured as a function of temperature from 5K to 300K. In section 2.3,
configurations of the spectrometer and detector that are useful with the T-R apparatus are

discussed.

2.1. Polarization in light pipe optics

The polarizers used in these experiments are made of a grid of finely-spaced parallel
wires. Radiation polarized (parallel/perpendicular) to the wires is (reflected/transmitted).
An ideal polarized transmittance experiment is shown in Fig. 2-1a. Unpolarized radiation
is polarized by the first wire grid polarizer. The polarized radiation impinges on a second
polarizer that fills the entire beam. The transmitted radiation is then detected. Multiple
reflections between the sample and poiarizer do not occur in an ideal experiment. When the
polarizers are crossed, as in Fig. 2-1a, all the radiation reaching the second polarizer is
reflected back and transmitted away from the detector by the first polarizer. No radiation
reaches the detector.

Far-infrared radiation is typically guided by light-pipe optics. If care is not taken, a

polarized transmittance or reflectance experiment in a light-pipe optical system will be far
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from ideal. Consider the transmittance experiment shown in Fig. 2-1b. In this case, the

second polarizer fills only about 10% of the area of the light pipe. The path of a typical ray
is shown inside the light pipe. After being polarized by the first pola:jzer, the ray may
bounce off the light pipe wall, possibly suffering a change of polarization.( In the £/1.5
optics used for my experiments, a typical ray will bounce off the walls of the 1-cm light
pipe once every few centimeters.) On reaching the second polarizer oriented perpendicular
to the first one, part of the depolarized ray will be transmitted and reach the detector. The
remainder will bounce around in the cavity formed by the two polarizers, causing yet more
radiation to reach the detector. The problem may be exacerbated by the highly reflective
metal used to block the light pipe. However, some radiation would reach the detector even
| if the second polarizer filled the light pipe.

Fig. 2-2 shows experimental data for a configuration like that in Fig. 2-b. The
transmitted intensity in the 50-300 cm-! band for crossed and parallel polarizers is plotted
as a function of the distance d between polarizers. For d=0 (polarizers touching), the
crossed polarizer configuration transmits less than 10% as much as the parallel polarizer
configuration. However, the transmittance in the (crossed,parallel) polarizer configuration
(increases,decreases) rapidly as the distance d is increased. For a separation of only 2 cm
(only twice the diameter of the light pipe), the polarization state of the radiation is already

uselessly scrambled.



a b.
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Fig. 2-1: (a) Ideal transmission experiment through crossed polarizers. The arrows
represent light rays. The second polarizer reflects all rays. The reflected rays are perfectly
transmitted away from the detector by the first polarizer. No radiation reaches the detector.

(b) Light pipe transmission experiment through crossed wire grid polarizers. The -
distance between polarizers is d. If d is large enough, a typical ray reflects off the walls of
the light pipe between the two polarizers. The reflection changes the polarization state of
certain rays. Thus, even for crossed polarizers, some radiation will reach the detector.
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Fig. 2-2: Intensity of radiation reaching a pyroelectric detector vs. distance d between
crossed and parallel polarizers. The experimental configuration was like that in Fig. 2-1b.
The inner diameter of the circular polished brass light pipe was 1 cm. The wire-grid
polarizers were manufactured for the Richards group by Hughes Corporation. Even for
d=2 cm , the polarization was severely degraded.
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2.2. The Transmittance-Reflectance Apparatus

2.2.1. Optics

The polarization problem for a light-pipe transmittance experiment is easily solved by
minimizing the distance between the sample and polarizer. However, the same solution is
not viable in a reflectance experiment. If the polarizer is directly on top of the sample, then
the reflected radiation reaching the detector will have a large (>50%) background
component due to the reflectance off the polarizer itself.

A solution to the polarization problem for reflectance is shownﬂ in the diagram of the T-
R apparatus, Fig. 2-3. The polarizer is placed about 1 cm above the sample. A septum
prevents light reflected off the polarizer from reaching the detector. Between the polarizer
and the sample, the walls of the light pipe have been cut away. Light baffles in the space
between the bottom of the light pipe and the sample prevent stray reflections from the T-R
apparatus chamber from reaching the detector. The light baffles are made of three layers of
molded black Stycast epoxy #2850 FT (a good FIR absorber). The light reaching the
sample is >96% polarized in this apparatusl. The costs of the high degree of polarization
are threefold: a large amount of radiation is lost in the light baffles, the sample is
inhomogeneously illuminated, and light scattered to large angles by surface roughness is
lost in the light baffles rather than being collected by the light pipe.

2.2.2 Cryogenics

The T-R apparatus is built around an evacuated Air Products LT 3-110 continuous flow
Helium cryostat. Samples are placed on a three—poéition sample slide. Cold samples may
be moved in- and out- of the FIR beam by a shaft connected through a vacuum seal to the
outside world. To minimize the heat leak from room temperature, the shaft may be
disconnected from the sample slide once the slide is in the desired position. The sample
slide is thermally connected by a Copper braid directly to the coldfinger of the cryostat.

The sample temperature is measured by a calibrated diode placed directly on the sample
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slide2. Because of large thermal time constants, it is necessary to control temperature from

a second diode. The temperature-control diode is in a hole drilled through the coldfinger,
and adjacent to a heater. Temperature may be controlled by a standard proportional
temperature controller. Sample temperatures as low as 5K have been measured in the T-R
apparatus. Lower temperatures should be achievable by pumping on the Helium

transferred to the coldfinger.

2.3. Spectrometer and detectors

The source of radiation for FIR experiments in the Richards lab is a step-and-integrate
Michelson Fourier spectrometer3. The wavelength range covered in a given experiment is
determined by choice of an appropriate beam-splitter. Each beam splitter covers a roughly
a factor of four in frequency. The measurements reported here are between 4 cm-! and 350
el

The detector is a composite bolometer cooled? to about 1.5K by a pumped Helium
bath. The radiation load on the bolometer is in all cases dominated by room-temperature
black—bodj/ radiation. Cold low-pass filters are typically placed in front of the bolometer to
enhance bolometer sensitivity by limiting room-temperature radiation loading. For
minimum bolometer loading, a different low-pass filter is required for each beam-splitter.
In a previously built detector cryostat, six filters were arranged on a wheel immersed in the
Helium bath directly above the bolometer. Using this cryostat with judiciously chosen
filters in conjuction with the T-R apparatus allows maximum flexibility. Without warming
up either the sample or the detector, different frequency ranges may be covered by simply
changing the beam splitter in the Michelson interferometer and rotating in the appropriate
filter on the cold filter wheel. (The trick is to get the Michelson Fourier spectrometer, the
detector and the T-R apparatus all working at the same time). Table 2-1 lists the filters used

in my experiments.
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Reﬂac_ted Trangm,itted Radiation shisld
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\L Septum Polarizer

Hed cooled
holometer

Fig. 2-3: Schematic diagram of the transmittance-reflectance apparatus. With this
apparatus, polarized reflectance and transmittance of a sample may be measured as a
function of temperature from 5K to 300K.



Filter Cut-off frequency Beam splitter
Glass bead? 25 el 5,10 mil
Perkin-Elmer 1049 60 cnrl 2 mil
Perkin-Elmer 1048 100 el 1 mil

Z-cut quartz (wedged) 250 cm] 0.5 mil
Black polyethylene 400 eyl 0.25 mil

13

Table 2-1: Low-pass filters mounted in the cold filter wheel above_the bolometer,
approximate cut-off frequencies and appropriate beam splitters. All filters were backed

with black polyethylene to avoid any radiation leakage at frequencies >400 ek,

The bolometer that I used was optimized for relatively low backgrounds. In order to
avoid overloading the bolometer in high backgrounds, it was necessary to stop down the
beamn with cold apertures for the Z-cut quartz and black polyethylene filters. This explains

the relatively poor signal-to-noise ratio in spectra recorded above 250 cm-l,

t Gilass beads embedded in a clear polyethylene matrix. This filter was kindly supplied

by Prof. Andrew Lange.
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3. Far infrared spectroscopy of (TaSed)2I

3.1. Introduction

Over the past 15 years, far-infrared (FIR) spectroscopy has been an invaluable tool for
the study of quasi-one dimensional materials that undergo a Peierls transition to the charge
density wave (CDW) state 1.23:4. Based on the theory of Lee,Rice and Anderson(LRA)3,
one expects a large IR-active response due to the pinned mode of the CDW at frequencies
low compared to ordinary phonons and electronic excitations. Large oscillator strength has
been found in both the FIR 14 and microwave 6.7.8 frequency ranges in several CDW
systems. In both frequency ranges, part of this oscillator strength has been attributed to the
pinned mode of the CDW. Unfortunately, FIR and microwave measurements reported to
date have not provided a complete and consistent dielectric function in the millimeter and
submillimeter wave region, and it is not yet clear whether the FIR and microwave modes
are distinct. In this chapter, we present FIR data that unambiguously shows that, in the
CDW material (TaSeq)s], the microwave and FIR modes are distinct. Therefore, the
assignment of giant FIR modes observed in other CDW materials to the pinned mode must

be re-examined.

3.2. Experimental methods

We have measured the polarized reflectance of (TaSe4)2! for frequencies from 8§ to 350
cm-1 and temperatures from 10K to 290K. The (TaSe4)2l unit cell has tetragonal
symmetry, and hence there are two principal optical axes. The sample used for the
reflectance measurements was a mosaic of several single crystals carefully oriented along
both principal axes?. The crystals were grown in our laboratory and had large faces that
were typically 2mm by 5 mm. The sample was placed in a continuous transfer Helium
cryostat adapted in our laboratory for use with a Michelson Fourier spectrometer to
measure polarized reflectance. Radiation was detected using a low noise composite

bolometer operated at 1.5K. At each fixed sample temperature, the sample spectrum was
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divided by the spectrum of a polished brass surface. The details of the experimental

apparatus have been described in Chapter 2.

After all data had been measured, gold was evaporated onto (only) the crystal faces of
the mosaic. The reflectance was measured after each of several gold evaporations and
normalized to the brass surface. The reflectance after each of the last two evaporations was
identical, indicating that sufficient gold had been deposited. From 4 to 15 cm-1, the
reflectance of the gold-evaporated sample decreased with increasing frequency. Between 15
and 150 corl, the reflectance of the gold-evaporated sample was independent of frequency.
To properly normalize the temperature-dependent reflectance spectra of (TaSeq)slI for
frequencies below 15 cm-l, these spectra were divided by the spectrum of the gold-
evaporated sample. Above 15 cm-l, spectra were simply divided by the average value of
the frequency-independent portion (between 15 and 150 cm-1) of the reflectance of the

gold-evaporated sample.

3.3. Experimental Results

Fig. 3-1 presents reflectance curves for (TaSeq);! at various temperatures for radiation
polarized parallel to the c-axis. At room temperature the reflectance is high and fairly
featureless except for a slow decrease with increasing frequency from 0.9 at 30 cmlt00.7
at 300 cm-l. As the sample is cooled through the Peierls transition temperature Tp=265 K,
the reflectance between 30 and 90 cm-l begins‘ to increase, and the decrease in the
reflectance near 100 cm-! begins to sharpen. Thes~ changes signal the onset of an IR active
mode associated with the CDW. As the sample is cooled further, the decrease in
reflectance develops into an extremely sharp edge, with the reflectance at 110K dropping
from near unity at 92 cm-! to 0.2 at 96 cm-l. The reflectance changes little between 110K
and 10 K. Fig. 2 (solid line) shows the measured reflectance at 10K. The reflectance rises
from 0.9 at low frequencies to near unity at 40 cmr! and remains near unity until 94 cm-l,

with the exception of a small dip at 79 em-1. At frequencies beyond the reflectance edge,
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two sharp features are evident, at 143 and 190 cm-!. Between 200 cm-! and 350 cm-! the

reflectance slowly rises with no additional sharp features and then levels off at a value of
0.58+0.02, consistent with higher frequency measurements10.

Fig. 3-3 presents the reflectance of (TaSe4)2l at room temperature and at 10K for the
electric field polarized perpendicular to the c-axis. Whereas the parallel reflectance looks
metallic at room temperature (high reflectance, all phonons screened by free carriers), the
perpendicular spectrum looks more like that of a semiconductor (low reflectance, phonons
visible at room temperature). The perpendicular reflectance shares no common features
with the parallel reflectance described above. At room temperature, the reflectance
decreases from 0.44 at 8 cm! to 0.40 at 40 el There is a small bump centered at 47 cm-
1, and a larger one centered at 71 cm! . Above 80 cm! the reflectance drops to roughly
0.25. There is another bump at 118 cm'!l. Above 120 cm-l, the reflectance decreases
gradually to 0.2£0.02 at 300 cm-l. At 10K, the reflectance looks similar to the room
temperature reflectance. The reflectance at 8 e is lower at 10K ( 0.38£0.02 at 9 crrl)
than at room temperature (0.44 £ 0.02 at 9 cm-1). This is probably because the all of the
free carriers present at room temperature have been frozen out at low temperatures. The
bumps at 47, 71 and 118 cm! have all sharpened into features with the characteristic shape

of weakly damped phonons. Additional small features are now visible at 64 and 79 cm-L.
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3.4. Oscillator fits

In order to extract the complex dielectric function e=g1+i€) from the reflectance data,
we have fitted the perpendicular and parallel reflectances to standard oscillator models. The
dielectric function is represented as sum a of Lorentz oscillators and a background dielectric

constant Ece-

f 2
g1(f) =€ + E : 22 ) (3-1)
(- ( an4'fn2
£ 2
ea(f) = - ZT‘; = (3-2)
(1 (-f—;) ) an o)

where the TO frequency, static polarizability, and damping time of the nth mode are

respectively frn, Sp, and t,. The oscillator saength Q42 = (2rnfry)2S is related to the
p p

fundamental parameters of a mode by the formula

Amne*2
m*

Q2= (3-3)

where n is the density of oscillators, e* is the charge on the mode and m* is the mode
mass.

The pattern of a rise in the parallel-polarized reflectance from 0.9 at 20 cme! to near
unity above 40 cm! followed by a reflectance edge suggests the presence of a mode with a
giant oscillator strength!! in the region between 25 and 50 cm-l. The other peaks in the
spectrum (for example at 143 and 190 cm-!) indicate modes with much smaller oscillator

strength. The dashed line in Fig. 3-2 shows the fit to the reflectance computed from a
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model dielectric function. This dielectric function is dominated by a mode with f7=38 cm-

1, frt=13 and $=500. Changes in the parameters of the 38 cm-! mode of only 5% visibly
degrade the quality of the fit. Three other modes with fr = 7'9, 149 and 194 cm-1 have
been added to model smaller features. Table 3-1 lists all the parameters used in the
oscillator fit. Our fit is not at all sensitive to the existence of a mode with S=104 at 35
GHz, as observed using microwave techniques’. This proves that our data are consistent
with lower frequency measurements.

Fig. 3-4 shows €] and €2 calculated from Egs. 1 and 2 using the fitted parameters.
Peaks in €7 (and hence the conductivity) occur at each of the mode frequencies, the largest
being at 38 cmrl. At frequencies much less than the 38 cm-! resonance peak, €1 of Fig. 3-4
is approximately equal to 600, which is consistent with the hi gh reflectance at low FIR
frequencies. Between 38 and 100 cm-l, the dielectric function is negative, giving rise to
the near unit reflectance over this frequency range. The small dip at 79 el results from a
weak mode at that frequency. At 100 cmr-l, the dielectric function crosses the real axis,
leading to the sharp reflectance edge observed in Fig. 3.2

The dashed line in the lower trace of Fig. 3-3 is an oscillator fit to the perpendicular
reflectance. The parameters of the fit are listed in Table 3-1. The most prominent feature in
the perpendicular spectrum is fit by an oscillator with S=3.8 and fr =71 cm-1. All other
features have S<1. The total FIR oscillator strength in the perpendicular spectrum is at low
temperatures at least 30 times smaller than the FIR oscillator strength in the parallel
spectrum. The low oscillator strength perpendicular to the c-axis is consistent with the

highly one-dimensional band structure of this material.
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Table 3-1: Parameters used in the oscillator fits

TO frequency f (cm-!) § Static polarizability S Dimensionless lifetime f171
a) E parallel toc¢
38 500 13
79 1.5 o 25
149 2.5 i | 50
194 4 : 50
b) E perpendicularto ¢ !
47 5 14
64 I 19
71 1 3.8 ! 21
79 i] 1 | 24
118 il 3 35

Table 3-1: Parameters of the oscillator fits to the parallel and perpendicular refiectance.
For the parallel and perpendicular fits, € is respectively 75 and 9.7. For comparison, the
optic mode in Csl has fr = 65 cm-! and S=4.
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Fig. 3-4: Real and imaginary parts of the dielectric function €1 and €; for (TaSe4)ol at
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3.5, Analysis: a new picture of the CDW excitation spectrum

Our measurement of the parallel polarized FIR spectrum of (TaSeq)l completes the
excitation spectrum for this material, and for the first time we have a complete and
consistent dielectric response function from dc to the Peierls gap of a sliding CDW
compound. The contributions to the dielectric function in the CDW state are as follows. A
broad peak with a temperature dependent frequency!? appears below 1MHz and has been
associated with dielectric relaxation of the CDW. A large, underdamped resonance’ at 35’
GHz=1.2 cm 1_ has been convincingly attributed to the pinned mode of the CDW. At 38
cm-1 we have observed the giant FIR resonance described above. The 38-cm-! resonance
has 80 times the oscillator strength of the 1.2-cm-! resonance. From 78 to 194 cml we
observe a number of weaker resonances. Finally, the Peierls gap has been observed?.13
near 2000 cm-l. Table 1 is a summary of the principal features of the dielectric functions of
(TaSeq)7], Kg3MoO3, and NbSes.

A giant FIR resonance!3 at 15 cml, similar to that in (TaSe4)2l, has been reported in
Kg.3Mo0O3. The FIR resonance was originally assigned to the pinned mode!. However,
the presence of a distinct mode near 3 cm-! was later deduced® by combining 40 K
microwave8 and 2K FIR data3. The assignment of the 3 cm™! mode to the pinned mode? is
consistent with assignments for the microwave modes in other COW materials6.7.

In NbSes, the pinned mode appears at microwave frequencies® as an extremely
overdamped mode with width 60 GHz. A large temperature dependent reflectance edge?
similar to that in Fig. 1 has also been observed at 140 cm-! and has been interpreted as
arising from a combination of free carriers and the pinned mode. However, the parameters
for the pinned mode extracted under this interpretation are inconsistent with the microwave
data. A possibility that should be investigated is that the 140 cm-! edge arises from a

combination of free carriers and a giant FIR mode.
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Table 3-2

Radio Frequency: 2 Microwave: b Far Infrared: ¢ Near Infrared:4

Dielectric relaxation Pinned phason Kohn Anomaly mode? Peierls gap

(MHz) (GHz) (cm 1) | (e D)
(TaSes)l | 0.2 35 38 £ 2000
Kp3MoO3| 0.7 84 15 ] 1200
NbSe; | 19 43 | <1407 | 560

Table 3-2: Dielectric response of CDWs for frequencies up to the Peierls gap.
a Ref. 11

b (TaSeq)7l: Ref. 7; NbSe3: Ref. 6; Kp3MoO3: Ref. 3

¢ Kp3MoOs: Refs. 1 and 3; NbSes: Ref. 2.

d (TaSes)sl: Ref. 10; Kp3MoO3: Ref. 1; NbSes: Tunneling measurement of A.
Fournel, J. P. Sorbier, M. Konczykowski, and P. Monceau, Phys. Rev. Lett. 57, 2199

(1986). Ref. 2 reports a value of 190 cm-l.
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A giant Kohn anomaly drives the Peierls transition in CDOW materials14. In the simplest
picture, an acoustic phonon with wavevector q=2kg softens as the Peierls transition
temperature is approached from above. The phonon frequency goes to z€ro at the transition
temperature, and the static CDW distortion of the electrons and Jattice sets in. In the serninal
work on the excitation spectrum of the CDW state, Lee, Rice and Anderson’ predicted two
branches of excitations for a CDW: an acoustic or phason branch consisting of excitations
of the phase of the CDW, and an optical or amplitudon branch consisting of excitations of
the CDW amplitude. In the theory of LRA, the zero-wavevector phason is totally
antisymmetric and hence only IR-active, while the zero-wavevector amplitudon is totélly
symmetric and hence only Raman-active. The presence of two IR-active modes of the
CDW with large oscillator strength in (TaSes)>1 requires a modification of this standard
picture. We discuss two poSsibilities.

A second IR active mode that is generic to all CDW systems is the optical phason, also
called by Walker!5 the first harmonic phason. The optical phason may be simply
understood if one draws a parallel between the modulated electronic density in a CDW and
the more familiar case of alternating positive and negative ions in an ionic erystal like NaCl.
The peaks and troughs in the modulated electronic density are mapped onto the Na and Cl
ions. In this analogy, the q=0 acoustic phason corresponds to translations of the entire
NaCl crystal, the amplitudon would correspond to a mode in which charge is transferred
between Na and Cl ions, and the optical phason would correspond to the familiar IR active
optic mode of NaCl. In the same way one would calculate the frequency of the zone center
optic phonon mode in a 1-d diatomic crystal with nearest neighbor interactions, one ¢an
estimate the frequency of the optical phason from the slope of the dispersion relation and
the CDW wavevector 2kg . The slope of the acoustic phason branch is given by LRA as
vph=V (Mp/mF)VE, Where mp is the band mass, mp; the Frohlich mass, and vg the Fermi

velocity. We assume mp=iree electron mass, m*/mc=104 from microwave measurements’,
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vp=hkg/m, and 2kg =2r/ 14A from x-ray measurements 16, The calculated frequency of the

optical phason is then (2/m)(2kpvpp/21)=39 cm-l, remarkably close to the 38 cm-! resonant
frequency derived from our measurements.

Unfortunately, the optical phason is not expected to have a very large oscillator
strength. The amplitude of the charge modulation at low temperatures in (TaSeq)ol is about
5%. Returning to the NaCl analogy, the optical phason corresponds to a lattice with each
ion containing 5% of the charge in the unit cell. We find that, in order for the optical
phason explanation to be correct, the effective mass of the 38 cm-! model7 would have to
be an unreasonably small m*=0.5m,. Since the 38 cmr'! mode is a coupled electron-lattice
mode, its effective mass should be bétween the electronic and ionic masses.

Sugai et. 51.13 have suggested that the simplest picture of the Peierls transition is not
valid in (TaSes)pl. Fig. 3-5 (from Ref. 18) is a schematic diagram of the electronic and TA
phonon dispersion relations for (TaSeq)sl. The conduction band in (TaSé.:;)gI is nearly
filled, so kg is near the edge of the first Brillouin zone. The giant Kohn anomaly at 2kgis
in the second Brillouin zone. In the extended zone scheme, it is an optic mode at 2kg
which begins to soften well above the transition temperature Tp. In the reduced zone
scheme, this optic mode (which I will call the Kohn anomaly mode) has wave-vector 2n/a-
2kp, where a is the lattice constant of (TaSe4)z1. As the Kohn anomaly mode softens, its
frequency must approach the frequency of the acoustic mode at 2m/a-2kp. When the
acoustic and optic modes at 21t/a-2kp are sufficiently close in frequency, they hybridize
and repel one another. The mode that is finally driven to zero frequency to form the static
CDW is not the Kohn anomaly mode, but a hybrid mode mostly derived from the acoustic
mode at 27/a-2kp. The optical phason is 2kg away from point a, at the points labeled "op”
in the reduced and extended zone drawings.

In the Sugai et. al. picture, unlike the standard LRA picture, the Kohn anomaly mode i3
not the lowest lying IR-active mode. The Sugai et. al. picture is supported by their Raman

data. They have observed a very strong, temperature-dependent Raman mode with
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Fig. 3-5: Schematic dispersion relation of the conduction band (a) and the TA phonon
branch (b). A fourfold periodicity in the Ta-Ta distance above T = Tp causes the edge of
the Brillouin zone to be at 1/4d above T=Tp, where d is the mean Ta-Ta distance. The
Fermi wave-vector is nearly at the edge of the Brillouin zone. In the CDW state,
antisymmetric IR-active CDW phase modes and Raman-active CDW amplitude modes
occur at points a,b,c and d at wavevector g=r/2d. From Ref. 18.
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frequency 87 cml at T=25K. They argue that this mode corresponds to the symmetric TO

amplitude mode derived from the Kohn anomaly mode (mode b in Fig. 3-5). Two weaker
temperature-dependent Raman peaks, with frequency 153 and 197 cm! at T=25K, are
assigned to other symmetric TO amplitude modes at g=2n/a-2kg in the reduced zone
scheme (modes ¢ and d in Fig. 3-5). Associated with each symmetric amplitude mode,
there should be an antisymmetric phase mode at lower frequency1®. In the picture of Sugai
et. al., the modes we observe at 38, 149 and 194 cm-! are naturally assigned to the
antisymmetric phase modes associated with points b, ¢ and d in Fig. 3-5. The 35-GHz
microwave mode is assigned to the antisymmetric phase mode associated with point a in
Fig. 3-5. No Raman-active mode has been seen at 38 cm-l, indicating that this is a totally
antisymmetric mode. We note that a Raman-active mode associated with point a in Fig. 3-5
is expected in the Sugai et. al. picture. However, this frequency is too low to be observed
in conventional Raman scattering experiments.

The Kohn anomaly mode is expected to have a large oscillator strength. It is the
phonon mode most strongly coupled to the electrons in (TaSeq)2l. If the Brillouin zone
were twice as large, the Kohn anomaly mode would soften to zero frequency at the Peierls
transition temperature Tp and give birth to the LRA amplitudon and acoustic phason in the
CDW state. LRA calculated the oscillator s"trength of the acoustic phason using Eq. 3-3
with e*=e, the full electronic charge. The effective mass of the 38 cm! mode derived from
Eq. 3-3 with the full electronic charge is m*=200m, a plausible value which is between the
electronic and ionic masses.

The picture of Sugai et. al. suggests that all CDW materials with 2kg in the second
Brillouin zone should have a linear response spectrum similar to that of (TaSeq)2I. The
blue bronze K 3MoO3 has 2kg in the second Brillouin zone. A giant FIR mode at a higher
frequency than the pinned mode has been observed in Kg.3MoQO3. NbSe3 has 2kg in the
first Brillouin zone, but the presence of a giant FIR mode is unclear because of the large

concentration of free carriers at low temperatures. TaS3 has 2k in the first Brillouin zone
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and is an insulator at low temperatures. TaS3 should not have a giant FIR mode in the

picture of Sugai et. al., but it should have an optical phason. A measurement of the FIR
linear response spectrum of TaS3 is thus important to an understanding of the linear
response of CDW conductors20,

By completing the excitation spectrum of (TaSesq)2l, we have demonstrated
conclusively the presence of an IR-active mode of the CDW with large oscillator strength
and with frequency between the pinned mode and the Peierls gap. Combined with Raman
data and evidence of similar modes in other CDW systems, our results require a significant
modification of the standard LRA picture of the CDW excitation spectrum. Giant FIR
modes previously observed in other CDW conductors have been assigned to the pinned
mode. The assumption was that the pinned mode is the only candidate for a giant FIR
mode in a CDW conductor. These assignments, especially in materials which have 2k in

the second Brillouin zone (for example, KCP)21 should be re-examined.
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4. Far infrared optical properties of polycrystalline samples of the high-

T. superconductors Laj gsSrg.15CuO4 and Laj g5Cag.15Cu0y.

4.1. Introduction

A vigorous research effort into the electrodynamics of high-Tc superconductors has
been fueled by the great scientific and technological importance of this subject. The
existence and magnitude of the superconducting energy gap are crucial scientific issues that
have traditionally been illuminated by far infrared (FIR) spectroscopy. The possibility of
devices that operate with low resistive loss in the 100-1000 GHz frequency range at liquid
nitrogen temperature is of technological importance. In this chapter we use experimental
and theoretical results on the temperature dependence of the FIR reflectance of
polycrystalline Laj g5(Sr,Ca)g.1 sCuQy4 to address the following questions. First, can one
extract an energy gap from the FIR reflectance of high-Tc superconductors? Second, how
well do the temperature dependent electrodynamics of the BCS theory fit high-Tc
superconductors? Third, do the ac losses for frequencies much less than the enelrgy gap
predicted by BCS scale with temperature as predicted by BCS?

Although the mechanism for superconductivity in high-Tc superconductors is not yet
clear, experiments héve provided important guidelines. Measurements on Josephson
junctions! indicate that current is carried by pairs of electrons. However, the absence of an
observable isotope shift2 in T¢ in YBapCu307 and the small size of the oxygen isotope
shift3 in Laj 85Srg.15CuO4 indicates that phonons alone probably do not mediate the
pairing. It has been suggested that a BCS-like theory in which excitons or other relatively
high energy excitations mediate electron pairing may apply®. The electrodynamics
predicted by this class of theories should be close to that of BCS theory. _In particular, a
mean field treatment of these theories should predict an energy gap with a temperature
dependence and magnitude identical to that predicted by BCS. The magnitudes of the

energy gap extracted by tunneling ford Laj 85Srg.15CuQ4 and® Y1BapCu3O7 have been
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4.5 t0 9 and 3.7 to 5.6 respectively, consistent with a strong coupling pairing theory. In

contrast, Anderson? has suggested that there may be no observable energy gap in high-Te
superconductors if they are described by a resonating valence bond model.

We begin with a review of relevant and sometimes conflicting interpretations of the FIR
reflectance of polycrystalline Laj g5Srg,15CuQ4. Many groups8-11 have observed a
reflectance edge near 50 cm'! in the superconducting state of polycrystalline
Lay gs5Srg.15Cu0O4. This edge was first assigned to the onset of absorption due to
excitations across a superconducting energy gap. The magnitude of the energy gap
extracted by the first such assignments8-10 was from 1.6 to 2.7 kgT¢, considerably
smaller!11.12 than the BCS predictioﬁ of 3.5kpT. and the tunneling measurements?.
Recently, an entirely different mechanism for the 50 cm! edge in polycrystalline
Lay 855rp,15Cu0O4 has been proposed by Bonn et. al.13 They have assigned this edge to a
zero-crossing of the real part of the dielectric function g1, caused by a strong resonance at
240 cm-! and a weaker resonance at 500 cm-l. Under this interpretation, neither the
existence nor the value of the energy gap are obvious from far infrared reflectance data.

A priori, one might think that the temperature dependence of the 50 cm! reflectance
edge could be used to distinguish between the hypothesis of an energy gap and the
hypothesis of a plasmon. We report here measurement: of the FIR reflectance of
polycrystalline samples of Laj g5Srg.15Cu04 and Lai 85Cag.15Cu04. We have probed the
temperature dependence of the FIR reflectance of Laj 85510.1 5CuQ4. Attemperatures well-
below Te, we find a reflectance edge whose frequency scales with T¢ in different materials.
The frequency of this edge in a given material scales with temperature as the BCS gap. We
also describe a model to determine the temperature dependence of the reflectance edge
predicted by the plasmon hypothesis. The superconducting state is modeled using the
temperature dependent theory of Mattis and Bardeen, which should hold for any mean field

pairing theory of superconductivity, independent of the nature of the coupling. We find



37
that the plasmon and the energy gap hypotheses give nearly identical predictions for the

temperature dependence of the frequency of the reflectance edge. The predictions for the
temperature dependence for both theories agree with experimental results. We conclude
that a mean field, BCS-like theory of the electrodynamics of high-Tc superconductors is
consistent with the FIR data. However, it seems premature to deduce an energy gap from
FIR data.

The most technologically significant result of the FIR work described in this chapter is
that our experimentally observed temperature dependence of the absorption in the
superconducting state of polycrystalline Laj 855r0.15CuQ4 for frequencies well below the
reflectance edge seems well described by the temperature dependent Mattis-Bardeen theory,
or equivalently by a two-fluid model. If this result holds for Y1BasCuz0y7, it imposes
constraints on the operating temperature of fast superconducting devices made from this

material.

4.2. Experiment

The samples used for the measurements reported here are 1 cm diameter ceramic pellets
of Laj g5Srp.15CuQ4 and Laj g5Cap.15Cu04 kindly provided by Prof. A. Stacy. The
pellets were not polished before the optical experiments. Fig. 4-1 shows the magnetic
susceptibility %(T) for the St doped sample. The susceptibility drops sharply as the
temperature is decreased below Tgo = 36K, signaling the onset of the superconducting
state. For the Ca doped sample, Teo = 17K. At low temperatures the Sr doped sample
showed a large volume exclusion of a magnetic field, indicating that a large fraction of the
sample consisted of a superconducting phase. The Ca doped sample excluded only 1/3 as
much of the magnetic field as the St doped sample. The details of the sample preparation
have been described elsewhere®. The superconducting phase transition was also observed
directly from the FIR measurements in the Sr doped sample. The reflectance near 15 ¢!

began to increase sharply as a function of decreasing temperature at 37Kx1K, (see Fig. 4-
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6). This temperature is in agreement with the value of Tco determined from %(T), and thus

we scale all temperature and material dependent properties to Teo.
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Fig. 4-1: Magnetic susceptibility % vs. temperature for the Sr doped sample. The

onset temperature Tco=36K. This data was provided by Prof. A. Stacy.
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During the experiment, chopped radiation with a 10° angle of incidence was detected

after a single reflection off the sample surface by a sensitive composite bolometer. The
radiation source for the FIR exbcriments was a Michelson Fourier spectrometer. The
sample was mounted in the transmittance-reflectance apparatus {see Chapter 2). The
transmittance-reflectance apparatus was configured a.s in Fig. 2-3, except that no polarizer
was in place. Light scattered by surface roughness was lost in the light baffles, not
collected by the light pipe. The FIR system is described in detail in Chapter two.

At each sample temperature for which a reflectance spectrum was recorded, the data
were normalized to a polished brass mirror. After all measurements on Laj g551p.15CuQy4
had been performed, we attempted to correct our results for the effects of surface scattering
by evaporating metal onto the sample surface and using the metallized sample as a
reference. The reflectance of the metallized sample was independent of frequency for
frequencies less than 60 cml, indicating that our data in this frenuency range is not much
affected by the roughness of the sample surface. Above 60 cm-l, however, the reflectance
of the metallized sample decreased continuously with increasing frequency, indicating that
our absolute reflectance data in this frequency range is significantly affected by surface
scattering. Small cracks occurred in the sample surface just before metallization which
prevented an accurate final normalization. However, the conclusions of this chapter are not
affected by surface scattering: we are investigating changes in the reflectance as a function
of temperature, and thus are relatively insensitive to temperature independent losses due to
sample geometry.

Fig. 4-2a shows the ratio Ry¢/Ry, of the superconducting to the normal state reflectance
for Laj g5Sro.15Cu04. Here, Rs and Ry are the reflectances measured at 6K and 52K,
respectively well below and well above Teo. Ry/Ry is greater than one for frequencies less
than 60 cm-1(=2.4kpTco(Sr)). As the frequency increases past 60 crrl, Rg/Ry drops

below unity, reaches a minimum at 70 cm-l, and then approaches unity from below. This
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Fig. 4-2: The ratio Rg/Ry of the superconducting to normal state reflectance as a
function of frequency for polycrystalline Laj g5Srg.15CuO4 and Lay g5Caq.15Cu04. A
solid line has been drawn to mark R¢/Rp=1. The scale of Fig. 4-2b is expanded relative to
that of Fig. 4-2a by the ratio of the superconducting onset temperatures
TeolST/TeolCa)=36K/17K, showing that the frequency of the characteristic features of
Ry/Rp scales with Teo. o

(a) LajgsSrp.15CuQ4: Ry and Ry are reflectances measured at SK and 52K. The solid
and dotted lines represent data from different experimental runs.

(b) Laj g5Cap.15CuO4: Rg and Ry are reflectances measured at 9K and 24K,
respectively.



. 42
behavior is consistent with that reported by many groups?-11:13. Fig. 4-2b shows the first

published reflectance data for Laj.g5Cag,15CuQO4. We have expanded the frequency scale
of Fig. 4-2b relative to 4-2a by the ratio of the transition temperatures of the two materials
Teo(SE)/Teo(Ca)=36/17. The behavior of Rg/Ry is similar to that for the Sr doped material,
with characteristic frequencies scaled by Tco. Below 30 cm-l, Rg/Ry is greater than one.
Between 30 cm-1(=2.4kpTco(Ca)) and 40 cm1 (=3.2kpTeo(Ca)), Ry/Ry drops below unity.
The deviations of R¢Ry, from unity are smaller for the Ca than for the Sr doped sample.
These differences may arise from the fact that, based on magnetic measurements, a smaller
fraction of the Ca dopeﬂ sample was of a superconducting phase.

Fig. 4-3 shows a series of normalized reflectance spectra of 1.ay 85Srg.15CuQy for
frequencies 10 to 90 cm-1 at selected temperatures above and below Teo=36K. In the low-
temperature regimes well below Teo, the reflectance follows a consistent behavior. At low
frequencies, R is near unity and decreases only slightly with increasing frequency. At
higher frequencies, R drops sharply at a characteristic frequency fp and begins to flatten out
once again at an even higher characteristic frequency f1. At 6K, fo and f1 are clearly
identified at 50 and 66 cml, respectively. Both fp and f} decrease with increasing
temperature above 6K. Above 36K, fy and f; are no longer clearly identifiable. At 52K,
the reflectance R decreases smoothly with increasing frequency. Above 50K, the
reflectance curve was found to be rather insensitive to temperature.

If one assumes (as is done in Refs. 8-12) that the real part of the dielectric function is
negative throughout the FIR, then a géneral interpretation of the spectra in Figs. 4-1 and 2
is straightforward. The reflectance feature windowed by fo and fy can be identified as the
onset of photon absorption at the superconducting energy gap 24. A similar interpretation
is possible for the Laj g5Cap.15CuO4 data shown in Fig. 4-2b. The fact that the frequency
of these features in the two materials at temperatures much less than Teo scales with T¢p 18

consistent with the energy gap hypothesis. As we shall see below, the
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temperaturedependence of the reflectance edge is also consistent with the hypothesis of a

BCS-like energy gap.
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Fig. 4-3: Reflectance of polycrystalline Laj 85Srg.15CuQO4 at selected temperatures
above and below T¢o. The temperature dependent reflectance edge has been interpreted as

an energy gap? and as a plasma edgeP. A solid line marks R=1.
a Refs. 8-12 bRef. 13
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4.3. Model for the Reﬂectan’ce Edge

In the remainder of this chapter we construct a model to investigate the temperature
dependence of the reflectance predicted by the plasmon hypothesis, and we compare its
predictions to those of the energy gap hypothesis. We note that the temperature
dependence of the plasmon hypothesis has not been investigated previously. Finally, we
investigate the scaling of the reflectance of polycrystalline Laj 855r0.15Cu04 near 16 cm!
(500 GHz) with temperature for both the energy gap and plasmon hypotheses.

The interpretation of the normal state reflectance of polycrystalline samples of
Laj 858rg.15CuQy is complicated by the fact that the crystal structure of this material is
highly anisotropic. The conduction electrons are thought to be mostly confined to sheets
parallel to the a-b plane, with a relatively low conductivity perpendicular to the a-b plane.
Two approaches have been taken to account for the effect of anisotropy on FIR spectra of
polycrystalline samples, and these approaches yield different assignments for the observed
features in the reflectance spectra. Thomas et. al.14 have argued that since the size of
typical crystallites is much smaller than a wavelength at FIR frequencies, a long wavelength
effective medium theory should apply. In such a theory, the reflectance is calculated from a
dielectric function which is an average over all crystallite orientations. Under this
interpretation, the 240 cm! resonance first reported by Bonn et. al. must have an extremely
large oscillator strength and must have components both in the a-b plane and perpendicular
to the a-b planelS. Furthermore, if one interprets the 50 cm! edge in the superconducting
state as a plasma edge, this feature must also have components both in and out of the a-b
plane. Schlesinger et. al.16 have analyzed the spectra of their polycrystalline samples by
using a short wavelength approximation and averaging reflectivities over different
crystallite orientations, rather than averaging the dielectric function. This approach is

combined with the assumption that the normal state reflectance of Laj g55r0.1 5CuQ4 should
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closely resemble that of LapNiQO4, a material of the same crystal structure on which FIR

measurements of a single crystal have been madel7. In LapNiOg, there is a moderate
oscillator strength resonanc-e near 250 cm-! which has components only perpendicular to
the a-b plane. Schlesinger et. al. assign the 240 cm! resonance to vibrations perpendicular
to the a-b plane, and assign the temperature dependent reflectance edge near 50 cmltoa
plasma oscillation also perpendicular to the a-b plane. The first infrared data on single
crystals and oriented films of the related Y-Ba-Cu-O compound show that the phonon
peaks in that case are confined to the c-axis?!.

The analyses of Thomas et. al. and Schlesinger et. al. both assume a low frequency
plasmon. The differences are that the two analyses give different assignments to the
direction of the plasma oscillaticn, and different oscillator strengths for the 240 cm-! mode
are needed to fit the normal state spectra. In our modeling, since we are concerned with
wavelengths larger than 50 microns (much greater than the size of the <10um crystallites)
we adopt a long wavelength approximation in which the reflectance is given by the standard
formula R=I(€1/2-1)/(e/2+1)12 where R is the reflectance and e= € +i & is an average
dielectric function. In order to convincingly model the reflectance in the normal state, it
is necessary to consider the reflectance over a broad frequency range. We have chosen the
best available data in each frequency range. We use our data in the 10 to 90 cm! range,
those of Bonn et. al.13 (which are close to our reported data from 50 to 90 cm-1) from 90 to
1000 em-}, and those of Orenstein et. al.18 from 1000 to 24000 cm™!. The most important
conclusions of our modeling will prove to be insensitive to the details of the data above
1000 cm-l.

In the normal state, we model the reflectance for frequencies less than 200 cm! with a
Drude term for the free carriers, a Lorentz oscillator for the 240 cm-! mode deduced by
Bonn et. al., and a background dielectric constant for the oscillator strength at much higher

frequencies than the FIR. Thus,
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where £1 and €3 are the real and imaginary parts of the dielectric function, @ is the incident
photon frequency, Wy and T are the plasma frequency and relaxation time of the free carriers
@T, ®1, and t1 are the plasma frequency, resonant frequency and relaxation time of the
Lorentz oscillator, and €., is the background dielectric constant. .

We determine the parameters of our normal state fit as follows. Orenstein et. al. fitted
their high frequency reflectance data to a model in which 94% of the oscillator strength of
the electrons in the conduction band is associated with a (non-superconducting) gap at 3600
cm-! which contributes a constant £1 =20 in the FIR. The remaining 6% is associated with
a term of the Drude form. We have parameterized the FIR resonances at 240 cm-! and 500
cm-! deduced by Bonn et. al. by Lorentz oscillators and have added them to the Orenstein
et. al. model. We adjusted the oscillator strength of the Drude term so that the sum of the
osciliator strengths of the Drude term and the two resonances adds up to 6% of the total
oscillator strength in the conduction band proposed by Orenstein et. al. In the 0-100 cm-!
range the resonance at 500 cm-! can be modeled by a constant contribution to £ of 3.

The parameters of our model are as follows: @p=3350 cml, wr=1860 cml, ®1=239
cm-l, 1/11=33 cm-l, and €. =23. the relaxation time 7 of the free carriers is adjusted to fit
our normal state data. We find 1/2=2000 cm! gives an adequate fit to our déta and those of
Bonn et. al.13 in the frequency range 10-100 cm-i. Given the inhomogeneous nature of

these samples, a detailed fit to the reflectance is not warranted. We note that our model



predicts a positive €1 at zero frequency in the normal state: the ability of heavily dampjg
free carriers to screen electromagnetic radiation is overwhelmed by the polarizability of the
FIR resonances.

Once we fit the normal state reflectance, we calculate the reflectance at selected
temperatures in the superconducting state with no additional adjustable parameters. To
model the reflectance in the superconducting state, we assume an energy gap of magnitude
and temperature dependence predicted by weak coupling BCS. The Drude terms in Egs.
4.1 and 4.2 are replaced with terms calculated from the temperature dependent Mattis-
Bardeen20 expressions for the frequency dependent conductivity in the superconducting
state. We have integrated numerically these singular integrals using Gaussian and
Chebyshev integration routines?! (See Appendix A). The Mattis-Bardeen expressions are
valid in the limits in which the penetration depth of the electromagnetic radiation is much
larger than or much less than the coherence length. The former limit applies in the
superconducting oxides.

The temperature dependent reflectance from our plasmon model is shown in Fig. 4-4.
Many qualitative features of the data are apparent. Below T=T, the calculated reflectance
shows systematic trends similar to the data of Fig. 4-3. For low frequencies, the
reflectance is near unity. At a frequency fy the reflectance begins to drop and at f7 it begins
to flatten out. For T< 34K there is a minimum. The reflectance then approaches the normal
state reflectance from below. The steepness of the reflectance edge increases with
decreasing temperature. At T=6K the reflectance edge at 80 cm-! is extremely sharp. The
experimentally observed reflectance edge is broader, which is to be expected if sample
inhomogeneity leads to damping mechanisms not included in the model. The assumed
energy gap for T=6K 1s &8 cm! and is marked by an arrow in Fig. 4-4. There is no

obvious feature in the calculated reflectance at this frequency. This shows that if the
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Fig. 4-4: Reflectance calculated at selected temperatures from a model which contains
free carriers and a strong phonon, and treats the reflectance edge as a plasma edge. The
model qualitatively reproduces the experimental data of Fig. 4-3. The position of the
energy gap 2A(T=0) used in this calculation is marked with an arrow. There is no obvious
feature in the calculated reflectance at this frequency.
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plasmon hypothesis is correct, it is impossible to extract-a value for the energy gap by

simple inspection of the reflectance.

The derivatives of the reflectance curves in Figs. 4-3 and 4-4 show clear minima at a
frequency fp between fp and f) and thus enable an objective comparison of the temperature
dependence of the reflectance edge in the model and the experiment. We have plotted the
temperature dependence of f, for both experiment and model in Fig. 4-5. We have also
plotted the temperature dependence of the BCS gap. All quantities are normalized to 1 for
temperatures much less than Teo. We see that the temperature dependence of the reflectance
edge in both the model and the experiment closely fits the temperature dependence of the
BCS gap. Thus the predicted temperature dcpendénces of the reflectance edge in the
plasmon hypothesis and the energy gap hypothesis are virtually indistinguishable. The
only difference between the temperature dependence predictions of the two hypotheses is
that fp, in the plasmon hypothesis lies at slightly higher frequencies than the BCS curve for
temperatures Teo/3<T<T¢o. This arises in the model from the frequency dependence of the
contribution to £1 of the 240 cm! resonance.

In the model the reflectance edge is caused by a zero-crossing of €;. We hereafter refer
to the frequency of the reflectance edge as the plasma frequency. A second higher plasma
frequency is of course to be expected at near IR or visible wavelengths. The temperature
dependence of the reflectance may be qualitatively understood as foillows. At T=0, the
maximum number of carriers are condensed into the dissipationless superconducting state
and the system can screen electromagnetic radiation effectively for frequencies as high as
the low temperature plasma frequency 30 cmrl. As the temperature is increased toward T,
the fraction of carriers.in the superconducting state decreases with the temperature
dependence of the order parameter, decreasing the ability of the free carriers to screen and

lowering the plasma frequency untl it reaches zero for T>Tc. The broadening of the
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reflectance edge with increasing temperature arises from finite dissipation for w<2A(T) due

to quasi particles excited across the superconducting gap.

The plasmon hypothesis as implemented in our model can also account for the scaling
of the frequency of the reflectance edge with Tco. We have observed a clear bump in the
reflectance of Laj g5Cag.15CuO4 near 250 e, indicating at least one strong phonon
similar to that observed in the Sr doped material. If we assume that the free carrier density
and relaxation times in Laj g5Cag.15CuQ4 and Laj 855rg.15CuQ4 are comparable, and that
the energy gap scales with the transition temperature, then the oscillator strength condensed
into the superconducting state should also scale with transition temperature and so should
the frequency of the reflectance edge.

Although the plasma frequency in our model depends critically on the parameters of the
normal state fit, the scaling of the plasma frequency with temperature does not. Given the
uncertainties inherent in modeling the normal state reflectance of polycrystalline
Laj g5Srg.15Cu04, we do not attempt to make more than a rough comparison between the
plasma frequencies in the model and in the experiment, and we are pleased that they agree
to within 30%. Agreement could clearly be improved by adjusting the model parameters or
the magnitude of the energy gap. However, our conclusions about the scaling of the
plasma frequency with temperature and with T¢ are robust. These conclusions depend only
on the normal state being characterized by a low free carrier density and a resonance that
has large enough oscillator strength to yield a pesitive €1 for low FIR frequencies. Thus
our main results should be valid for both the long wavelength effective medium
characterization of the normal state which we have adopted, and for the short wavelength

approximation adopted by Schlesinger et. al.
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4.4, Low Frequency Reflectance

Finally, we investigate the scaling of the reflectance of polycrystalline
Laj 85510.15Cu04 with temperature at sub-mm wavelengths. We give the reflectance in a
manner that is independent of the details of the fit to the normal state and independent of
small (1-2%) temperature independent losses due to surface scattering or to a normal
surface layer. In Fig. 4-6, we have pidtted (R(T)-Rpn)/(Rs-Rp) averaged over a 2 cm! band
about 16 cm-! for our experiment (squares) and our model of the plasmon hypothesis (solid
line). Ry and Rg are here the reflectance at T=37K and at T=24K. The agreement between
model and experiment is quite good. A model dielectric function which does not include
the 240 cm! phonon (consistent with the energy gap hypothesis) gives results identical to
those of the plasmon hypothesis. This indicates that the simple Mattis-Bardeen model of
the superconducting state, which is equivalent a two fluid model with current carried by
normal and superconducting carriers, is adequate to describe the temperature dependence of
the reflectance at sub-mm wavelengths. This temperature dependence cannot be used to
distinguish between the plasmon and the energy gap hypotheses.

1n order to assess the feasibility of using high-Tc superconductors for the construction
of electronic devices that 6perate at sub-mm waveiengths, it is useful to compare the losses
in these materials for frequencies less than 2Agcs/4=0.9kpTc (where our calculations
should be valid) to th:: losses in a good metal like copper. The absorption Acy of copper in
the FIR was calculated using the dc conductivity and the Hagen-Rubens relation. The
absorption for T>T¢ of the Laj 85510 15CuO4 sample discussed here is typical for sintered
polycrystalline samples!], and is roughly 200 times that of copper, independent of
frequency to within 10% for frequencies less than 2ApCs/4=25 cm-l. Assuming no
extrinsic surface losses and a temperature dependence of the absorption in the.

superconducting state described by BCS, Lay g5510.15CuCy4 would have to be cooled to
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Fig. 4-6: Excess submillimeter reflectance [R(T)-Ryl/[Rs-Rp] in the superconducting
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T/Tco=0.4 (T=14K) before its absorption equalled that of room temperature Copper for

frequencies less than 25 cm!. A recent measurement22 of the reflectance of an epitaxial
fitm of Y1BasCuz07 (T¢=90K) showed a normal state absorption of roughly 60Acy for
frequencies léss than 200 cm-l. If the temperature-dependent electrodynamics of this
material for frequencies much less than the energy gap are also described by BCS, we
estimate that this film would have to be cooled to T/T¢x=0.5 (45K) before its absorption
equalled that of room temperature Copper for frequencies less than 2ApCs/4=60 cm-l,
Thus it appears that for existing materials, devices made from high-Tc superconducting
oxides will have to be cooled to temperatures lower than T¢/2 in order t;) have lower losses
than good metals. Some improvement in the conductivity of single crystals and epitaxial

films can be expected.

4.5. Conclusion

The reflectance polycrystalline samples of the high-Tc superconductor
Laj 85510.15Cu04 for frequencies less than 100 em! is well described by BCS
electrodynamics. Our results are therefore consistent with a mean field pairing theory of
superconductivity. We have also shown that the temperature- dependence of the FIR
reflectivity cannot be used to distinguish between the plasmon hypothesis and the energy
gap hypothesis. The success of our model strengthens the plasmon hypothesis. However,
a definitive understanding of the FIR dielectric function for Laj 85510,15Cu0O4 must await a
better understanding of the effect of crystal anisotropy on the reflectance of polycrystalline
samples. Until this matter is clarified, it is premature to deduce the magnitude of the energy

gap for polycrystalline samples from the infrared data.
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Radio-frequency nonlinear response of charge-density-wave

conductors.
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The first part of this thesis describes measurements of the linear response of CDW
conductors and high-T¢ superconductors. Linear response theory provides a
straightforward means of extracting physical parameters from any experimental linear
response data. The second part of this thesis describes aspects of the novel radio-
frequency nonlinear response of the pinned mode in the CDW conductor NbSe3.
Nonlinear response is much more varied than linear response. To extract detailed
information from a particular nonlinear response experiment, it is necessary to model the
experiment by solving a particular nonlinear differential equation. However, all the details
may not be of great interest. Recent advances in the theory of nonlinear dynamical systems
provide methods of understanding certain general features of the nonlinear response of a
particular dynamical systems by solving simple, generic models. In Chapter 5, relevant
experimental and theoretical results on CDW transport are discussed. Some concepts from
the theory of nonlinear dynamical systems are also introduced.

In Chapter 6, the first observation of complete mode-locking in a CDW conductor is
discussed. The experiments were performed on nonswitching crystals of NbSea. The
differential resistance dV/dl in the completely mode-locked state is equal to dV/dI in the
pinned state, indicating that the entire volume of the CDW is locked to the ac field. The
noise level in the completely mode-locked state is indistinguishable from the noise level in
the pinned state. The many-degree of freedom CDW dynamical system apparently
collapses onto a surface with few degrees freedom. The dramatic reduction of CDW
velocity fluctuations is analyzed in terms of continuous time models and the sine circle map
with added noise.

In Chapter 7 the response of switching NbSe3 to combined ac and dc electric fields 1s
discussed. The response is dramatically different from that of nonswitching CDWs.  For

low frequency ac electric fields, "ac switching noise" occurs. The power spectrum of ac
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| switching noise is broad band and has amplitude as much as 10 dB larger than the broad
band noise associated with dc sliding CDW conduction. In samples driven by combined dc
and high frequency ac electric fields, a period doubling route to chaos and related
instabilities are observed when the CDW is mode-locked. All instabilities are consistent
with the phase slip picture of switching CDW conduction. Mode-locking and associated
instabilities in switching CDW:s are analyzed in terms of the sine circle map, the logistic
map and the theory of noisy precursors.

~In Chapter 8 a continuous time model of CDW elasticity is proposed to explain the
behavior of the CDW elasticity in the presence of dc, ac and combined ac and dc electric
fields. The model is an extension existing models of CDW conduction which assigns
degrees of freedom to the impurities that pin the CDW. The model predicts that the elastic
constants in the mode-locked state are close to those in the pinned state, consistent with
experimental observations. This hardening of the crystal during mode-locking is seen to

arise from the strong coupling induced between CDW and lattice degrees of freedom.
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5. Introduction to Part 2: sliding CDW transport and the theory of
nonlinear dynamical systems

For sufficiently large applied electric fields, some CDWs can be induced to slide.
Sliding CDW conduction is a highly nonlinear process. Ohe of the most fascinating
aspects of sliding CDW conduction is the ac-dc interference, or mode-locking, which
occurs in the presence of combined strong rf and dc electric fields. In the second half of
this thesis, several novel features of mode-locking in NbSe3 are explored. Mode-locking
is discussed in terms of both specific models of CDW conduction and generic models
borrowed from the theory of nonlinear dynamical systems. This chapter provides the
background necessary for a discussion of mode-locking in CDWs in Chapters 6-8. Section
5.1 bﬁcﬂy discusses relevant experimental results on sliding CDWs. For more detailed
information, the reader is referred to one of the excellent reviews of CDW transport!-2,
Section 5.2 reviews various models of CDW transport. Section 5.3 reviews relevant
concepts from the theory of nonlinear dynamical systems. Section 5.4 summarizes the

results of Chapters 6-8.

5.1. Experimental results

NbSe3 is a quasi one-dimensional conductor with three inequivalent conducting chains
in its unit cell. As NbSes is cooled, two of the chains undergo Peierls distortions to CDW
states. The first transition is at 144K , the second at 59K. The third chain remains metallic
as low as has been measured. Fig. 5-1 shows the temperature-dependent resistance of
NbSes for various applied currents below 70K. The lower phase transition manifests itself
as a large bump on a background resistance that decreases as temperature is lowered.
Monceau et. al.? were the first to observe nonlinear dc conductivity in the CDW states of

NbSes. As shown in Fig. 5-1, the height of the resistive bump decreases for increasing



64

i ] i i | I I 1 I 1 1
0.7k- CURRENT DENSITY {A-mm™2) ]
(046 CW
< 185 /
?_;g': PULSED
06 | i3 .
=
>4
% 0.5} _
)—
=~
-
= 04+ _
]
4]
L
o
S 03 -
[
3
<
z
o 02 ]
=
O F p -
0 SN NS EE R W U S M G W :
40 60 80 100 120 140 160 180

Fig. 5-1: Variation of the normalized dc resistivity of NbSe3 below 70K as a function
of temperature at several current densities applied to the sample (from Ref. 3)



65
applied currents. The enhanced dc conductivity at high currents is attributed sliding CDW

conduction.

Fleming and Grimes#3 later discovered the existence of a threshold for the onset of
electric field-dependent conductivity. Fig. 5-2 shows I-V and dV/dI curves for a typical
"nonswitching" sample of NbSes. For sufficiently low electric fields, the dc conductivity
is linear. Nonlinear dc conductivity occurs only above a well-defined threshold electric
field ET. In such conventional samples, the conductivity increases smoothly from the
ohmic value as the electric field E is increased above ET ("Switching samples”, to be
discussed in Chapter 7, show a different depinning behavior). The differential resistance
dV/dl remains always positive. In nonswitching samples of NbSes the nonlinear

conductivity above Et is well-described by the empirical expression

04c®) =04 + o L exp{ 5 | 1)

o4 is the low field dc conductivity, representing the contribution to the dc conductivity of
electrons not condensed into the CDW. Er is the thresheld field, and Eq and oy are free
parameters. For E>>ET, the conductivity approaches a high-field limit Ggc = G + Op. The
threshold field Et is highly temperature-dependent. The minimum ET in NbSe3 samples
typically occurs near 50K. ET also depends sensitively on the impurity concentration. In
NbSes, ET at 50K may vary from 1 mV/cm for extremely pure samples to >100 mV/cm for
samples purposely doped with impurities.

A small fraction of NbSe3 samples exhibit threshold behavior radically different than
that predicted by Eq. 5-1. These are called "switching" samplesS. Typical I-V curves for a
switching sample of NbSes are shown in Fig. 5-3. As the electric field is increased in a

switching sample, a small deviation from ohmic behavior often (but not always) occurs ata
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is clearly observed. The solid lines derived from Eq. 5-1 using parameters indicated on the

figure. (from Ref. 5)



67

T:=525K 495K

Sample current (mA)

0 IéO ZCE)O 300
Sample voltage {(mV)

Fig. 5-3: Current-voltage curves (voltage-driven) for a "switching" crystal of NbSe3
at selected temperatures. The initial depinning threshold Et is indicated by an arrow for
temperatures above 42K. Below 40K the I-V curve is hysteretic. (R. P. Hall and A. Zett],
Solid State Commun. 50, 813 (1984))
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lower critical field ET. At a higher critical field Ec the CDW switches abruptly and often

hysteretically from a nearly ohmic state (G = G in Eq. 5-1) to a state with the high-field
conductivity (¢ = 0, + Op in Eq. 5-1). One or several such "switches" may occur in a
single sample. At a given temperature the critical fields Ec in switching samples are three
to ten times higher than the threshold fields Et in nonswitching samples of comparable
chemical purity’.

When the threshold field ET is exceeded in both switching and nonswitching samples,
the sample current becomes time-dependent. For E>ET so-called "broad band noise" is
readily observable in NbSe3 for frequencies less than 100kHz. The broad band noise
follows a 1/f @ frequency distribution8 with o =0.8. In addition to the low frequency broad
band noise, coherent oscilfations ("narrow band noise™) are observed in NbSe3 and other
CDW conductors. The frequency of the narrow band noise (NBN) oscillations is directly
proportional to the current carried by the CDW, and hence to the velocity of the CDW. For
typical experimental parameters, the NBN frequency in NbSe3 is in the {MHz-50MHz
range, though higher and lower NBN frequencies are easily attainable.

The elastic properties of CDW conductors are also strongly electric field-dependent. As
first shown by Brill and Roark?, the velocity of sound in a CDW crystal decreases and the
internal friction increases as the electric field is increased above E1. This phenomenon is
discussed in more detail in Chapter 8.

Monceau et. al. 19 and Zettl and Griiner!! first noted that the application of strong
combined ac and dc electric fields leads to a host of phenomena associated with interference
between the externally applied ac electric field and the internally generated narrow band .
noise frequency. The ac electric field reduces the threshold field for sliding CDW
conduction. I-n the sliding state, the narrow band noise frequency is pulled toward rational
multiples of the applied ac frequeﬂcy. When the narrow band noise frequency is

sufficiently near a low order rational multiple of the ac frequency (a rational multiple p/q,
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where the denominator q is a small integer ), the narrow band noise frequency may actually

“lock onto that multiple of the ac frequency. When such mode-locking occurs, the narrow
band noise frequency is independent of dc bias over a small range of dc bias. Since the
CDW current is proportional to the narrow band noise frequency, the CDW current is
constant during mode-locking. A mode-locked region manifests itself as a step in the I-V
curve and a peak in the differential resistance. .Typical 1-V and dV/dI curves exhibiting
mode-locking are shown in Fig. 5-4.

Finally, we make a note on comparing experiment with theory. A CDW crystal may be
driven in a voltage-controlled or current-controlled configuration. Theories of CDW
conduction treat the CDW as driven with a voliage source and calculate the current.
However, because of the relatively low impedance of many CDW crystals, most
experiments drive a CDW crystal with a current source and monitor the voltage. In current-
controlled experiments the current is divided between the normal electrons (electrons not
condensed into the CDW) and the CDW. The normal electrons cause the driving condition
on the CDW itself to be in between current- and voltage-controlled. In nonswitching
NbSes, where the conductivity due to the normal electrons is relatively high and the
depinning transition is gradual, a current-controlled driving condition for the entire crystal
is close to a voltage-controlled driving condition for the CDW. In nonswitching NbSez,
one may thus to good approximation interpret most current-controlled experimental results
in terms of a voltage-controlled picture. One simply treats the CDW as driven by the

voltage drop across the sample.
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(1984))
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5.2. Theoretical models of CDW transport

Both classical and quantum mechanical models have been proposed to explain the novel
features of nonlinear CDW transport. The first and simplest model of CDW transport was
proposed Griiner, Zawadowski and Chaikin!2 (GZC). The GZC model is isomorphic to
the driven damped pendulum, or to the resistively shunted Josephson Junction (RSJ)
model. The CDW is treated as a rigid particle in a sinusoidal potential caused by
impurities. Even for randomly distributed impurities, the potential must have the period of
the CDW wavelength A: the total energy of the CDW is invariant under a translation by n.

The equation of motion is

2
m*%;%{* N %4- eEsin(Qx) = eE(t) (5-1)

where m* is the effective mass of the CDW, x is the position of the CDW center of mass, ¥
is a phenomenological damping constant, e is the charge of the CDW, E7 is the threshold
electric field, Q = 2n/A is the wavevector of the CDW, and E(t) is the applied electric field,
which may depend on time. The CDW is so heavily damped that at the frequencies of
interest (MHz range), the CDW is treated as massless and the first term on the left hand
side of Eq. (5-1) is dropped.

The GZC model qualitatively accounts for many features of the nonlinear behavior of
CDWs. It predicts nonlinear conduction with a threshold electric field. For E>ET, narrow
band noise occurs as the particle slides through the periodic potential. For combined ac and
dc electric fields, mode-locking occurs. Mode-locking also occurs in Josephson Junctions,
which may be quantitatively modeled by the isomorphic RSJ model. In Ios.ephson
Junctions, mode-locked steps in the I-V curve are called Shapiro steps, and the same name

has been adopted in the CDW literature.
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The GZC model fails to account for many features of sliding CDW conduction. Ina
current-regulated experiment, the GZC model predicts a differential resistance dV/dI which
is infinite and negative at threshold. In a real experiment, dV/dl is always finite and
positive in nonswitching samples. The GZC model predicts no broad band noise for a dc
applied electric field. The GZC model with a sinusoidal potential and m*=0 predicts only
harmonic Shapiro steps, where the ratio p/q of the narrow band noise frequency to the ac
frequency is an integer. In experiments, both harmonic and subharmonic Shapiro steps
are observed, with p/q not necessarily an integer. The GZC model does not address the
issue of CDW elasticity at all. Finally, the GZC model fails to account for the low
frequency ac conductivity and the transient response of CDWs, but these matters are
beyond the scope of this thesis.

Agreement between theory and experiment is significantly improved in a class of
models which treat the CDW as a classical object composed of many degrees of freedom.

These models are all based on a Hamiltonian proposed by Fukuyama and Lee?3.

Henv' f d{pzq;—z(-\‘;% (Vo)1 3V j3(-Ry) cos(Qr+ m)] (5-2)
J

where §(r) is the slowly-varying phase of the CDW, p is the momentum conjugate 0 §, Vj
is the (random) potential associated with the jth impurity, R; is the position of the jth

impurity, v' = vZ/vg where vF is the Fermi velocity and

v=(§;)”2v-,; (5-3)

where m is the band mass of an electron and m* is the effective mass of an electron
. condensed into the CDW. The ratio m/m* for NbSe3 in the lower CDW state is of order

100, based on microwave conductivity measurementst4.
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An equation of motion derived from a discretized version of the Hamiltonian 5-2,

assuming only motion in the z-direction a massless CDW, and replacing the phase ¢ by a

positonT, is

YO%?' + 3 Ki(2rj-tj4i-1j-0) + QVjsin(QRj+r)=eE(D) (5-4)
i

where rj is the position of the CDW domain associated with the jth impurity, yp is a
phenomenological dampling term, Kj is the spring constant of the spring connecting two
particles i sites apart, and Vj is the strength of the potential associated with the jth impurity
site.

Fisher!® has considered a mean field treatment of a three-dimensional model like (5-4).
In Fisher's calculation, there is an infinite number of CDW degrees of freedom and the
interactions between degrees of freedom have infinite range. The Fisher calculation
predicts no divergence in dV/dl at threshold, solving one of the problems that plagues the
GZC model. Sneddon has solved analytically an infinite range incommensurate model like
Eq. (5-4) The impurities in Sneddon's model all have the same strength, and the spacing
between impurities is an irrational multiple of the CDW wavelength. The Sneddon model
is a dynamnical version of the Frenkel-Kontorova model, orginally developed to study
twinning dislocations!6, Sneddon finds good agreement with the experimentally observed
field- and frequency-dependent conductivity of static and sliding CDWs!7. Extensive
numerical simulations on a one-dimensional model like Eqgs. (5-4) have been performed by
Coppersmith and Littlewood. They find harmonic and subharmonic Shapiro steps!®. The
transient response of a CDW to an applied current pulse is also nicely reproduced!?, as are
low-frequency anomalies in the ac conductivity?C.

The above models all predict that narrow-band noise should vanish in the infinite

volume limit. This prediction appears to hold, in that large samples show less roise than
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sinall ones. Numerical simulations of Egs. (5-4) find no steady-state broad band noise

even for a finite number of particles?!. In the dc sliding state, after an initial noisy

transient, a sliding CDW with average velocity v always settles into a state in which the

motion of each particle is periodic with frequency ®=Q v . It has been suggested that the

broad band noise is an amplification by the sliding CDW of ambient fluctuations?? . The
long noisy transients observed in simulations of Eq. (5-4) provide a natural mechanism for
the amplification of ambient fluctuations2!, However, the origin of broad band noise is not
well understood.

The models based on Eqs. (5-4) treat the CDW as an elastic medium, but neglect the
elasticity of the underlying lattice. The impurities in Egs. (5-4) are completely rigid, and
their coordinates R; are not free to move. Thus none of these equations can address the
issue of elastic coupling between the CDW and the lattice.

None of the models discussed in this section are appropriate to switching CDW
conduction. The single and many degree-of-freedom models discussed above treat the
CDW amplitude as constant and consider only the dynamics of the CDW phase. Switching
CDW conduction is associated with a periodic collapse of the CDW amplitude at a phase
slip center. The phase slip picture of switching is discussed in Chapter 7.

To conclude this review of the theoretical models of CDW transport, I will briefly
discuss the quantum mechanical model of CDW transport championed by Bardeen?3. In
Bardeen's model, the CDW is treated as a macroscopic particle that does not "slide”, but
tunnels through the impurity pinning potential. This model has been used to successfully
reproduce the de I-V curve, scaling of field- and frequency-dependent conductivity, and
harmonic mixing experiments. In many cases, the predictions of the quantum tunneling
model are very similar to those of classical many-degree-of-freedom models, although the

physics is drastically different. In most of the sections of this thesis on CDW dynamics,
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phenomena are described in the language of classical mechanics. A similar analysis

should, however, be possible in the language of quantum tunneling theory.

5.3. | Nonlinear dynamics

In the past decade, great advances have been made in the study of classical nonlinear
dynamical systems?4, In addition to considering the specific classical models of CDW
conduction outlined above, it is fruitful to examine sliding CDW conduction in the context
of the modern theory of nonlinear dynamical systems. This section first briefly reviews the
description of general nonlinear dynamical systems in terms of low-dimensional discrete
mappings. Then the relation between the GZC model of CDW conduction and the sine
circle map is discussed as a relevant example. Finally, the relevance of the sine circle map
to CDW dynamics is briefly discussed.

Classical nonlinear dynamical systems are naturally described by coﬁpled ordinary

differential equations. In general, these systems may be written as

%’%ﬁ F(x:A) | (5-5)

where x is the state vector of the system and the evolution of the state vector from an initial
condition xg is determined by the vector field E(x:A). The vector A is a vector of
parameters on which the vector field depends. The solution to Egs. (5-5) is a trajectory
x(t:xo,A). If Egs. (5-5) are dissipative, then the trajectory will in the limit of long times
approach a trajectory x(t;A) that is independent of initial conditions. For a dissipative set of
equations, the trajectory x(t;A) will lie in a surface of lower dimensionality than the entire
set of differential equations. All equations of concern to us are dissipative.

Generating the unique solution x(t;A) to Egs. (5-5) in general is a difficult problem

requiring lots of computer time. However, it is often the case that knowledge of x(t;A) for
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all time is unnecessary. For many applications only the periodicity of the solution is of

interest. Egs. 5-5 may rigorously be replaced by a return map of the form
Xn+1 = Exnd) (5-6)

where xp = x(n7; A) and

(n+l)t

F(nil)= xa(GR) +  JEG(EL)d | 5-T)

nt

If the trajectory x(t;A) has collapsed onto a low-dimensional surface, then it will in principle
be possible, by some nonlinear coordinate transformation. to write the return map (5-6) in
terms of a new coordinate vector z which has a lower dimension than the original
coordinate vector x. The advantage of a description in terms of discrete mappings is that it
is much easier to iterate a map than it is to integrate a differential equation. The Catch-22 is
that, as illustrated by Eq. (5-7), it is necessary to integrate the differential equation in order
to determine the exact return map. However, many features of the dynamics of a
dynamical system may bé understood without knowledge of the exact return map. It is
often sufficient to study a generic map that is a member of the same class of return maps as
the exact return map.“

For a concrete example, we consider the GZC model. In terms of dimensionless

variables, Eq. (5-1) for E(t) =Eqc + Eaccosot may be written in the form of (5-5):

a0 _ (5-8a)
dt

dy 1 (- - sind + edc + €5cCOSE) | (5-8b)
dr B

& | (5-8¢)

dt
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where ¢ = Qx, dimensionless time T is measured in units of (QeET/H)1, B= (mQeET/Y),

edc=Ed/ET, €ac=Eac/ET, §=Qt, and Q=w/(QeET/Y). The state vector of the system is
x=(¢,w,£), and the vector of parameters is 4 = (B,edc,Cac.$2).

For many parameter ranges, the steady state solutions of Egs. 5-8 alternate between
free running quasiperiodic states and mode-locked periodic states (limit cycles) as a
parameter is varied. All trajectories for these parameters are attracted to a two-dimensional
torus embedded in the three-dimensional phase space, as shown in Fig. 5-5a. The
trajectories lying on the torus may be parameterized in terms of the an gles p and &. A
return map may then be constructed by slicing the torus with a surface of section of
constant £ The return map is a relation between successive intersections of the orbit on the
torus with the surface of section. In this case the return map is a relation between
successive values of ¢ separated by intervals of ©=21/Q. The one-dimensional return map
for the three-dimensional system of equations (5-8) will, for the appropriate parameters, be

of the form

One1 = On + G(¢n) (5-9)

where G(¢+2r) = G(¢). This is a "circle mép", a mapping of the circle onto itself. The
equivalence of the differential equations (5-8) and the mapping (5-9) has been verified
numerically by Bak25. A quasi-periodic orbit will, after an infinite number of iterations,
fill up the entre circle, as shown in Fig. 5- 5b. A periodic orbit will intersect the circle in
only a finite number of points, as shown in Fig. 5-5c.

Some solutions of Egs. (5-8) are neither periodic nor quasi-periodic, but chaotic. A
chaotic trajectory cannot lie in only two dimensions23. A chaotic trajectory for a
moderately dissipative version of Eqgs. (5-8) lies on a "bumpy torus"26 which is a fractal
with a dimension greater than two. To rigorously model a chaotic system, an invertible

two-dimensional mapping is required. However, if the system is sufficiently dissipative, a
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Fig. 5-5: (a) Phase space attraction toward an invariant 2-torus; the Poincaré section P
induces an iterative map on the circle. (b) Quasiperiodic dynamics fills in an invariant
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dynamics on P. (from K. Wiesenfeld and 1. Satija, Phys. Rev. B 36, 2483 (1987))
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one-dimensional non-invertible map is an approximately correct description. We will
restrict ourselves to one-dimensional maps.
The function G(¢) is difficult to compute. Bohr et. al.26 have argued that the whole

class of maps (5-9) with G(¢) = G(¢+2x) behave similarly. Thus the simplest version of a

nonlinear circle map, the sine circle map has been studied. The sine circle map is

8016, + O + -;isin(zxﬂn) (5-10)
bin

where 6 is a modulo 1 variable and K parameterizes the nonlinearity.  is the "bare
winding number”. In the case of the GZC model, €2 is the ratio of the internal "narrow
band noise" frequency to the frequency of the externally applied ac field. For nonlinearity
K<1, the solutions alternate between mode-locked and quasi-periodic states. For K>1,
there are no quasi-periodic solutions, and chaotic solutions are possible. The detailed
behavior and predictions of the sine circle map will be discussed as needed in Chapters 6
and 7.

The equivalence of the GZC model to a cifcle map for certain parameter ranges is well-
established. However, the GZC model is only a crude approximation to the dynamics of a
real CDW. The extent to which the sine circle map is relevant to CDWs is a controversial
matter. The success of the many particle models indicates that a one-dimensional mapping
may yield a simplistic description of CDW transport. However, the relevance of a low-
dimensional mapping in some circumstances is not ruled out simply because the underlying
dynamical system has many degrees of freedom. If for certain parameter ranges the high-
dimensional dynamical system collapses onto a low-dimensional subspace, then a low- '

dimensional mapping may yield useful insights.
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6. Complete mode-locking and suppression of fluctuations in

nonswitching NbSej3

This Chapter investigates further the mode-locking phenomenon in nonswitching
NbSes. Under appropriate conditions of applied dc and rf currents, we find that the CDW
phase can be completely mode-locked to the frequency of the external rf drive. The
locking persists over well-defined ranges of dc bias currént (or de bias field), and complete
harmonic and complete subharmonic locking occurs. Relative to the unlocked state, the
broad-band noise power in the completely mode-locked state is suppressed by a factor
greater than 400. These observations are discussed in terms of stochastically driven

models of sliding CDW conduction.

6.1. Experiment

A two-probe sample mounting configuration was used exclusively, with conductive
silver paint contacts. It is easier to achieve complete mode-locking if extremely short
samples are used. The sample used for this study was 250um long. The experimehts were
performed in a current-driven configuration. The perturbation applied to the sample was a
superposition of a dc current and two ac currents. Cne ac current was of very low
frequency (200 Hz) and amplitude, and provided a suitable signal for léck—in detection of
the differential resistance of the sample. A Wheatstone bridge circuit was used for this
purpose. The second rf current, typically in the MHz frequency range, was the source of
the Shapiro step interference. Broad-band noise measurements were Vobtained by first
amplifying the voltage across the sample with a low-noise pre-amplifier (bandwidth .03Hz
to 10kHz, gain 10%), followed by detection with either a sensitive rms voltmeter or a low
frequency spectrum analyzer.

Fig. 6-1a shows the differential resistance dV/dI and broad-band noise 6f NbSez at T =
45 K, plotted versus dc bias current 1. The threshold current I, identified by the sharp

bend in dV/dl, also corresponds to the threshold for the onset of broad-band noise. The,
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6-1: a) Differential resistance dV/dI and broad-band noise amplitude vs. bias current in
NbSes. The threshold current is indicated with an arrow. b) Same as a), except that an rf

current at frequency oxf = SMHz has been added to the sample. Complete mode-locking is
evident on the step labeled n=1 on the upper trace. All broad-band noise vanishes in the
mode-locked regime. The lettered arrows refer to where the corresponding frequency
spectra of Fig. 2 were taken.
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broad band noise amplitude is a strong function of excess CDW current Icpw and there

exists a broad maximum in the noise amplitude for bias currents slightly above It. The
measurements of Fig. 6-1a are consistent with earlier studies of differential resistance and
broad-band noise in NbSes.1:2 Fig. 6-1b shows the effect of an externally applied rf
current on the differential resistance and bread-band noise of the same NbSej3 crystal. The
addition of rf current reduces It slightly, although the thresholds for CDW conduction
(break in dV/dI) and onset of broad-tand noise remain equivalent. The sharp step structure
in the upper curve in Fig. 6-1b corresponds to Shapiro step interference, and both
harmonic and subharmonic structure is observed. The step labeled n = 1 corresponds to a
region where the fundamental narrow-band noise frequency WNBN equals the externally
applied rf frequency, wyf. The important features of the n = 1 step structure are that the top
of the step appears flat over a finite range of dc bias current, and that over this range dV/dl
corresponds exactly to the low-field (ohmic) differential resistance. Over the finite range
of bias field comprisi.g a step, the velocity (and hence time derivative of the CDW phase)
does not ¢hange, but remains "locked" to the frequency of the applied rf field. The
observation that dV/dl attains its ohmic value on the step confirms that the mode-locking is
complete, and involves the entire CDW condensate. This is the first observation of
complete mode-locking CDW system. We note that not all interference steps in Fig. 6-1b
display complete locking. For example, only one of the subharmonics locks completely (at
n = 1/2), and although harmonics equal to or greater than n = 2 show some evidence of
locking, they fail to achieve the ohmic value for dV/dL

The fact that the CDW velocity is “fixed" in the mode-locked states suggests that simmlar
"plateau” structure might occur in the broad-band CDW conduction noise response. A
naive expectation is that the broad-band noise amplitude should remain constant over the
whole range of mode-lock, with a value dictated by the (fixed) CDW velocity. This value
could be extracted from Fig. 6-1a. The lower trace of in Fig. 6-1b shbws, however,

dramatically different results. The observed behavior for NbSe3 is that, on a mode-locked
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step, the broad band noise power is suppressed by more than a factor of 400, to below our

instrumental noise level. Our results are thus consistent with the complete suppression of
the broad-band noise. The complete suppression of noise occurs only for those (harmonic
or subharmonic) steps which display complete mode-locking; on the n =2 step in Fig. 6-
1b, for example, which shows incomplete locking, the broad-band noise is significantly
reduced, but not completely suppressed.

To investigate further the broad-band noise response in the presence of mode-
locking, we have measured the frequency spectrum of the noise in the range of 0 - 25 kHz.
Fig. 6-2a shows the spectral response for zero applied dc and ac current (the spectra shown
here measure the noise amplitude, which is proportional to the square root of the noise
power). In this pinned regime, no CDW conduction noise is generated, and only
instrumental noise is observed. Fig. 6-2b shows the response for applied dc and rf
currents yielding a sliding CDW with incomplete mode-locking. The noise power level
here follows a 1/f% law, with o = 1.1 +0.1, consistent with other studies of broad-band
noise3 in NbSes . Fig 6-2c demonstrates that when the NbSe3 sample is dc and rf driven
to a completely mode-locked step, the spectral response again becomes identical to that of a
pinned CDW condensate. At the low frequency end of this figure, the broad-band noise
power and hence the effective noise temperature have been suppressed by more than two
orders of magnitude! Complete suppression of broad band noise like that in Fig. 6-2c was

also observed for the 1:2 mode-locked step.
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6-2: Broad-band noise spectrum in NbSe3. a) Pinned CDW state; b) a depinned
CDW in the presence of an external rf current, but without mode-locking; ¢} in a mode-

locked regime.
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6.2. Analysis
This section takes the view that the broad-band noise in CDWs is a nonlinear
amplification of external noise. In relation to our experiments, Wiesenfeld and Satija* have
considered the response to external noise of the sine circle map, the simplest model which
exhibits mode-locking. The section begins with a review of their results. The section
concludes with a discussion of the extension of the Wiesenfeld and Satija results to many
degree-of-freedom models of CDW conduction.
" The low value of the noise in the completely mode-locked sliding CDW state indicates
that the trajectory of the CDW in phase space is close to a one-dimensional limit cycle.
Thus a low-dimensional description of the mode-locked state should be appropriate.

Wiesenfeld and Satija have considered the sine circle map driven by external noise.

Ope1 =0 +Q + 2£ sin (2x0y,) + Ep (6-1)
yis

where all variables except & are as defined for Eq. (5- ). &n is a delta-correlated random
variable. In this model, K is always less than 1 and the solutions for £=0 are either mode-
locked or quasi-periodic.

In a mode-locked state, fluctuations will be damped. For simplicity, consider
parameters for which 1:1 mode-locking occurs. All initial conditions will relax to a unique

steady state solution 8y41=8p = 8p. A linearized equation may be written for perturbations

about the steady state solution:
Tl =AMn +&n (6-2)

where 8y =Tn + 0g and A is the relaxation rate, which may be calculated by linearizing Eq.
(6-1). Stability of the 1:1 fixed point requires A<1. The noise & is assumed to be small.

The fluctuations are damped most quickly for A close to zero.
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In the unlocked case, fluctuations are not damped. If one is only interested in long-

time (low-frequency) behavior, the nonlinearity may be ignored to lowest order in the
unlocked case. The response of an unlocked state to fluctuations may then be estimated

from the equation

On+1=Op+ p + En (6-3)

Here p = <(8p41 - 8,)> is the "winding number", the average change in 8 per iteration of
the map. In the context of CDWs, the winding number is the ratio of the narrow band
noise frequency to the external drive frequency. The fluctuations in Eq. 6-3 are not
damped: the noise kicks provided by & accumulate over time and result in a random walk
on the circle.

Fig. 6-3 shows the power spectra of 8 calculated from digital computer simulations of
the nonlinear equations 6-1. The upper trace is the power spectrum for a 1:1 mode-locked
state. It shows a noise level significantly higher than that of the lower trace, which is the
power spectrum for an unlocked state. The simulation of the nonlinear equation confirms
that the approximate predictions of the linear equations (6-2) and (6-3) are correct. Fig. 6-3
is in qualitative agreement with our experimental results that the noise is reduced during
mode-locking. However, the 1/£-like behavior of the unlocked power spectrum in Fig. 6-2
is absent in Fig. 6-3. This is because the input noise in the simulations was white noise.

The model of Wiesenfeld and Satija attributes the noise suppression during mode-
locking to the relatively short relaxation times that occur in the mode-locked state. Similar
arguments may be made for the many degree-of-freedom models, although none of these
has been solved in the presence of external noise for the mode-locked case. DC driven
many degree-of-freedom models of CDW conduction are known to show long transients
with 1/f-like power spectra that eventually relax to a noiseless steady stateS. In contrast,
when the many degree-of-freedom models are driven by a train of periodic pulses, the

solutions relax to a mode-locked steady state after only a short transient®. The relaxation
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Fig. 6-3: Results of digital simulations of Eq. 6-1. Power spectrum (logarithmic units)
vs. frequency for unlocked and locked period-1 cases having the same level of input noise.

K=0.8, ©=0.06 (locked), Q=0.18 (unlocked), <&2>=1.3x10"4. (from Ref. 4)
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times to steady state sliding may be orders of magnitude shorter for a train of pulses than

for a dc driving configuration . A suppression of noise in the mode-locked state relative to
the dc sliding state is plausibly attributed to the vast difference in the relevant relaxation
times. Since the length of a transient to the dc sliding state grows with the number of
degrees of freedom used, noise suppression in the many degree-of-freedom case is
expected to be much larger than in the few degree-of-freedom models, or in the sine circle
map. |

In summary, we have demonstrated complete modé~locking in the CDW state of
NbSes. The mode-locked state is highly coherent and well-described by a single
coordinate. In the language of dynamical systems, the phase space trajectory of a mode-
locked CDW lies in a nearly one-dimensional subspace of a high-dimensional phase space.
The unlocked or dc sliding trajectories lie in higher-dimensional subspaces. The low
dimension of the mode-locked trajectories is attributed to an insensitivity to external noise

caused by short relaxation times to the steady state.
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7. Mode-locking and chaos in switching NbSes.

7.1. Introduction

In typical crystals, CDWs depin smoothly as the electric field is increased above a
threshold fieldl, Successful models of such "nonswitching”" CDW conduction treat the
amplitude of the CDW as rigid and assign degrees of freedom only to the phase of the
CDW. However, some CDWs "switch" abruptly and hysteretically from a low
conductivity pinned state to a high conductivity depinned state. To successfully model
switching CDW conduction, it is necessary to include degrees of freedom for both the
amplitude and the phase of the CDW?2, Switching CDW crystals are th‘us a unique system
in which to study the amplitude dynamics of CDWSs. This chapter explores the response of
switching CDWs to combined ac and dc electric fields. Recent advances in the theory of
nonlinear dynamical systems are essential to understanding the highly nonlinear dynamics
of switching CDWs.

Experimental23 and theoretical? studies of the response of switching crystals of NbSe3
to dc and small amplitude ac electric fields have been reported elsewhere. The dc response
of switching crystals is distinguished from that of nonswitching crystals by the presence of
bulk discontinuities in CDW current’ and by large amounts of CDW polarization below the
switching threshold. A CDW velocity discontinuity implies a local, periodic collapse of the
CDW amplitude at a phase slip center. It is suggested that switching CDWs are pinned by
a sparse distribution of "ultrastrong” impurity pinning centers in addition to the usual weak
impurities found in nonswitching crystals. |

The small amplitude ac response of switching CDWs is distinguished from that of
nonswitching crystals by "motion-dependent inertia.” Like the ac conductivity of pinned
nonswitching CDWs, the ac conductivity of pinned switching CDWs is overdamped®.
However, in contrast to the ac conductivity of depinned nonswitching CDWs, the ac

conductivity of depinned switching CDWs is underdamped4. The underdamped nature of
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the sliding state of switching CDW conduction implies a motion-dependent inertia. It is

argued that such pseudo-inertia arises naturally in a phase slip model of switching CDW
conduction.

This chapter shall explore a series of electronic instabilities that occur only in switching
CDWs in the presence of strong combined ac and dc electric fields. The response of
nonswitching CDWs to combined ac and dc electric fields has in recent years been the
subject of many experimental’-12 and theoreticall3.14 investigations. The external ac
electric field interferes with an internal frequency generated by a CDW as it slides through a
periodic impurity pinning potential. When the internal frequency locks to the external
frequency (mode-locking), CDW transport becomes highly coherent!?. The number of
degrees of freedom active in nonswitching CDW transport is reduced during mode-locking.

The response of switching CDWs to combined ac and dc electric fields is more
complex. For driving frequencies less than 1 MHz, we report the first observation of a
characteristic power spectrum which we call "ac switching noise". The power spectrum of
ac switching noise consists of a broad band component which is superimposed on sharp
peaks at the drive frequency and its harmonics. The broad band component decreases
monotonically as a function of increasing frequency and is as much as 10 dB larger than the
broad band noise associated with sliding CDW conduction in the same sample. AC
switching noisé occurs when a sample is driven at low frequency repeatedly through the
switch in the I-V curve. No comparable instability is observed in nonswitching samples.
AC switching noise is attributed to the unpredictability of the depinning process in
switching samples.

For driving frequencies greater than 5 MHz, the phase slip centers2? created during
switching CDW conduction appear to synchronize and a qualitatively different regime
occurs. The switching CDW mode locks to the radio frequency field, and on each mode-
locked step a period doubling route to chaos!3 or related instability is observed. No

comparable instabilities are observed in nonswitching CDWs. The period doubling route to
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chaos is viewed as the frustrated response of a pseudo-inertial switching CDW which is

strongly entrained by the radio frequency electric field.

The period doubling route to chaos is characteristic of systems with few active degrees
of freedom!6. Thus it is reasonable to compare experimental results for mode-locked
switching CDWs with the behavior of low-dimensional nonlinear dynamical systems
(nonlinear mathematical models with few degrees of freedom). The structure of mode-
locking and associated instabilities in switching CDWS are in qualitative and quantitative
agreement with the predictions of the one-dimensional sine circle map!7-18. The period
doubling route to chaos in switching CDWs is consistent with the predictions of the logistic
map with added noisel®. Other instabilities are consistent with the theory of "noisy
precursors” of dynamical instabilities?0-21.  The agreement between the mode-locking
behavior of switching CDWs and the behavior of low-dimensional nonlinear dynamical
systems indicates that, as in nonswitching CDWs, the mode-locked state in switching
CDWs involves few active degrees of freedom.

The remainder of the chapter is organized as follows. Section 7.2 describes
experimental techniques. Section 7.3 describes experimental results on the response of
switching CDWs to combined large amplitude ac and dc electric fields. Section 7.4
analyzes the experimental results in terms of the phase slip picture of switching and the
modern theory of nonlinear dynamical systems. The chapter céncludcs in section 7.5 and

future directions for this work are discussed.

7.2. Experimental techniques

Three different samples of undoped NbSe3 were used in this study. The samples are
numbered #1-#3 The samples were grown by direct reaction of the elements. Samples #2
and #3 were virgin samples which switched without any treatment. Switching was induced

in sample #1 by etching in hot, concentrated sulfuric acidZ.
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Samples were mounted in a standard two probe configuration with silver paint contacts.

Sample #3 was driven in a standard constant-current configuration. Samples #1 and #2
were driven in a constant voltage configuration as shown in Fig. 7-1. In the constant-
voltage configuration, all voltages to the sample were buffered by a high-speed voltage
follower (Burr-Brown 3553) with a bandwidth of 300 MHz and an output impedance of
less than 1 Ohm. The sample response was determined by measuring the voltage across a
small resistor Ry in series with the sample (R < Rg/20, where Rg is the dc resistance of
the sample). In all measurements, combined dc and rf voltages were applied to the sample.
For differential conduﬁtancc measurements, a small, low-frequency (=200Hz) modulation
was added to the dc and if voltages, and detected with a lock-in amplifier. The differential
conductance dI/dV was proportional o the output of the lock-in amplifier. Power spectra
for frequencies less than 25 kHz were measured with a HP 3582A (FFT) spéctrum
analyzer. Power spectra for frequencies greater than 0.5 MHz were measured with a HP

8558B (sweeping filter) spectrum analyzer,
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Fig. 7-1- Experimental arrangement for performing a voltage-controlled experiment on
NbSes. The dc resistance of the sample is Rs. The voltage across the small resistor Ry
(=10 Ohms) is proportional to the current through the sample. Hi gh-frequency signals are
amplified by feeding the voltage across Ry through a short cable directly into a 50 Ohm rf
amplifier. Low frequency signals (<100 kHz) are buffered by a 10 K resistor before being
fed into a high-impedance lock-in amplifier (for dI/dV measurements) or into a spectrum

analyzer through high-impedance preamplifier.
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7.3. Experimental results

This section describes the response of switching CDWs to combined ac and dc electric
fields. Unless otherwise noted, experiments were performed in a voltage-driven
configuration. Section 7.3.1 describes the ac switching noise which occurs for drive
frequencies less than 1 MHz. AC switching noise is attributed to an avalanche depinning
process. For rf driving frequencies between 1 MHz and 5 MHz, a crossover takes place to
a qualitatively different regime of switching CDW dynamics. Section 7.3.2 describes the
high frequency regime in which the dynamics are dominated by mode-locking and
associated period doubling instabilities. The dynamics in the high frequency regime are
attributed to the phase slip process.

7.3.1. AC switching noise

A characteristic power spectrum which we call "ac switching noise” occurs when de
electric fields are combined with low frequency (<1MHz) ac electric fields to drive a sample
repeatedly through the switch in the de I-V curve (The ac and dc electric fields must satisfy
the condition Vae-Vac< Vo < Vact+Vdc). The power spectrum defined as ac switching noise
consists of a broad band component superimposed on sharp peaks which appear at the
driving frequency and its harmonics. The broad band component decreases monotonically
as a function of increasing frequency. At a given frequency, the noise power of the ac
switching noise is as much as 10 dB larger than the noise power of the conventional broad
band noise associated with dc sliding CDW conduction in the same sample. The transition
from the quiet state to the noisy state is abrupt. There are no precursors such as the period
doubling cascade that eccurs at higher frequencies in switching NbSe3. AC switching |
noise is seen for driving frequencies as low as 100 Hz. AC switching noise disappears
above the switching onset temperature. Details of the power spectrum of the ac switching

noise are shown in Figs. 7-2 and 7-3.
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Fig. 7-2 compares on a log-log plot the power spectra of the ac switching noise (top

trace) and the conventional broad band noise (bottom trace) in the frequency range 25Hzto
75 kHz. The traces are not offset. The top trace was recorded for Vyc=V¢, Vac=0.37V¢
and f=0.5 MHz. The noise power in the top trace decreases with increasing frequency.
These data are not well fit by a power law. For frequencies between 25 Hz and 250 Hz,
the noise power decreases as roughly 1/{0-6, while between 2.5 kHz and 25 kHz, the noise
power decreases more steeply, roughly as 1/f. The bottom trace was recorded under
identical conditions as the top trace, except that Ve was set to 0 and Vg was increased 10'
% to 1.1 V. The ac switching noise in this frequency range is on the average 5 dB larger
than the conventional broad band noise for this set of parameters.

Fig. 7-3 compares on a log-linear plot the ac switching noise and the conventional
broad band noise between 0.5 MHz to 2 MHz, frequencies comparable to the rf drive
frequency. The experimental conditions are identical to those for the power spectra in Fig.
7-2. The magnitude of the noise in the rf driven state is roughly 10 dB higher than

conventional broad band noise in this frequency range for this set of parameters.
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Fig. 7-2- Power spectrum of the current response in sample #1 for frequencies 25 Hz
to 25 kHz: ac switching noise (circles) which is an average of 5 dB larger than the
conventional broad band noise (squares). AC switching noise occurs when a sample is
driven repeatedly through the switch in the dc I-V curve by combined dc and low frequency
ac electric fields.
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7.3.2. Mode-locking in switching CDWs

This section describes mode-locking and associated instabilities which occur for driving
frequencies greater than 1 MHz. Section 7.3.2.1 describes the structure of mode-locking.
Section 7.3.2.2 describes the instabilities that occur during mode-locking at temperatures
well below the switching transition temperature. Section 7.3.2.3 describes the location of
the instabilities in parameter space. Section 7.3.2.4 describes the evolution of the
instabilities and of the structure of mode-locking as the temperature rises above the
switching transition.

7.3.2.1. The structure of mode-locking

The structure of mode-locking in switching samples is radically different from that of
nonswitching samples. In CDW systems driven by combined rf and dc electric fields,
mode-locking occurs when the "washboard" frequency (generated as the CDW slides
through the periodic impurity pinning potential) is a rational multiple of the rf frequency’-
12, When a CDW is mode-locked, the I-V curve shows a step, and the dV/dI curve shows
a peak. The structure of mode-locking in nonswitching CDWs is illustrated in Ref. 11.
For low rf driving arﬁplitudcs, the mode-locked steps in nonswitching CDWs are relatively
narrow. As the rf amplitude is increased, the width of the mode-locked regions first
increases, and then decreases. For any value of rf amplitude, mode-locked peaks in the
graph of dV/dl vs. I are separated by wide regions in which the CDW is unlocked and
dV/dl is low.

Fig. 7-4 shows a series of I-V curves for a switching CDW sample with a clean, strong
switch. As the ac amplitude is increased, steps appear in the I-V curve. On each step, the
slope of the curve is approximately equal to the slope of the I-V curve below the switching
threshold, indicating that the CDW phase velocity is locked to the frequency of the ac drive
and the CDW is on a Shapiro step. For instance, the decreasing dc bias curve for V=21
mV shows that the CDW is always mode-locked in the region from about 15 to 30 mV of

de bias. When the dc bias reaches the end of a Shapiro step, the systemn jumps to the next
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step. The jump is hysteretic--it occurs at different values of the dc bias for sweeps of

increasing or decreasing dc bias. For a range of values of rf and dc bias, there are no
values of dc bias for which the CDW is not locked. This is even more clear in the top
traces of Fig. 7-5, in which the (voltage driven) differential conductance is plotted for a
different sample in a similar region of parameter space. Mode-locked regions correspond
to peaks in differential resistance and hence to troughs in differential conductance. In Fig.
7-5, sharp spikes in the differential conductance curves mark the boundaries between
Shapiro steps. However, except for the spikes, the differe;atial conductance for moderate
dc bias values above the switching threshold field is always close to the differential
conductance for a pinned CDW indicating that the system is always at least partially mode-
locked?2.

The lower traces of Fig. 7-4 show that the mode-locked steps take up a smaller fraction
of parameter space as rf amplitude or dc bias are increased sufficiently. The Shapiro steps
(regions of low differential conductance) are clearly separated by regions in which the
CDW is not mode-locked and the differential conductance is higher. The structure of
mode-locking in Fig. 7-5 at high values of rf amplitude is reminiscent of that seen in non-
switching CDWs at hi ghér temperatures, in which Shapiro steps are always separated by
unlocked states. The similarity with higher temperature data is not a heating effect since the
average differentialaconductance is independent of dc¢ bias for all but the highest rf

amplitudes.
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hysteretic Shapiro steps.
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Fig. 7-5- Differential conductance for sample #1 in the switching regime. Arrows
parallel to the differential conductance curves indicate the directions of the voltage sweeps.
For low rf electric fields, the differential conductance is always close to the Vg4c=0 value,
indicating that the most of the sample is mode-locked for all values of Vgc. Sharp spikes
indicate transitions from one mode-locked region to the next. For high rf electric fields,

mode-locked regions of low differential conductance are separated by unlocked regions of
high differential conductance.



_ 106 |

7.3.2.2. Instabilities in mode-locking for switching CDWs

In mode-locked nonswitching CDWs, velocity fluctuations with frequency much less
than the rf frequency are frozen out during mode-lockingl0. The broad band noise level at
frequencies between harmonics of the rf frequency differs little in mode-locked and
unlocked cases!2. In mode-locked switching CDWs, the power spectrum of the CDW
velocity for a constant dc bias may show unusual structure between harmonics of the rf
frequency. Section 7.3.2.2.1 describes a sequence of power spectra which occur as dc
bias is swept along n:1 mode-locked steps. This sequence is interpreted as a period
doubling route to chaos. The sequence is nearly periodic in dc bias. Section 7.32.22
describes other sequences of power spectra, which are also nearly periodic in dc bias. The
latter sequences are explained in section IV in terms of the theory of noisy precursors.
Section 7.3.2.2.3 describes power spectra characteristic of simple mixing between the rf
frequency and the narrow band noise.

7.3.2.2.1. Period doubling route to chaos

The sequence of power spectra identified as a period doubling route to chaos is shown
in figure 7a. The temperature, rf frequency and rf amplitude are identical in all these
spectra. Only the dc bias was changed within a single Shapiro step. The first spectrum
shows only the fundamental of the rf drive frequency f, and harmonics due to the
nonlinearity of the system. In the second spectrum, peaks appear at f/2 and its odd
harmonics, indicating the first period doubling bifurcation in the period doubling cascade.
The third spectrum shows a generally elevated noise level with additional peaks at /4 and
its odd harmonics. In the final spectrum broad peaks centered at f/2 and odd harmonics
are 20 dB above the original noise baseline. We identify the latter spectrum as chaos.

In Fig. 7-6b the dc bias dependence of the power spectrum is mapped out for constant
rf amplitude and frequency. Near the end of a given Shapiro step the signal is periodic as

in Fig. 7-6a.1 (Since there is essentially no space between Shapiro steps and the periodic
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spectrum occurs over only a small range of dc bias, it was difficult to determine whether

this spectrum occurred at the end of one step or the beginning of the next). The periodic

-specu*um was followed by relatively narrow regions of period-2 and period-4 spectra and a
broad region of chaotic spectra as shown in Fig. 7-6a.4. At the end of a chaotic region,
the spectrum again became periodic and the entire sequence repeated itself on the next
Shapiro step. The period doubling cascade is thus periodic in dc bias over a large range of
dc bias. If the de bias is increased sufficiently, the mode-locking and period doubling
cascades become weaker and eventually evolve into different spectra presented below. The
period doubling route to chaos can also be achieved by varying rf amplitude for fixed rf
frequency and dc bias. -

Not all switching samples exhibit the period doubling route to chaos as clearly as the
one shown in Fig. 7-6 (sample #2). For instance, in sample #1, a period 1 spectrum (Fig.
7-6a.1) was unattainable in the range of parameters in which period doubling cascades
occurred. At the beginning of a Shapiro step the power spectrum was biperiodic as in Fig.
7-6a.2 and evolved into chaos as dc bias was increased. As dc bias was increased further,
the system jumped onto the next step where the spectrum was again period two.
Apparently, the hysteretic jump always bypassed the region in which the system was

period one.
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Fig. 7-6. (a)- Power spectra of the current response in the Shapiro step region of
sample #2. External rf drive frequency and amplitude as in (b). (1) Vyc=25 mV, period L
(i) Vge=25.1 mV, period 2; (iil) V¢c=25.2 mV, period 4; (iv) Vgc=23.5 mV, chaos.(b)-
Schematic representation of the periodicity of the current response in the Shapiro-step
region for sample #2, for forward- and reverse-bias voltage sweeps.
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7.3.2.2.2. ‘Noisy precursors

In addition to the familiar period doubling route to chaos, a number of more unusual
sequences of power spectra also occur in switching NbSes crystals. In all spectra shown
here the dc bias exceeds the switching threshold, and the rf frequency and amplitude are
fixed. One characteristic sequence is shown in Fig. 7-7. We identify this sequence as an
example of the Virtual Hopf Phenomenon2! (see Section 7.4.2.1.3). For the lowest dc
bias shown (top trace) the spectrum is relatively featureless. As dc bias is increased broad
"bumps" appear symmetrically about f/2=10 MHz. These bumps move symmetrically
toward 10 MHz, until they become sharp peaks located at approximately £/3 and 2f/3.
These peaks broaden again as they move closer to f/2 and finally coalesce into a sharp peak
at /2. For a finite range of dc bias, the power spectrum does not change. Then the f/2
peak suddenly jumps to a lower amplitude and again bumps appear symmetrically about
£/2. These bumps now move symmetrically away from {/2 and eventually disappear. As
dc bias is increased further, the identical sequence repeats itself. As in the period doubling
cascade, tﬁe sequence of power spectra is nearly periodic in dc bias.

A related sequence of power spectra is shown in Fig. 7-8. We call this sequence
"period two with excess noise”. In this series the bottom trace reprersents the smallest
value of dc bias. The spectrum for the bottom trace shows only a sharp peak at {/2=10
MHz. As dc bias is increased, the amplitude of this peak shrinks continuously until the
spectrum changes discontinuously to that shown in the third trace from the bottom, where
the peak at f/2 has grown by 23 dB and broad symmetric structure appeafs on the flanks of
the f/2 peak as well as near the sides of the trace. As the dc bias is increased further, the
symmetric structure first smoothly increases and then decreases in magnitude while
remaining at the same frequency. Finally, the spectrum changes discontinﬁousiy to that of
the top trace of Fig. 7-8, which is virtually identical to the bottom trace. Like the sequence
in Fig. 7-7, this sequence is nearly periodic in dc bias over a broad range of dc bias ‘for

constant rf amplitude and frequency.



110
In the course of sweeping through the large parameter space available in this

experiment, spectra such as those depicted in Fi.g. 7-9 occurred occasionally. Fig. 7-9a
shows a power spectrum with a sharp peak at f/2=5 MHz and broad peaks symmetrically
located at intervals of {/8 about the central peak. Fig. 7-9b shows a power spectrum with
broad peaks at intervals of {/6.

7.3.2.2.3. Mixing

There are also V¢-f combinations for which none of the above instabilities occur. In
these regions of parameter space, only a weak mixing between the narrow band noise and
the rf field is observed. At a given dc bias, peaks occur at the narrow band noise frequency
fobn. at the of frequency f and its harmonics, and at the sum and difference frequencies nft
fabn (n an integer). As de bias is swept, the narrow band noise and sum and difference
frequencies move through the spectrum but no behavior obviously different than simple

mixing is observed. (For a more extensive description of mixing in CDWs, see Ref. 23)
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an example of the "Virtual Hopf phenomenon” (see text, sections 7.3.2.2.2, 7.4.2.1.3).
The power spectra are offset, and each "tic" on the vertical axis is at -80 dBm. The critical
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bandwidths.
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7.3.2.3. Location of the period doubling and noisy precursor

instabilities in paramefer space,

This section describes the location in parameter space of the period doubling and noisy
precursor phenomena. The boundaries of the instabilities described above are convoluted
two-dimensional surfaces in a three dimensional parameter space. We present projections
of these surfaces into three different two dimensional parameter planes.

Fig. 7-10 maps out a region in which period doubling occurs in the rf amplitude-dc bias
plane. For these experiments, sample #3 was current-driven and the driving frequency waé
held constant at 35 MHz. The boundaries of this plot were determined by sweeping dc bias
at constant rf frequency and amplitude and marking the onset and disappearance of the first
period doubling instability . Because of the relatively high témperamrc at which these
experiments were conducted, the period doubling cascade never developed into chaos.

‘Fig. 7-10 shows a threshold rf amplitude above which period doubling is possible. As rf
amﬁlitude is increased, the dc threshold for thﬂe first period doubling instability decreases.
On application of a strong 1f electric field, a similar suppression of the CDW depinning
threshold occurs in nonswitching samples?4. A substantial suppression of V¢ is also
evident in Figs. 5, 6 and 15. The shape of bbundafy in Fig. 7-10 is similar for all of the
instabilities that are periodic in Vg4 (i. e., the instabilities described in Section 7.3.2.2).
The only quali_tative difference is that for some parameter ranges there is an attainable upper
Vrf threshold above which the instability no longer occurs. The shape of the boundary is
also similar for voltage and current driven caseé. '

Fig. 7-11 maps out a regic;n in which period doubling occurs (again, in current-driven
experiments on sample #3) in the rf frequency-dc bias plane. Fig. 7-11 was constructed in
exactly the same manner as Fig. 7-10, except that here the rf amplitude was held constant at
I¢/1c = 0.711c. In this case the period doubling boundary closes on itself, and there are
upper and lower limits in dc bias and rf frequency for the first period doubling instability.

As the 1f frequency is increased, the lower dc bias threshold for period doubling increases.
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A similar trend is also seen in the study of ac-dc interference in nonswitching CDWs. As

the rf frequency increases for constant rf amplitude, higher narrow band noise frequencies
are required for mode-locking to occur and a given n:m mode-locked step moves to higher
dc bias values.

The most revealing way in which to map the parameter dependence of the instabilities in
mode-locking is as a function of rf amplitude and frequency, as is done in Fig. 7-12. By
varying the dc bias at fixed of amplitude and frequency it is possible to observe a number of
different power spectra, as shown in section 7.3.2.2. We define a ranking of the observed
power spectra in order of proximity to the chaotic state:

1) mixing |

2) Virtual Hopf (Fig. 7-7)

3) period two (Fig. 7-6a.2)

4) period two with excess noise (Fig. 7-8)

5) period four (Fig. 7-6a.iil)

6) chaos (Fig. 7-6a.iv).

In order to generate Fig. 7-12, rf frequency and amnplitude were fixed and dc bias was
swept until the power spectrum closest to chaos (as defined in the above ranking scheme)
was observed. Consider the system at a point in the frequency-amplitude plane such that
the period doubling route to chaos depicted in Fig. 7-6 is possible. That point is marked
chaotic in Fig.7-12, even though period one, two and four behavior as well as chaos are
observed for some values of dc bias. The boundaries drawn in this plot are only
approximate, as the instabilities evolve continuously from one type to another.

The behavior of switching CDWs at low temperatures may be summarized using Fig.
7-12 as a guide.

1. For driving frequencies less than 1 MHz, on the‘ left-hand edge of the figure, ac
switching noise occurs for Vae-Vac<Ve<Vge+Vye. Note the power spectrum we call ac

switching noise (Fig. 7-3) is qualitatively different than the power spectrum we call
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chaos (Fig. 7-6a.iv). The power spectrum of ac switching noise decreases

monotonically between harmonics of the ac driving frequency. The power spectrum of
chaos shows broad bumps centered half way between harmonics of the ac driving
frequency.

2. For frequencies between 1 MHz and 5 MHz ac switching noise becomes mixed
with a period doubling route to chaos. AC switching noise is not observed for
frequencies greater than 5 MHz.

3. For frequencies between 5 MHz and 30 MHz, a full period doubling route to
chaos may occur for sufficient rf amplitude. The first simple period doubling instzbility
occurs for rf amplitudes greater than approximately V¢/10. As rf amplitude is
increased further, period two with excess noise (Fig. 7-8) occurs. For yet higher rf
amplitude a period 4 instability occurs. Finally, for rf amplitudes greater than 0.4V¢
the full period doubling route to chaos is observed . For frequencies between Sand 15
MHz, a period doubling route to chaos is observed for the highest rf amplitudes that
will not damage the sample. For frequencies between 15 MHz and 30 MHz, increasing
the rf amplitude causes the system to exit the region in which the full period doubling
route to chaos occurs. As rf amplitude is increased further, the system first enters a
région with only a Virtual Hopf sequence. Finally, the system enters a region where
only mixing occurs.

4. Above 30 MHz, the peﬁod doubling route to chaos is no longer observed
for any rf amplitude. Between 30 and 70 MHz, the most nonlinear behavior is the
Virtual Hopf behavior sequence of Fig. 7-7.

5. Above 70 MHz, only mixing observed.

Fig. 7-12 was constructed for sample #1, but the shape of this plot is similar for

different switching CDW samples.
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Fig. 7-10- First period doubling region in the dc bias- rf amplitude plane for sample #3.
The figure was constructed by sweeping dc bias forward for rf frequency =35 MHz and
various rf amplitudes. The filled circles mark the sudden appearance and disappearance of
a strong peak at f/2 in the power spectrum. '
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Fig. 7-12- Location of the instabilities described in Figs. 7-6 to 7-8in the rf-{requency -
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7.3.3. Instabilities for T>Tswitch

Just above the switching onset temperature, a number of instabilities disappear. The ac
switching noise, which is directly associated with a low frequency rf field driving the CDW
repeatedly through the switch, is no longer present. Neither is a full period doubling route
to chaos observed, However, period 2 and period 4 instabilities, as well as the virtual
Hopf (Fig. 7-7) and period two with excess noise (Fig. 7-8) are still observed. Fig. 7-13
locates these instabilities in rf frequency-rf amplitude space. Fig. 7-13 was constructed in
the same manner as Fig. 7-12, but for T = 37K instead of T = 19K. The boundaries in
Fig. 7-13 are similar to those in Fig 7-12, except that certain instabilities no longer appear.

The differential conductance at 37K for a series of rf amplitudes for rf frequency 30
MHz is shown in Fig. 7-14. This figure should be compared with Fig. 7-5. For V=0,
simple CDW depinning is observed. As Vi is increased, troughs develop in the differential
conductance, signifying the onset of mode-locking. As Vg is increased further, period
doubling instabilities are observed. The mode-locked regions become broad for
intermediate values of Vs, filling most of the available range of dc bias at V=0.1Ve. As
V¢ is increased further, the mode-locked regions become narrower and period doubling
occurs less frequently. Finally, for Vg =0.4V ¢, the differential conductance is high over
most of the available range of dc bias, and period doublﬁng occurs not at all. There are two
sets of interference troughs in this sample (most clearly visible in the high Vi data),

indicating the presence of two domains with different velocities.
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7.4. Analysis

The Results section of this chapter has described a number of unusual instabilities that
occur only in switching crystals of NbSe3. In this section these instabilities are analyzed in
terms of the phase slip picture of switching, using simple mathematical models borrowed
from the modern theory of nonlinear dynamical systems. A phase slip model of switching
was proposed in Ref. 2. Anomalies in the ac conductivity of switching CDWs are
explained in terms of a phase slip model in Ref. 3. Theoretical details of a phase slip,
model, and extensive simulations of a differential equation proposed to describe the phase
slip process, are to be found in Ref. 4.

According to the phase slip picture of switchingl#:23, in crystals which show
switching at low temperatures, the CDW is pinned by sparsely distributed ultrastrong-
pinning centers as well as conventional, weaker impurities. For electric fields below a
critical electric field E¢:, the CDW becomes heavily polarized, but the ultrastrong-pinning
centers prevent it from sliding . The CDW switches and begins to slide only when the
polarization energy is sufficiently large to cause the CDW amplitude to collapse at the
strongest pinning centers. When the amplitude collapses, the CDW phase advances by a
multiple of 2r, partially relieving the CDW polarization and allowing the CDW amplitude
to increase again from zero. However, the CDW polarization rapidly builds up again,
causing another amplitude collapse and phase slip. Once the critical field has been
exceeded, the CDW advances by periodic slips of the CDW phase. The average pinning
force due to the ultrastrong pinning centers collapses as the electric field is increased above
the critical value. Thus, once it depins, the CDW slides with a rapid velocity, comparable
to that it would have for the same electric field in the absence of strong pinning centers.

The instabilities observed in switching samples of NbSe3 can be divided into low- and
high-frequency categories. The low-frequency instabilities are the large 1/f noise and

intermittency associated with negative differential resistance 26,27, and ac switching noise
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(analyzed in section 7.4.1). The low frequency instabilities are attributed not to the details

of the phase slip process, but to the complex dynamics of many asynchronous phase-
slipping domains. The high-frequency instabilities are the period doubling and related
instabilities associated with mode-locking (analyzed in section 7.4.2). The high frequency
instabilities are attributed to the dynamics of synchronized phase-slipping domains. The
mathematical formalism used to describe the instabilities in mode-locking is the sine circle
map, which has been used in recent years as a paradigm of mode-locked systems (Section
7.42.1). The physical basis for the observation of period doubling and related
instabilities in mode-locked switching CDWs is the motion-dependent inertia associated
with the phase slip process (Section 7.4.2.2).

7.4.1. AC switching noise

AC switching noise occurs when a sample is driven through the switch in the d¢ -V
curve at frequencies less than 1 MHz. These frequencies are low on the scale of typical
narrow band noise frequencies (1-100 MHz), and on the scale of the crossover frequency
in the ac conductivity (30 MHz). It is thus reasonable to model ac switching noise in the dc
limit, ignoring dynamical effects such as entrainment or motion-dependent inertia. In the
dc limit, there are two possible contributions to an increase in the broad band noise level
when the sample is repeatedly driven through the switch in the I-V curve. If the sample is
repeatedly depinned by a sinusoidal voltage, the power spectrum of the CDW current must
include a broad band component due to the ordinary broad band noise associated with
sliding CDW conduction. However, the ac switching noise of Fig. 7-3 is as much as 10
dB larger than the broad band noise associated with sliding CDW conduction, We propose
that ac switching noise arises because the switching process itself is unpredictable.

Consider the current ‘through a switching sample driven by a sinusoidal voltage. If the
switch occurs instantaneously ai exactly the same voltage for each cycle of the sinusoidal
drive, then (ignoring broad band noise associated with sliding CDW conduction) the CDW

current will be a perfectly periodic function of time. Only harmonics will appear in the
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power spectrum of the CDW current. However, if the switch occurs at a slightly different

voltage each cycle of the ac drive, or if the switch itself takes finite time to occur and is
irregular, then the CDW current will not be a perfectly periodic function of time. The
power spectrum of the CDW current will contain harmonics plus a broad band component.
Thus the observation of ac switching noise supports the notion that switching is an
unpredictable process. ”

The conclusion that switching is unpredictable is consistent with previous observations
of Zettl and Griiner28. Current pulses with I>Ic were applied to a switching sample. The
CDW remained pinned for a time Tyaj after the beginning of the puise and then depinned in
a shorter time Tswitch, The waiting time was a random variable, distributed about its mean
with a Lorentzian probability distribution. The mean Tywai; and the width of the distribution
were found to decrease as the height of the pulse I above threshold increased. For pulse
height 1=1.01 Ic, the average Twajt was 100 psec. The switching ime Tswitch was of the
order of ] pisec.

For a switch to occur, a large fraction of the CDW must depin. This means that the
domains associated with many ultra-strong pinning centers must begin to slide at nearly the
same time. An appealing picture of the onset of CDW conduction in a switching sample is
that, when a critical electric field is exceeded, an avalanche of the ultra-strongly pinned
domains occurs. The results of Zettl and Griiner have been modeled by Joos and Murray2?
as arising from such an avalanche-like process. The CDW is treated as a two-dimensional
ribbon of identical domains (the physical origins of the domains and their couplings are not
specified in this model). When an electric field exceeding threshold is applied to the
crystal, each domain is assigned a probability per unit time of depinning. Once a single
domain is depinned, it can triggef depinning of neighboring domains, thus setting off a
"depinning wave", or avalanche. The model reproduces the waiting and switching times
reported by Zettl and Griiner28. It is likely that the Joos-Murray model sinusoidally driven

through threshold at frequencies less than 1/Tgwich will result in power spectra similar to
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-those for ac switching noise (a broad band component plus spikes at the drive frequency

and its harmonics).

In attributing ac switching noise to a repeated avalanche process, we are invoking a
many-degree of freedom explanation. An avalanche takes a finite amount of time to occur,
as observed in switching CDWs by Zettl and Griiner. When a switching CDW is driven at
frequencies greater than 1/Tswitch (=1MHz), the avalanche will not have time to occur. A
qualitatively different regime of switching CDW dynamics ensues, and is described in the
next section

7.4.2. Mode-locking

It is crucial to include many degrees of freedom in order to understand most aspects of
the dynamics of nonswitching samples 14.15.34.35, In switching samples, many degree of
freedom pictures have been invoked to explain depinning, the instabilities associated with
negative differential resistance, and ac switching noise. Thus it is surprising that the
simpiest route to chaos, the period doubling route, occurs in swuching CDWs. This route
to chaos occurs in systems with a small number of active degrees of freedom. Evidently,
the many-body dynamics of switching CDWs "collapses” during mode-locking to a state in
which only a few degrees of freedom are important. This collapse is similar to the broad
band noise suppression observed during mode-locking in nonswitching CDWs!0. Thus,
even though the dynamics of the mode-locked states in switching CDWs are more
complicated than those of nonswitching CDWs, in both cases the dynamics are
characterized by few degrees of freedom

Given the low-dimcnsionai dynamics of the mode-locked switching CDW systern, it is
appropriate to analyze our results mathematically in terms of low-dimensional maps and
differential equations. In section 7.4.2.1, mede-locking in switching CDWs is examined
in light of dynamical systems theory. In 7.4.2.1.1 the structure of mode-locking in
switching CDWs is shown to be consistent with the simplest mathematical realization of a

mode-locking system, the two-parameter sine circle map. For parameters appropriate to
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our experiments, the sine circle map predicts a period doubling route to chaos which may

be modeled by the even simpler one-parameter logistic map. In 7.4.2.1.2, the period
doubling route to chaos is compared to the period doubling cascade in the presence of noise
studied by Huberman and Crutchfield20. In 7.4.2.1.3, the instabilities of Figs. 8-10 are
compared with predictions of Wiesenfeld20.21 for noisy precursors of co-dimension one
bifurcations. In section 7.4.2.2 the physical mechanisms for mode-locking in switching
CDWs are explored

7.4.2.1. Dynamical systems analysis

7.4.2.1.1. The sine circle map and the structure of mode-locking

The sine circle map is a discrete mapping that has been studied extensively as a
paradigm of natural systems with two competing periodicities!718.32-34. Natural systems
evolve in continuous time. However, all the information contained in continuous time
orbits is superfluous to an understanding of many aspects of the dynamics. Consider a

periodically driven system like the ac+dc driven damped pendulum3!

2
B%ﬁ + %%+ sin(8) = fyc + fac sin(wt) 7-1)

The equation is written in dimensionless form. 6 is the phase of the pendulum, B is a
parameter quantifying the inertia of the pendulum, fac and fac are respectively the de and ac
torque on the pendﬁlum, and © is the dimensionless frequency of the ac torque. To
determine the time average phase velocity d/dt or the frequency of the pendulum'’s orbit

relative to the frequency of the ac drive, it is necessary to sample the phase only once each

cycle of the ac drive at 8,=8(t=nT), where n is an integer and T=2m/w. It has been shown

for certain parameter values that Eq. 7-1 may be modeled bv a one-dimensional mapping of

the circle (8) onto itself32. The most studied member of this class of mappings is the sine

circie map

Bl = 0n+Q + “2‘KE Sin(27m0,) 1-2)
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The solutions to Eq. 7-2 have a rich structure which has been investigated in detail by many

authors!7.18.32-34_ Particular attention has been devoted to the universal scaling behavior
of high order mode-locked states near the quasiperiodic transition to chaos at K=1. We
find that, for switching CDWs, Eq. 7-2 has predictive power for even the low order 0:1,
1:2 and 1:1 mode-locked states.

The structure of mode-locking predicted by the circle map for the 0:1, 1:1 and 1:2
mode-locked steps is shown in Fig. 7-15, for 0<K<3.5. Since 8 is a mod 1 variable, the
structure of mode-locking is perfectly periodic in Q, repeating itself with a periodicity 1. A
detailed calculation of the structure of mode-locking for 0<K<1.5 has been performed33.
We have added a calculation of the boundaries of the 0:1, 1:2 and 1:1 mode-locked regions
for values of K up to 3.5. The boundaries of the 0:1 and 1:1 steps were determined by a
simple linear stability analysis. The boundaries of the 1:2 step were calculated by iterating
the circle map on a computer in the neighborhood of the boundary until the 1:2 behavior
lost stability to an unlocked state.

For K<1, the sine circle map is a monotonically increasing function of 6. The fraction
of the Q axis occupied by mode-locked regions is a small but increasing function of K for
K<1. When the solution is inside the 0:1 or 1:1 region, 6 is at a period 1 fixed point and
returns to the same value each iteration of the map. The winding number W= lim (6n-
00)/N is O(mod 1), independent of Q. If the solution is in the 1:2 region, the winding
number is 1/2 independent of Q and q is at a period 2 fixed point. In between the 0:1 and
1:1 steps the system alternates between higher order mode-locked states and unlocked
{(quasiperiodic) states.

At K=1, the sine circle map develops an inflection point and the power spectrum
develops broad band noise. This is the quasi periodic transition to chaos, which is distinct
from the period doubling route to chaos we have observed. AtK=1, it has been shown for
the sine circle map that the space between mode-locked steps is a fractal with dimension

0.8717. This prediction has been verified in several physical systems3>.
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Above K=1, the circle map has a local maximum, and the possible states of the system

are different33:34. At the edges the (n:1, n:2) regions shown in Fig. 7-15, the solutions
are mode-locked as for K<1, with W=(0,1/2) a:-ad periodicity (1,2). As Q is swept toward
the center of the mode-locked regions, the solutions maintain their wihding number but
undergo period doubling instabilities!8. For sufficiently high K, the solutions near the
centers of the mode-locked regions become unlocked and chaotic. The first period doubled
states occur inside the n:1 locked regions for K>2 18, and at lower values of K for higher
order mode-locked states. For K>, the 0:1 and 1:1 steps begin to overlap. As Q is
swept, the system jumps hysteretically from one step to the next. For K near =, as Qis
swept from the edge of a step towards the middle, a period doubling route to chaos is
observed3®. This is consistent with experiment (see Fig. 7-6).

It is not straightforward to make a one-to-one correspondence between the parameters
of our experiment and the parameters of the circle map. The winding number W is defined
as the large N limit of (8x - 680)/N. W is proportional to the average phase velocity of the
pendulum, or in our experiment to the dc velocity of the CDW. In the absence of
nonlinearity (K=0), W=Q. In the high dc field limit, Vq. is proportional to the CDW
velocity. Since depinned switching CDWs are in the high.ﬁcld limit?, it is reasonable to
make a correspondence between W and Ve over small ranges of dc bias. The strength of
the nonlinearity K is most closely related to the experimental parameter Vif. However,
changing V,f changes both the strength of the nonlinearity and the threshold foi:\depinning a
CDW. Thus changing Vrin an experiment corresponds to changing both €2 and K in the
circle map. In our comparison with the circle map, we assume that, for fixed Vrf, changing
the dc bias between the Oth and Ist mode-locked steps corresponds to changing £ at
constant K in the circle map.

Fig. 7-16 shows the structure of mode-locking for sample #1 at T=19K driven by a 30
MHz 1f field. The regions of 0:1 (pinned), 1:2 and 1:1 mode-locking are plotted in the V-

Vs plane37. At the lowest values of Vi ( top of this figure), there is a hysteretic transition
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between the 0:1 and 1:1 steps, and the 1:2 step is eclipsed. There is no space between the

0:1 and 1:1 steps. The period doubling route to chaos is most strongly developed in this
region of most hysteretic mode-locking. For higher values of Vy (lower in the figure) the
1:2 step emerges and a smaller fraction of parameter space is occupied by the mode-locked
regions shown. Period doubling instabilities persist, but the period doubling cascade is not
so fully developed as in the highly hysteretic region. Below the critical line drawn in this
figure, the period doubling and other instabilities are no longer observed, and the 1:2
mode-locked region takes up a smaller and smaller fraction of the space between the 0:1
and 1:1 mode-locked regions.

Fig. 7-17 shows the 0:1, 1:1 and 1:2 mode-locked steps (also for sample #1) for f=50
MHz and T=37K, just above the switching onset temperature. For these parameters,
period two, period four, and Virtual Hopf behavior were observed, but fully developed
chaos was not observed. Unlike in the low temperature case, the 1:2 mode-locked step is
always visible for this set of parameters. For low values of Vif, no period doubling
instabilities are observed and the 1:2 step occupies a relatively small fraction of the space
between the 0:1 and 1:1 steps. As Vit is increased, the fraction first increases and then
decreases. Period doubling instabilities are observed in the intermediate range of Vir. For
the highest values of Vg, the fraction occupied by the 1:2 step shrinks to a very small value
and no period doubling instabilities are observed.

Figs. 16 and 17 demonstrate that the fraction of parameter space which is mode-locked
is positively correlated with the presence of dynamical instabilities. This behavior is
consistent with Fig, 7-15, calculated from the sine circle map. However, Figs. 16 and 17
show a surprising correspondence between the parameter K in the circle map and the
experimental parameter Vit At T=19K, V(g is negatively correlated with K: small (large)
values of Vrf correspond to large (small) values of K. At T=37K, K appears to first
increase and then decrease as Vg is ﬁonotonically increased. The dependence of the

strength of the nonlinearity on Vi will be discussed in section 7.4.2.2.
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.2 and 1:1 mode-locked regions of sample #1 for tempera ure 1t
above the switching temperature. Period doubling is observed only between tie sui..
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The period doubling route to chaos and the structure of mode-locking are both nearly

periodic in dc bias over a certain range of dc bias. For instance, the 1:1, 3:2, and 2:1
mode-locked regions could have been plotted in Figs. 15-17 instead of the 0:1, 1:2 and 1:1
regions. The dependence of the widths of the mode-locked re gions on Vg is similar. The
major difference is that the 1:1 region is narrower than the 0:1 region.

The circle map's best known predictionl is that the fractal dimension of the space
between mode-locked steps is 0.87 at the critical line K=1. The critical line is usually
identified in physical systems by a sudden onset of broad band noise signalling the
quasiperiodic transition to chaos. An attempt was made to verify this prediction in
nonswitching CDWs, but the critical line was not located?. The fractal dimension of the
space between mode-locked steps in nonswitching CDWs has been measured for various rf
amplitudes, and it was found that the fractal dimension was less than 0.87 for all values of
the applied rf amplitude38. Thus it appears that, in the language of the circle map, mode-
locking in nonswitching CDWs is always subcritical (described by the circle map with
K<1)39.

The observation of period doubling in mode-locked switching CDWs indicates that
mode-locking in this system can be supercritical (period doubling occurs in the sine circle
map for K>1). Thus it is possible to test some scaling predictions of the circle map. The
critical lines in Figs. 16 and 17 separate regions in which period doubling is and is not
observed in a switching CDW sample. The "dimension” of the unlocked space along these
lines should be a lower bound4? to the dimension predicted by the circle map at the
quasiperiodic transition to chaos. We find40 d=0.85+.05 at the lower critical lines in Figs.
16 and 17. This lower bound on d is in agreement with the predictions of the circle map.

The structure of mode-locking in switching CDWs is seen to be consistent with the
predictions of the circle map in nontrivial ways. 1) The presence of dynamical instabilities
is correlated with the width of mode-locked steps. 2) The structure of mode-locking and

the period doubling route to chaos are periodic in dc bias. 3) The period doubling cascade
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occurs.as the system is pushed from the edge of mode-locked regions toward the middle.

4) The dimension of the space between mode-locked steps at the critical line is within
experimental error of the prediction of the circle map.

7.4.2.1.2. Period doubling route to chaos

The circle map has a quadratic local maximum for K>1. The presence of the local
maximum leads to the period doubling route to chaos, which may be described in terms of

an even simpler discrete map, the 1-parameter logistic map1641
Xn+1=bXn(1-Xp) (7-3)

X is between 0 and 1 and b is between 0 and 4. As the bifurcation parameter b is increased
from O, the steady state orbits undergo an infinite sequence of period doubling bifurcations
which accumulate geometrically at some critical parameter be. For b>be, the orbits are
chaotic and fall in attractors with 2™ bands. As b is increased beyond b, these bands
merge pairwise until there is only a single chaotic band. Hence there is an apparent
symmetry about b=b¢: for b<b, the orbits are periodic with period 2%. For b>bg, the
orbits are chaotic but they lie in attractors with 2™ bands and hence their power spectra look
like noisy versions of 2M periodic orbits. Huberman and Crutchfield!® studied Eq. 7-3 in
the presence of external noise. They showed that for a given noise level, the period
doubling cascade is truncated at some 2™ periodic orbit and the system goes into a 2M band
attractor. All the states with period greater than 2™ and all the attractors with more than 27
bands are washed out by the noise. The absence of high order periodic orbits in the
presence of noise has been called the "bifurcation gap”.

The bifurcation gap is evident in the sequence of power spectra in Fig. 7-6. The period
doubling sequence is truncated at period 4. The spectrum in Fig. 7-6a.iii has significant
noisy flanks on the sides of the period 4 subharmonics, indicating that this spectrum is
between period 4 and a 4 band attractor. Fig. 7-6a.iv, with its néise peak centered around

£/2, is the spectrum of a 2-band attractor. This sequence of spectra is a period doubling
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route to chaos with all of the states between the period 4 orbit and the 4 band attractor

removed.

7.4.2.1.3. Noisy precursors

The observaton of the bifurcation gap dramatizes the importance of taking into account
the effects of noise in explaining our experimental results. An elegant theory of the effect
of noise on codimension one bifurcations of dynamical systems has been developed by K.
Wiesenfeld20. The theory is based on the fact that a dynamical system that is near a
bifurcation is almost unstable and hence is more susceptible to noise than one that is far
from a bifurcation. Thus power spectra of dynamical systems near codimension one
bifurcations exhibit bumps near the frequency at which an instability is about to occur. For
instance, when a system driven at frequency f is near a period doubling bifurcation, the
theory of noisy precursors predicts that a broad bump at f/2 will appear before one actually
observes the sharp peak at £/2 that signifies that the period doubling bifurcation is complete.
Another type of codimension one bifurcation of a periodic orbit is a Hopf bifurcation. Ina
Hopf bifﬁrcation, a periodic orbit whose power spectrum has only a single frequency and
its harmonics becomes unstable to a quasiperiodic orbit in which two incommensurate
frequencies appear.

The noisy precursor phenomenon most closely related to our observations is the Virtual
Hopf Phenomenon2!, The sequence of power spectra characteristic of this phenomenon is
shown in Fig. 7-18. In the top trace of Fig. 7-18, the power spectra show bumps
symmetrically located about half the driving frequency. These are the precursors to a Hopf
bifurcation. However, as the bifurcation parameter is tuned,the bumps move towards /2
and the spectra evolve into the precursors for a period doubling instability. In the third
trace of Fig. 7-18, the system has undergone a period doubling bifurcation. The height and
width of the noisy precursor peaks are related to the rate at which the system relaxes to a
limit cycle after it has been kicked off the limit cycle by a perturbation. The width of the

noisy precursor peak is a measure of the longest relaxation time of the system. It has been



137
argued that this phenomenon should be common in dynamical systems exhibiting a period

doubling instability.

Sequence of power spectra presented in Fig. 7-7 resembles very closely the sequence
characteristic of the virtual Hopf phenomenon. Fig. 7-8 is not identical to the Virtual Hopf
Phenomenon, but the appearance and disappearance of broad bumps in the power spectrum
is strongly suggestive of a noisy precursor explanation. Frc;m the 1 MHz width of the
broad bumps in both figs. 8 and 9, we extract a relaxation time of the order of 1 psec. The
spectra in Fig. 7-9 may also have a noisy precursor explanation.

An alternate explanation of the spectra in Fig. 7-7 is possible. The spectra in this figure
look very much like spectra observed during mode-locking of ordinary nonwswitching
samples!2. The broad bumps that travel through the spectrum could be interpreted as
narrow band noise peaks which become mode-locked on subharmonic steps when the
peaks sharpen into period three and period two. This explanation is problematic because
the appearance of a strong peak at f/2 did not necessarily coincide with the observation of a
n:2 step in the differential resistance. This matter requires further investigation. There is

no easy explanation for the spectra in Fig. 7-8 as arising from narrow band noise in

conventional mode-locking.
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Fig. 7-18- Sequence of power spectra characteristic of the Virtual Hopf Phenomenon

(Reprinted from ref. 21).
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7.4.2.2. Physical mechanisms of mode-locking and periocd doubling

Section 7.4.2.1 classified certain aspects of mode-locking in switching CDWs as
manifestations of behavior common in simple nonlinear dynamical systems. This section
examines mode-locking in ac-dc driven switching CDWs in terms of the underlying
physical processes. Period doubling and chaos in switching CDWs are explained as the
frustrated response of a strongly entrained system with a motion-dependent inertia3«4,
Period doubling and chaos occur over a limited range of driving frequencies, driving
amplitudes and dc biases. These boundaries for nonlinear behavior are qualitatively
explained and it is suggested that switching CDWSs depolarize on a time of the order of 1
usec. The physical relevance of the circle map nonlinearity parameter K is discussed.

Inertia does not appear to play any role in nonswitching CDW transportl. In contrast,
mode-locking in switching CDWs has many characteristics of an inertial, underdamped
responsel5. The symptoms of nonnegligible inertia are hysteresis in the dc IV curve, and
the inductive ac conductivity observed in switching CDWs biased past threshold36. The
simplest differential equation which incorporates inertia and exhibits mode-locking is the
much studied pendulum equation (Eq. 7-1). The soluticns to this equation share many of
the features of the experimentally observed behavior of mode-locked switching CDWs.
For b>1 (underdamped), the solutions to the pendulum equation exhibit hysteretic Shapiro
steps, and a period doubling route to chaos is observed on some of these Shapiro steps*3-
45, We conclude that some "pseudo-inertia” plays a significant role in switcching CDW
transport.

The underdamped pendulum equation does not agree in detail with the behavior of
switching CDWs346. The ac conductivity of a switching CDW with no applied dc field
appears overdamped. This is contrary to the prediction of Eq. 7-1, and indicates that the
pseudo-inertia is only effective when the CDW is in motion 3,4, Equation 6 predicts a
chaotic responsed3 only for drive frequencies B-1<w<f-1/2 . This is a much narrower

range than observed in switching CDWs. Finally, the period doubling route to chaos in
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Eq. 7-1 is not periodic in dc bias as itis in CDWs43, The period doubling route may occur

on one step, then skip the next step. In fact, as dc bias is increased in Eq. 7-1, mode-
locked steps are not necessarily visited in order of increasing winding number?3. In
switching CDW:s, these steps are always visited in order of increasing winding number (e.
g., the CDW current increases monotonically with dc bias).

The phase slip process gives rise to a motion dependent inertia which can qualitatively
account for the chaotic response of a switching CDW3:4. The phase slip process requires a
macroscopic polarization of the CDW prior to the collapse of the CDW amplitude. After
the amplitude collapse, it takes a finite time 1 for the CDW to depolarize and slide. This lag
in the response is equivalent to inertia (in inertial systems, the response lags the force).
When the phase slip process is entrained at a frequency of order 1/t, the CDWs tendency to
follow the external forcing may compete with its requirement to "remember™ its previous
polarization state. This competition leads to a frustrated subharmonic or chaotic response.
Period doubling occurs both just above and below the switching onset temperature. The
period doubling observed just above the switching onset temperature can also be attributed
to the polarization-induced inertia, because at these temperatures significant polarization
may occur without a hysteretic switch.

The longest depolarization time provides a natural lower bound on the rf frequency
required to produce a frustrated response (There may in principle be many depolarization
times in a given sample, and the distribution of these times may depend on driving
conditions). Period doubling and chaos occurred in our measurements on sample #1 only
for driving frequencies greater than 1 MHz, suggesting that the longest depolarization time
in this sample was of the order of 1 usec. Other experimental results also suggest that the
longest depolarization times T in switching samples are of the order of 1 usec. The width
of a noisy precursor reflects the longest relaxation time of a system. The noisy precursors
shown in Figs. 7 and 8 for sample #1 have Qidths of order 1/1 usec. The switching time

Tewitch ascertained from pulsed experiments is also likely related to the depolarization time.
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Measurements on a different sample by Zettl and Griiner?8 found Tswiich of the order of

1psec. There are also upper bounds in parameter space for the observability of period
doubling and related instabilities. The disappearance of these frustrated responses for large
rf amplitude, de bias or rf frequency can be attributed to a suppression of motion-dependent
inertia. If the CDW is forced to move too rapidly, the polarization and depolarization
which are inherent to the phase slip process do not have time to occur. The motion-
dependent inertia is suppressed. In the absence of motion-dependent inertia, the switching
samples should behave like nonswitching samples. This similarity is borne out in Figs. 5
and 14, For the rf amplitudes above which period doubling instabilities are observed, the
differential conductance curves look similar to those for nonswitching CDWs. As a
function of dc bias, there is a relatively small ratio of locked to unlocked space these high rf
amplitudes.

It is now possible to make a physical interpretation of the nonlinearity parameter Kin
the circle map, at least for switching samples. Period doubling and chaos in switching
CDWs occur for large values of K (small space between mode-locked steps). However, K
decreases as rf amplitude is increased to large values. It was argued above that motion-
dependent inertia also should decrease as rf amplitude is increased. Thus it appears that K
is correlated with the motion-dependent inertia of the switching CDW system.

There is 2 more general mathematical argument for the presence of an upper boundary
on the region in which period doubling instabilities are observed. When a nonlinear
differential equation is forced sufficiently strongly, the nonlinearity becomes a mere
perturbation on a linear system 13,14. The dimensionless overdamped pendulum equation
(Equation 6 with B = O)illustrates the reduction of the effective nonlinearity of a system by

strong forcing.

%—?—--ﬁ» $inf = egc + €y sin(wt) (7-4)
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Consider the limits: ege>>1, erp=l, w=1, e>>1, ege=1, =1 and eqc=1, ef=1 and >>1.

In the limit of large (edc, €ac, ®), d6/dt is of the order of (eqc , €acs ), while the nonlinear
term sin@ is much smaller, of order 1. For large driving parameters, the effective
nonlinearity of the overdamped pendulum equation becomes small. A similar analysis for
the pendulum equation with finite mass is more complicated. However, it is expected that
for large dﬁving parameters, the effective nonlinearity of underdamped pendulum equation
will also be reduced. The upper boundaries in Vg, Vif and @ can be attributed to the
decreased effective nonlinearity of the switching CDW system for large driving parameters.
The argument also explains why the widths of Shapiro steps in nonswitching samples

decreases at high values of V14

7.5. Conciusion

The dynamical instabilities observed in switching CDWs can be divided into two
categories. Instabilities in the first category occur for low driving frequencies. These
instabilities include the 1/f noise and intermittency observed for current driven switching
CDW's in an NDR region, and the ac switching noise observed for combined low
frequency dc and ac electric fields. The low frequency instabilities are attributed to the
many degree-cf-freedom dynamics many phase-slipping domains. The instabilities in the
second category occur for high frequency (>1 MHz) driving electric fields. The high
frequency instaijilities are the period doubling route to chaos and related instabilities. For
high driving frequencies, the independent switching CDW domains are synchronized by
the rf electric field, causing the many-degree of freedom dynamics of the switching CDW
system to collapse onto a subsystem with few dynamical variables. The collapsed
dynamical system undergoes the period doubling route to chaos, which is characteristic of
systems with few degrees of freedom. The one-dimensional circle map, the logistic map
and the theory of noisy precursors explain many details of the second category of

instabilities. Physically, period doubling in this case may be viewed as the frustrated
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response of an inertial CDW which is strongly entrained by aradio frequency electric field.

The CDW inertia arises naturally from the phase slip process.

This chapter has for the first time presented and classified a rich and varied assortment
of instabilities observed in switching CDWs. This chapter represents the most successful
application of the modern theory of nonlinear dynamical systems to the study of CDW
systems. There is much room for further application of the tools of nonlinear dynamics to
the study of this rich system. For instance, thé theory of nonlinear dynamical systems
provides a quantitative method for estimating the number of degrees of freedom involved in
a chaotic process. The required procedure is to calculate the Hausdorff dimension of a
chaotic attractor from a chaotic time series. This procedui'e is difficult to implement in
switching CDWs because of the high frequencies involved. It would be useful to directly
determine the number of degrees of freedom involved in the chaotic dynamics of switching

CDWs by measuring the Hausdorf dimension of the instabilities of switching CDWs.
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8. Electro-elastic coupling in charge density wave media

8.1. Introduction

Chapters 6 and 7 explored some aspects of mode-locking between the electronic
degrees of freedom in a CDW and externally applied ac and dc electric fields. One
conclusion of chapters 6 and 7 is that the number of electronic degrees of freedom active in
CDW transport is drastically reduced during mode-locking!. This chapter explores the
effect of mode-locking on the elastic properties of CDW conductors. A model of CDW
elasticity is presented and solved for the cases of a CDW driven by dc, ac and combined ac
ana de electric fields2. It is shown that mode-locking stiffens a CDW crystal by freezing
out some of the degrees of freedom: in the coupled lattice-CDW system.

Brill and Roark3, and Mozurkewich et al.4, first demonstrated that the elastic response
of CDW crystals is highly sensitive to applied electric fields. In particular, the crystal
Young's modulus Y strongly decreases and internal friction & strongly increases when the
CDW is depinned by a dc electric field Eqc exceeding the threshold field E1. More recent
experiments by Bourne et al.5 show striking anomalies in Y and & when the CDW is
excited by combined dc and ac electric fields which induce electronic mode-locking.

The single- and many-degree-of-freedom models 6-9 reviewed in Chapter 5 assign
degrees of freedom only to the CDW phase and not to the impurities or the lattice. Thus
these models make no predictions about the response of the lattice to a sliding CDW. In the
first attempt to calculate the elastic properties of CDW crystals, Coppersmith and Varmal0
considered a rigid CDW sliding through a deformable lattice. Althou gh an anisotropy was
found for the velocity of sound, the predicted effects were orders of magnitude smaller than

the experimentally observed changes in Y and 3 due to CDW depinning.

8.2. The model
This chapter proposes a model for CDW dynamics and elasticity in which degrees of

freedom are assigned to both the lattice and the CDW. The model is an extension of
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models based on the Fukuyama-Lee Hamiltonian Eq. 5-2. Elasticity is incorporated into

the underlying lattice by a discretization which breaks the lastice and associated pinning
potential into rigid units of mass M coupled harmonically by springs with spring constant
K. The CDW is represented by discrete particles of mass m coupled harmonically to
nearest neighbors by spring constant k. The mechanical anglog of this model is shown
schematically in Fig. 1. The model can describe both commensurate and incommensurate
cases, and it can also be extended to the random pinning case. Eqs. 8-1 to 8-3 are for the
commensurate case, in which the wavelength of the sinusoidal potential is equal to the
equilibrium length of the springs connecting adjacent lattice or CDW particles.
Assuming only nearest neighbor interactions, the potential cnergy function is
N

V= Z;{rj‘rj~l)2*‘§(xj“xj- 1)2+V(1-cos{Q(rj-x;j)]) (8-1)
=1

where 1j and x; are respectively the (laboratory frame) positions of the jth CDW mass and
jth lattice unit, V is the strength of the impurity pinning potential, and Q = 2m/A with A the
CDW wavelength, and N the total number of lattice (and CDW mass) units. Applying

Lagrange's equations (and adding internal friction and external forcing) yields equations of

motion
d2ri  d(ri-x; ‘
mdtlz'i -y (rcll th + K(2I‘j—rj+1—rj-1) + QVsin[Q(rj-x)] = fj(1) (8-2)

d2x; PR s
M 42 +rd(2X1 5‘3{1 XH»I) +~I.d(X; 1‘1) +K(2xj'xj+i“Xj-l)“’f“QVSin[Q(x}'-rj)} = Fj(t) (8-3)

where T is the internal friction of the lattice and 7 is a frictional coupling between the CDW
and lattice. fj(t) is the force applied to the jth charged CDW particles by external electric

fields, and Fj(1) is the external mechanical force applied to the jth lattice unit. In the limit
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K--> o (rigid pinning potential), Egs. 8-3 become trivial and Eqs. 8-2 reduce to the driven

Frenkel-Kontorova model®.

In a typical experimental situation, screening by normal (uncondensed) electrons in the
CDW crystal insures a relative uniformity of the applied field E throughout the crystal.
Thus, in Eq. 8-2, we set fj{t) = f(t). For a general forcing term f(t) = Eqc + Eaccos(wt),
with By the ac electric field amplitude, Egs. 8-2 and 8-3 are analytically intractable, except
if one considers small amplitude excitations and linearizes them. We here reduce the
infinite set of equations 8-2 and 8-3 to the smallest set of equations that retain the essential
physics of an elastic CDW interacting with an elastic lattice. The infinite chain of lattice
units and CDW _particles is truncated to three units. With clamped-clamped boundary
conditions, the lattice is reduced to a single (renormalized) unit with its nearest neighbors
fixed to the laboratory frame. The CDW is represented by a single (renormalized) particle

whose neighbors are fixed to the CDW center of mass frame. The resulting equations of

motion are
2 .
m*filtZr *+ ch(EIX).+ kc(r-veomt) + eETsin[2kp(r-x)] = e[Edc+Eaccos(w@t)] (8-4)
2 .
_Mig + 'yc-‘%‘t—’h FL%?+ Kix + eEpsin[2kp(x-r)] = Fcos(rt) (8-5)

where r and x are respectively the laboratory positions of the CDW center of mass and
lattice. m* is the total CDW effective mass in the crystal, e the total charge of the CDW,
Mj. the lattice mass, Yc and I‘_L respectively the total CDW damping and internal lattice
friction, and kg is the Fermi wavevector. k¢ and K, parameterize respectively the total
elasticity of the CDW and underlying lattice. Fcos(wyt) is the mechanical force applied to
the lattice, the response to which determines the elastic properties of the system. The dc
velocity of the CDW center of mass is Vcom- Subtracting the position of the CDW center of

Mmass Veomt from the variable r in the third term of Eq. 8-4 ensures that the CDW may slide
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continuously through the lattice, with k¢ responding only to ac excitations (see Appendix C

for details).
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Fig. 8-1: Mechanical analog of the model of CDW elasticity, () for the infinite case
(Equations 8-2 and 8-3), and (b) showing the boundary conditions applied to reduce the
infinite case to equations 8-4 and 8-5. The "walls" to which the CDW spring is attached in
(b) move with the steady state (dc) velocity of the CDW center of mass. Y and 0 are
determined from the resonant frequency and amplitude of the response of x to the
mechanical force F.



153
8.3. Solution
We have solved Egs. 8-4 and 8-5 , for a variety of dc and/or ac electric field drives, on
an analog electronic computer built in our laboratory (see Appendix C). The mechanical
force F in Eq. 8-5 was kept small. The Young's modulus and internal friction are
determined from the resonant frequency and amplitude of the response of x to the
mechanical force F (Y o ( ;)2 and 8 a0 8-1( o). This procedure for determining Y and 8
is analogous to that used in the actual vibrating reed experiments3-3. For all calculations
discussed here, the parameters used are (in relative units) eET=0.76x10-3, 2kp=6.28x10%,
ke=2.85, K1.=29.4, v0=0.95x10-3, I'_=10-3, m*=4x10-1, M =2x10-3, and ®./27=200.
We consider separately three different electric field drive situations: Egc=finite with
Eac=0; Eac=finite with Egc=0, and combined finite Eqc and Egc. Fig. 8-2a shows the results
of our simulation with Egc=0. For Ege < ET, Y and J are only weakly field dependent. For
Egc >> ET, Y saturates at a value smaller that that corresponding to the pinned state, and &
saturates at a value larger than that corresponding to the pinned state. The bottom trace in
Fig. 8-2a corresponds to the differential resistance dV/dI of the system, where an ohmic
resistance representing normal carriers is assumed in parallel with the CDW condensate.
With notable exception to the divergent behavior near threshold, the calculated behaviors of
Y, 8, and dV/dI are in agreement with experimental results on NbSe3 and TaS3 in the
presence of dc electric fields (Fig. 8-2b). Furthermore, the model predicts a "tracking”
between the Y and dV/dI behavior (i.e. the Y and dV/dI curves are nearly identical in form);
similar tracking is observed experimentally in NbSe3 and TaS3 3-5. The divergence in
dV/dl near threshold (not observed experimentally) is endemic to ﬁnité—sizc classical
models!!; it is thus not surprising that Y and vy display similar divergent critical behavior
near ET. In the thermodynamic limit (e.g. Egs. 8-2 and 8-3, with large N), we expect such

divergences to be removed in dV/dl, and similarly in Y and 812,
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In the range of finite Eyc, with Egc=0, we have solved Eqgs. 8-4 and 8-5 with a/w= 20.

The results are displayed in the inset to Fig. 8-2a. Increasing E,c from zero results in a
smooth decrease in Y, and, within computational resolution, no detectable change in 3 for
very low Ey. These results are in agreement with experimental results for TaS3 under
similar driye conditions, shown in the inset to Fig. 8-2b. In TaS3, the crystal latiice was
found to soften under application of ac electric fields, even with Egc< ET.

In the presence of combined de and ac electric fields, CDW conductors display
electronic "Shapiro step" mode-locking, where the internal narrow-band noise frequency
oNBN of the CDW (proportional io CDW drift velocity) interferes with the external ac
frequency . Such interference occurs in general whenever WNBN/ @ = p/q =1, with p and
q integers. Experiments on NbSe3 and TaS3 have demonstrated that, in the electronically
mode-locked regions, both Y and 8 tend to values characteristic of the pinned, Eq40o=0 state.

As shown in the lower dV/dl wace of Fig. 8-3a, Eqs. 8-4 and 8-5 predict, in the
presence of combined de and ac electric fields, complete Shapiro step electronic locking!3,
The steps are identified with corresponding values of n. These calculations were
performed with E;o/ET = 3. Also shown in Fig. 8-3a are Y and 8, calculated for the same
set of drive parameters. It is clear that Shapiro step in the electronic response corresponds
in the model to striking anomalies in the elastic constants. In the Shapiro step region, both
Y and 8 tend to their respective values measured with Eqc = 0, as observed in the
experimental data of Fig. 8-3b. We also note the presence of harmonic (n = 2,3,...) and

subharmonic (non-integral n) structure in the calculated and experimentally measured Y and

d.
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Fig. 8-2: Y, d and dV/dI as functions of dc bias for Eac=0. Insets: Y, d and dV/dI as
functions of ac amplitude for Egc=0. (a) calculated from Egs. 8-4 and 8-5. (b) measured

in experiments?.
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Fig. 8-3: Y, dand dV/dl as functions of dc bias, (a) as calculated from Egs. 8-4 and

8-5 with Eao/ET=3, 0/w=20, and (b) measured in experiments>. The arrows identify
interference structure.
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8.4. Analytic treatment and quantitative comparison with experiment

The parameters used in the simulation are a compromise between those appropriate for
a real CDW and those accessible to the analog computer. An analytic treatment of
linearized versions of Eqs. 8-4 and 8-5 in low- and high-field limits facilitates intuitive
understanding and enables quantitative comparison of the predictions of the model with
experimental results. This section shows that, for Eqc=0, the sinusoidal potential in Egs. 8-
4 and 8-5 is sufficiently strong to freeze the lattice and CDW coordinates into a single
effective degree of freedom. The effective stiffness in this case is the sum of the CDW and
fattice stiffnesses. It is argued that mode-locking also freezes the lattice and CDW degrees
of freedom into one. However, it is shown that in case of a sliding CDW which is not
mode-locked, the CDW and lattice degrees of freedom are independent and the effective
stiffness is the stiffness of the lattice alone. The difference between the stiffness in the
pinned and sliding cases predicted by the model is roughly consistent with experiment.

To determine the elastic constants in the pinned case, the equations of motion 8-4 and
8-5 are linearized about the state x=0, r=0. A mechanical analog of this linearized system is
shown in Fig. 8-4. By inspection, the effective spring constant felt by the mechanical

force F in this mechanical analog is

Keft = K + (8-6)

1 1
Koin Ko
where Kegr is the effective spring constant, K, is the lattice spring constant, Kpin = 2kpeET
is the spring constant that arises from the restoring force of the sinusoidal potential, and kc
is the CDW spring constant.

When the CDW is sliding with rapid velocity (Eqc>>ET, Eac=0), .the sinusoidal
coupling between the CDW coordinate r and the lattice coordinate x averages to zero (see
appendix C). Thus the effective spring constant for the rapidly sliding case is Kegr = K.

The difference between the stiffnesses in the pinned and rapidly sliding cases is then
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AKeft =~ (8-7)
_-—i—nn

We now make the connection between the parameters of the model and the physical
constants of the CDW crystal. Egs. 8-4 and 8-5 describe the dynamics of a macroscopic
crystal. In computing kpin=2kpeET, the total charge of ¢ the CDW in the crystal must be
used. Thus kpin=2kreeipellAET Where eg is the electronic charge, 2kp=108cm-1,
Per=5x1021cm-3 [ref. 6-1] is the density of condensed electrons, L=0.1cm is the length of
the crystal, A is the cross-sectional area and E7=0.1V/cm. The spring constant K is related
to the Young's modulus Y roughly by the relation Y=kL/A. From mean field theory, the

contribution to Y of the CDW3+4 has been estimated to be 10%dynes/cm?2 = kcL/A. Using
ke

these parameters, we find the ratio 1(?.:10'8. For the above (typical) parameters, the
in

coupling between the CDW and the lattice for Eqc=0 is so strong that the CDW and lattice
truly act as a single degree of freedom for low frequency mechanical forcing. To a very
good approximation, for parameters appropriate to a real CDW, Kerr(Ege=0) -
Ket(Egc>>ET) = ke

Fig. 8-3 demonstrates that the elastic constants predicted by Eqgs. 8-4 and 8-5 are
virtually identical in the pinned and mode-locked cases. In the pinned case, the CDW
phase is constrained at low frequencies to follow the minimum of the pinning potential . In
the mode-locked case, the CDW phase is constrained to move at a fixed dc velocity relative
to the pinning potential. In both pinned and mode-locked cases, the CDW and lattice
degrees of freedom are nearly frozen together for low frequency excitations and. the
stiffness of the CDW adds to that of the lattice. In both pinned and mode-locked cases, the
constraint on the CDW phase also precludes any friction at low frequencies between CDW
and lattice.

Mozurkewich et al.4 and Brill et al.? have demonstrated for several CDW materials that

the changes in Y due to CDW depinning are of order Ycpw/Y Totar=10-2-1073, where
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Ycepw and Yroral are respectively the CDW and total crystal Young's moduli. In the

calculations of Mozurkewich et. al. and Brill et. al., the phase elasticity in the Fukuyama-
Lee Hamiltonian13 (Eq. 5-2) is used to estimate the CDW elasticity, and experimentally
determined values are used for the lattice elasticity. Our model predicts changes of order
ke/(ke+K1) = Yepw/Y Total.  This is the first dynamical model of CDW elasticity to
correctly predict the magnitude of the elasticity changes.

The interaction of the CDW with the lattice is an area that requires further investigation.
In our model the electronically induced mode-locking strongly couples all the internal
degrees of freedom. This may have implications for other coupled systems which exhibit
mode-locking. Finally, the Frenkel-Kontorova model has been applied to many condensed
matter systems, notably superionic conductors, adsorbates on surfaces, and 1-D
magnetism16. In all of these systems, the assumption of a fully rigid substrate potential is
unrealistic. Our extension of the Frenkel-Kontorova model or discretized Sine-Gordon

equation is thus relevant to a wide variety of systemns17,
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Appendix A: Numerical integration of the Mattis-Bardeen equations for

the temperature-dependent conductivity of a weak-coupling superconductor.

The original Bardeen-Cooper-Schrieffer (BCS) paperl, published in 1957, discussed
the thermodynamics and dc electrodynamics of weak-coupling, phonon-mediated
superconductivity. In 1958, D. C. Mattis and J. Bardeen? developed a theory of the high-
frequency electrodynamics of BCS superconductors. The most important result of MB
theory is an integral expression for the finite temperature, complex frequency-dependent
conductivity of a BCS superconductor. This appendix first discusses the limits of validity
for MB theory. Then a method for numerically evaluating the MB integrals is discussed.
The real and imaginary parts of the conductivity of a superconductor at various
temperatures for frequencies below 4A are graphed and tabulated. Finally, a listing of the
program used to evaluate the MB integrals is included.

Although MB theory is an extension of the BCS model, it is valid for a whole class of
models. The BCS model was formulated assuming that phonons mediate the weak-
coupling between electron pairs in a superconductor. However, the BCS results also hold
assuming that non-phonon excitations mediate weak-coupling. The form of the
tcn;perature dependence of the order parameter in BCS theory (and hence in MB theory) is
entirely a result of the mean field approximation. Thus the MB results are valid for any
weak-coupling, pairing theory of superconductivity in the mean field approximation.

In general, the conductivity of a metal (or a superconductor) is a function of both
frequency and wave-vector3. There are two limits in which the dependences on wave-
vector become simple. If the electron mean free path in the normal state and the coherence
length in the superconducting state are both very long compared to the penetration depth of
the electromagnetic field (called the extreme anomalous limit, or Pippard limit) the
conductivity o(q,w) & 1/q for both the superconducting and normal states. If the electron
mean free path in the normal state and the coherence len gth in the superconducting state are

both short compared with the penetration depth of the electromagnetic field (London limit),
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then the g-dependence of the conductivity becomes negligible. In both the London and

Pippard limits, the ratio of the conductivity in the superconducting state to the conductivity
in the normal state is independent of wave-vector. MB was calculated for the Pippard limit,
but the results are also valid in the London limit4. High-Tc superconductors have low
conductivities, extremely short coherence lengths, and long electromagnetic field
penetration depths, so the London limit is appropriate.

Mattis and Bardeen expressed the ratio of the superconducting to normal state

conductivity in terms of the following integrals.

o -€0
S :h—z— [tt®)-fE +ho)gE)dE N [l-2Eshe)gENE  (A-D)
oN  ho ho £0-ha
£0
1-2f(E+he)](E2+€3+ hoE)
2L - —dE (A-2)
on how (g5 - EZ)UQ[(E—i«hw)z—eO]W
eg-hay-€p
(E2+€2+hwE)
05 E—— (A-3)
€182
and
e1=(B2-e)12, er=[(E+hw)2-e))1/2 (A-4)

f(E) is the Fermi function
P S
fE) = T par (A-5)
where E=0 is at the Fermi level. The notation is that of MB. gg is the energy gap A(T)

(NOT 2A(T)). The second term of Eq. A-1 does not appear unless how > 2¢p, in which
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case the lower limit of the integral in Eq. A-2 is -gp instead of €g-h. Signs of the square

roots are such that g(E) is positive in both integrals of Eq. A-1. Itis possible to express
Egs. 1 and 2 in dimensionless form if the BCS relation A(T=0) = 1.76kgT, is used.

These integrals have a closed form solution only for T=0. At finite temperature, the
integrals must be performed numerically. The integrals are resistant to simple numerical
integration (using, for instance, the trapezoidal rule). The upper limit of the first integral in
equation 1 is infinite, and the integrand is singular at the lower limit. The integrands of the
other two integrals have a square root singularities at each of their four limits of integration.
There exist extremely efficient techniques for performing integrals with square root
singularities at the endpoints, and we have used these. Useful discussions of numerical
integration techniques are to be found in Numerical Recipes?. Many formulas are to be
found in Abramowitz and Stegun, Handbook of Mathematical F unctions, pp. 886 ff.

Eq. 1 was integrated using Gaussian quadrature. Eq. 25.4.37 in Ref. 5 enables

efficient evaluaton of integrals with a square root singularity at the upper boundary:

b
n
(bt:(y))l_ff dy = “"a}”zéi‘” i)+ Ka ' o
; =
where
yi=a+ (b"a)xi (A-7)

R, is the remainder of the series summed to order n, and xj=1-£i2 where &; is the ith
positive zero of the Legendre polynomial Paa(x). The weights w; are the Gaussian weights
of order 2n. The zeroes &; and weights wj are tabulated to 20 digit accuracy on pp. 916 ff.
of Ref. 5. Eq. (A-1) was put into the form of Eq. (A-6) by using the identity

l/a

b [AVS!
o o) -
1
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The utility of Eq. (A-6) comes from two sources. One is that the square root

singularity at the upper limit of integration is removed. The other is that the method is
computationally extremely efficient. Because of the high degree of accuracy with which the
Gaussian weights and zeroes are tabulated, highly accurate evaluations of the integral are
obtained with only a few terms in the series. Thus a Macintosh running a relatively slow,
interpreted Basic was able to perform the computations listed in tables A-1 and A-2 in about
2 hours.

The second term of Eq. 1 and the integral in Eq. 2 both have square root singularities at
both endpoints. These integrals were evaluated using Eq. 25.4.39 of Ref. 5. The formula
is

b

) 4o Swity + R A9
- (oy) 127~ Zilyd) + Ra (A-9)
4

where
X; = cos(%%}: (A-10)

and wj=m/n. Ry is the remainder of the series summed to order n.

The integration routines were all checked by performing integrals with analytic
solutions, and éhecking the numerical results against the analytic solutions. The T =0
result was checked by comparing it with values calculated for Prof. P. L.. Richards by I.
Swihart. The finite temperature results show the correct limiting behavior at high and low
temperatures.

The real and imaginary parts of the conductivity 61 /oN and 67/0N are graphed in Fig. ‘
A-1 and tabulated in Tables A-1 and A-2 for various values of the reduced temperature
T/Tc. For a given value of the reduced temperature, the relative accuracy of values of the

conductivity calculated for different frequencies (limited by computational errors) is better
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than 0.5%. The absolute accuracy is difficult to gauge. It is limited by the 1% accuracy of

the values used for the temperature-dependent energy gap A(T). Since MB theory is based
on a mean field approximation, it will not be valid near the phase transition where

fluctuations become important.
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Fig. A-1: Frequency dependent conductivity of a superconductor calculated from Egs.
1 and 2 at various temperatures. a) Real part of the conductivity g1/ON vs. reduced
frequency ®/2A. b) Imaginary part of the conductivity 62/ON Vs. reduced frequency
w/2A.
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Table A-1: Real part of the frequency-dependent conductivity of a

superconductor at selected temperatures: oi{w)/on{w)

TMe: 6.95 0.9 0.8 0.6 0.2 0.01
ATYAO):  0.38 0.53 0.7 0.91 1 1
w/2A(0)
0.025 1.6347 1.7709 1.6903 0.9885 4.595E-03 O
0.05 1.4148 1.4907 1.3793 0.7670 2.966E-03 0
0.075 1.2833 1.3250 1.1872 0.6397 2.134E-03 O
0.1 1.1877 1.2060 1.0681 0.5513 - 1.624E-03 O
G.125 1.1116 1.1127 0.9682 0.4846 1.283E-03 O
0.15 1.0478 1.0357 0.8870 0.4318 1.043E-03 0
0.175 0.6926 0.8700 0.8187 0.3885 B.675E-04 O
0.2 0.9437 0.9127 0.7601 0.3523 7.352E-04 O
0.225 0.8996 0.8619 0.7089 0.3215 6.330E-04 O
0.25 0.8596 0.8163 0.6637 0.29350 5.524E-04 0
0.275 0.8227 0.7750 0.6233 0.2719 4.877E-04 0O
0.3 0.7887 0.7373 G.5871 0.2517 4.349E-04 0
0.325 0.7570 0.7027 0.5543 0.2338 3.913E-04 O
0.350 0.7274 0.6708 0.5244 0.2179 3.548E-04 O
0.375 0.6997 0.6413 0.4972 0.2037 3.239E-04 0
0.400 0.7011 0.6138 0.4722 0.1910 2.974E-04 0
0.425 0.7097 0.5883 0.4492 0.1765 2.746E-04 O
0.450 0.7183 0.5644 0.4280 0.1691 2.547E-04 ©
0.475 0.7268 0.5421 0.4084 0.1597 2.373E-04 O
0.500 0.7354 0.5212 0.3903 0.1511 2.219E-04 O
0.525 0.:438 0.5015 0.3734 0.1433 2.082E-04 O
0.550 0.7521 0.5108 0.3577 0.1362 1.960E-04 O
0.575 0.7603 0.5270 0.3431 0.1206 1.851E-04 O
0.600 0.7683 0.5429 - 0.3294 0.1235 1.752E-04 O
0.625 0.7762 0.5584 0.3167 0.1179 1.662E-04 O
0.650 0.7838 0.5735 0.3047 0.1128 1.580E-04 O
0.675 0.7912 0.5882 0.2933 0.1080 1.506E-04 O
0.760 0.7984 0.6025 0.2829% 0.1036 1.438E-04 O

- 0,723 0.8054 0.6163 0.3086 0.0994 1.375E-04 0
0.750 0.8121 0.6297 0.3334 0.0956 1.317E-04 0O
0.775 0.8186 0.6426 0.3574 0.0920 1.264E-04 O
0.800 0.8248 0.6550 0.2804 0.0886 1.214E-04 ©
0.825 0.8309 0.6670 0.4026 0.0855 1.168E-04 ©
0.850 0.8266 0.6785 0.4239 0.0826 1.125E.04 0
0.875 0.8422 0.6896 0.4444 0.0798 1.085E-04 O
0.500 6.8475 0.7002 0.4640 6.0772 1.048E-04 O
0.925 0.8527 0.7104 0.4827 0.0970 1.013E-04 O
0.950 0.8576 0.7202 0.5007 0.1302 5.796E-05 O
0.975 0.8623 . 0.7295 6.5179 0.1620 9.486E-05 O
1.060 0.8668 0.7385 0.5343 0.1921 9.194E-05 ©
1.025 0.8711 0.7471 0.5500 0.2209 3.816E-02 3.808E-02
1.850 0.8753 0.7553 0.5650 0.2482 7.397E-02  7.390E-02
1.075 0.8792 0.7631 0.5754 0.2742 0.1077 0.1076
1.100 0.8830 0.7707 0.5931 0.2989 0.1395 0.1365
1.125 0.8867 0.7779 0.6061 0.3224 0.1696 -0.1695
1.150 0.8902 0.7848 0.6186 0.3448 0.1980 0.1980
1.175 0.8935 0.7914 0.6306 0.3661 0.2249 0.2249
1.200 0.8967 0.7977 0.6420 0.3864 0.2503 0.2504
1.225 0.8998 0.8037 0.6529 0.4057 0.2747 0.2746
1.256 0.9027 0.8095 0.6634 0.4242 0.2976 0.2976
1.275 0.9055 0.8151 0.6734 0.4417 0.31935 0.3195
1.300 6.9082 0.8204 6.6820 0.45835 0.3403 6.3403



o1{w)/oN(w)

T/Te: 0.95 0.9 0.8 0.6 0.2 0.01
ATH/AQ)Y  0.38 0.53 0.7 0.91 1 1
w/2A(0)

1.325 0.9108 0.8255 0.6921 0.4745 0.3601 0.3601
1.350 0.9133 0.8304 0.7008 0.4898 0.3790 0.3789
1.375 0.9157 0.8351 0.7092 0.5044 0.3970 0.3970
1.400 0.9179 0.8396 0.7173 0.5184 0.4142 0.4142
1.425 0.9201 0.8439 0.7250 0.5318 0.4306 0.4306
1.450 0.9223 0.8481 0.7324 0.5446 0.4464 0.4463
1.475 0.9243 0.8520 0.7395 0.5569 0.4614 0.4614
1.500 0.9262 0.8559 0.7463 0.5687 0.4758 0.4758
1.525 0.9281 0.8596 0.7529 0.5799 0.4896 0.4896
1.550 0.9299 0.8631 0.7591 0.5908 0.5029 0.5028
1.575 0.9317 0.8665 0.7652 0.6012 0.5156 0.5156
1.600 0.9333 G.8698 0.7710 0.6112 0.5278 0.5278
1.625 0.9349 0.8729 0.7763 0.6208 0.3395 0.5395
1.650 0.9365 0.8760 0.7820 0.6300 0.5508 0.5508
1.675 0.9380 0.8789 0.7872 0.6389 0.5616 0.5616
1.700 0.9394 0.8817 0.7922 0.6474 0.5721 0.5720
1.725 0.9408 0.8845 0.7970 0.6557 0.5821 0.5821
1.750 0.9422 0.8871 0.8017 0.6636 0.5918 0.5918
1.775 0,9435 0.8896 0.8061 0.6713 0.6011 0.6011
1.800 0.9447 0.8911 0.8105 0.6787 0.6101 0.6101
1.825 0.9459 0.8945 0.8147 0.685% 0.6188 0.6188
1.850 0.9471 0.8967 0.8187 0.6927 0.6272 0.6272
1.875 0.9482 0.8990 0.8226 0.6993 0.6353 0.6353
1.900 0.9493 0.9011 0.8264 0.7058 0.6431 0.6431
1.925 0.9504 0.9032 0.8300 0.7120 0.6507 0.6507
1.950 0.9514 0.9052 0.8336 0.7180 0.6580 0.6580
1.975 0.9524 0.9071 0.8370 0.7238 0.6651 0.6651
2.000 0.9534 0.9090 0.8403 0.7294 0.6719 0.6719
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Table A-2: Imaginary part of the frequency-dependent conductivity of a

superconductor at selected temperatures: G2 (w)/oN(W)
T/Te: 0.95 0.9 0.8 0.6 0.2 0.01
A(TYA(y: 0.38 0.53 0.7 0.91 1 1
o/24(0)
0.025 8.5561 16.4784  29.1349 50.2444 62.8067 62.8220
0.050 4.5105 8.5332 14.8857 25.3324 31.3899 31.3963
0.075 3.1546 5.8742 10.1205 17.0099 20.9109 20.9145
0.100 2.4699 4.5360 7.7260 12.8353 15.6663 15.6686
0.125 2.0529 3.7256 6.2797 10.3204 12.5155 12.5171
0.150 1.7689 3.1786 5.3073 8.6356 10.4116 10.4128
0.175 1.5603 2.7817 4.6056 7.4256 8.9059 8.9069
0.200 1.3982 2.4784 4.0731 6.5124 7.7741 7.1748
0.225 1.2665 2.2372 3.6533 5.7973 6.8915 6.8921
0.250 1.1553 2.0392 3.3125 5.2210 6.1833 6.1838
6.275 1.0584 1.8724 3.0290 4.7459 5.6020 5.6024
0.300 0.9714 1.7288 2.7885 4.3466 5.1158 5.1161
0.325 0.8905 1.6028 2.5811 4.0058 4,7026 4.7029
0.350 0.8124 1.4903 2.3996 3.7109 4.3469 4.3472
0.375 0.7302 1.3884 2.2387 3.4529 4.0372 4.0374
0.400 0.6430 1.2946 2.0946 3.2248 3.7646 3.7649
0.425 0.5800 1.2071 1.9643 3.0214 3.5228 3.5230
0.450 0.5274 1.1240 1.8453 2.8385 3.3064 3.3066
0.475 0.4821 1.0438 1.7357 2.6729 3.1115 3.1117
0.500 0.4424 0.9638 1.6340 2.5220 2.9348 2.9349
0.525 0.4072 0.8781 1.5388 2.3837 2.7736 2.7737
0.550 0.3759 0.7863 1.4490 2.2562 2.6258 2.6259
0.575 0.3478 0.7183 1.3636 2.1379 2.4895 2.4896
0.600 0.3225 0.6605 1.2816 2.0278 2.3634 2.3635
0.625 0.2996 0.6099 1.2019 1.9247 2.2460 2.2461
0.650 0.2788 0.5653 1.1231 1.8278 2.1364 2.1364
0.675 0.2600 0.5247 1.0428 1.7362 2.0335 2.0336
0.760 02428 0.4885 0.9511 1.6492 1.9366 1.9367
0.725 0.2272 0.4557 0.8643 1.5662 1.8449 1.8450
0.750 0.2128 0.4259 0.7973 1.4865 1.7579 1.7580
0.775 0.1997 0.3987 0.7397 1.4096 1.6749 1.6749
0.800 0.1876 0.3739 0.6887 1.3348 1.5954 1.5954
0.825 0.1766 0.3512 0.6432 1.2613 1.5189 1.5189
0.850 0.1664 0.3304 0.6022 1.1882 1.4448 1.4448
0.875 0.1570 0.3113 0.5650 1.1137 1.3727 1.3727
0.900 0.1483 0.2937 0.5312 1.0336 1.3019 1.3019
0.925 0.1402 0.2715 0.5003 0.9402 1.2316 1.2316
0.950 0.1328 0.2625 0.4720 0.8747 1.1607 1.1607
0.975 0.1259 0.2486 0.4460 0.8132 1.0869 1.0870
1.000 0.1196 0.2358 0.4220 0.7625 0.9999 0.9999
1.025 0.1136 0.2239 0.4000 0.7174 0.9178 0.9178
1.050 0.1081 0.2129 0.3796 0.6768 0.8561 0.8561
1.075 0.1030 0.2026 0.3607 0.6399 0.8036 0.8036
1.100 9.815E-02 0.1930 0.3432 0.6063 0.7573 0.7573
1.125 9.367E-02 0.1841 0.3269 0.5754 0.7160 0.7160
1.150 8.949E.02 0.1758 0.3118 0.5471 0.6786 0.6786
1.175 8.557E-02 0.1680 0.2977 0.5209 0.6445 0.6445
1.200 8.190E-02 0.1607 0.2845 0.4967 0.6133 0.6133
1.225 7.845E-02 0.1539 0.2722 0.4743 0.5846 0.5846
1.250 7.522E-02  0.1475 0.2607 0.4534 0.5580 0.5580
1.275 7.218E-02 0.1415 0.2499 0.4339 0.5334 0.5334
1.300 6.932E-02 0.1358 0.2398 0.4157 0.5105 0.5105
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02(w)/oN(®)
T/e 0.95 0.9 0.8 0.6 0.2 0.01
A(TYHA0:  0.38 0.53 0.7 0.91 1 1
®/2A(0)
1.325 6.663E-02 0.1303 0.2303 0.3987 0.4892 0.4892
1.350 6.409E-02 0.1255 0.2213 0.3828 0.4693 0.4693
1.375 6.169E-02 0.1208 0.2129 0.2678 0.4506 0.4506
1.400 5.942E-02 0.1163 0.2050 0.3538 0.4331 0.4331
1.425 5.728E.02 0.1121 0.1975 0.3405 0.4166 0.4166
1.450 5.525E-02 0.1081 0.1904 0.3280 0.4011 0.4011
1.475 5.333E-02  0.1043 0.1836 0.3162 0.3865 0.3865
1.500 5.151E-02 0.1007 0.1773 0.3051 C0.37127 0.3727
1.525 4.978E-02 9.735E-02 0.1713 0.2946 0.3597 0.3597
1.550 4.814E.02 9.412E-02 0.1653 0.2846 0.3474 0.3474
1.575 4.657E-02 9.106E-02 0.1601 0.2751 0.3357 0.3357
1.600 4.509E-02 8.814E-02 0.1550 0.2661 0.3246 0.3246
1.625 4.367E-02 8.536F-02 0.1500 0.2575 0.3140 0.3140
1.650 4.232E-02  8.271E-02 0.1454 0.2494 0.3040 0.3040
1.675 4.104E-02 8.019E-02 0.1409 0.2417 0.2945 0.2945
1.700 3.981E-02 7.778E-02 0.1367 0.2343 0.2854 0.2854
1.725 3.863E-02 7.548E-02 0.1326 0.2272 0.2767 0.2767
1.750 3.751E-02 7.329E-02 0.1287 0.2205 0.2685 0.2685
1.775 3.644E-02 7.118E-02 0.1250 0.2141 0.2606 0.2606
1.800 3.541E.02 6.917E-02 0.1215 0.2079 0.2531 0.2531
1.825 3.443E-02 6.725E-02 0.1181 0.2021 0.2459 0.2459
1.850 3.349E-02  6.540E-02 0.1148 0.1964 0.2390 0.2390
1.875 3.258E.02 6.363E-02 0.1117 0.1910 0.2323 0.2373
1.900 3.172E-02  6.193E-02  0.1087 0.1859 0.2260 0.2260
1.925 3.089E-02 6.031E-02 0.1058 0.1809 0.2199 0.2199
1.950 3.009E-02 5.874E-02  0.1031 0.1762 0.2141 0.2141
1.975 2.932E-02 5.724E-02  0.1004 0.1716 0.2085 0.2085

2:000 2.858E-02 5.379E-02 0.0979 0.1672 0.2031 0.2031



Computer program

This program calculates the real and imaginary parts of the remperature
dependent conductivity of a weak-coupling superconductor. The program is
written in Microsoft Basic and runs on a Macintosh computer. The program
integrates the formulas derived by D. C. Martis and J. Bardeen ( formulas 3.9
and 3.10, Phys. Rev. 111, p. 412 (1958)) There are four subroutines and a

driver. Each subroutine calculates one term of Egs. 3.9 and 3.10.

DRIVER PROGRAM

DIM TARRAY(6),DEL(6)

The reduced temperature TITc is stored in the array TARRAY The reduced
gap A(T)/A(T=0) is stored in the array DEL. A(T) was determined to within
1% from the graph of A(T)vs. T in Kiriel's ISSP, p. 367.

TARRAY(1)=.95:TARRAY(2)=9:TARRAY(3)=8:TARRAY (4)=.6:
TARRAY(5)=.2: TARRAY(6)=.01
DEL(1)=.38:DEL(2)=.53:DEL(3)=.7:DEL(4)=.91:DEL(5)=1:DEL(6)=1
FOR NUM=1TO 6

T=TARRAY(NUM)

EO=DEL{NUM)

LPRINT "REDUCED TEMPERATURE",T

LPRINT"REDUCED GAP",E0
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LPRINT "Freq.","SIG1/SIGN","SIG2/SIGN"

SIGI is the real part bf the conductivity in the superconducting state SIG2
is the imaginary part of the conductivity in the superconducting state. SIGN is
the real part of the frequency dependent conductivity in the normal state HW is

the energy divided by the energy gap DEL (not 2DEL)
FOR HW=.05 TO 4STEP .05

S11=0: $12=0;: $2=0
IF HW<2*E0 THEN CALL MATBA3(S2,E0,HW,T) ELSE CALL
MATBA4(S2,E0,HW,T)
CALL MATBAL(S11,EQ,HW,T)
IF HW>2*E0 THEN CALL MATBA2(S12,E0,HW,T)
LPRINT .5*HW,(2*S11+512)/HW,S2/HW
NEXT HW
NEXT NUM
END

SUBROUTINES
SUB MATBAI(S,EQ,HW.T) STATIC

This subroutine computes the first integral in formula 3.9 of Matiis-

Bardeen. The upper bound of this integral is infinite. In order to handle this
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with Gaussian quadrature, it is necessary to change variables. The

identiry:integral from a to b of f(x)= integral from 1/b to lia of
(1172 )f(1/t))was used. (See William H. Press, Brian P. Flannery, Saul A.
Teukolsky and William Vetterling, Numerical Recipes, p. 11 8).

A=EQ

S=1E+20

ST=1E-20

FOR B=100*T TO 500*T STEP 50*T

This loop calls the integrating routine SQRTI. The upper limit (infinite in
the formula of Mattis and Bardeen) is increased with each subroutine call until
the difference berween the evaluation of the integral on successive calls is less
than 0.01%, or until the upper limit reaches 500 times the reduced temperature

(reduced temperature and energy gap are related by the BCS relation A0)=1.76

kgT,)

CALL SQRT1(A,B,S,E0,HW.,T)
IF ABS(S-ST)<.0001*ABS(S) THiIN GOTO 10
ST=S
NEXT B
10 END SUB

SUB SQRTI(AA,BB,S.EO.HW,T) STATIC
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This subroutine integrates a function with a square root singularity at its
upper endpoint by formula 25.4.37 of Abramowitz and Stegun with n=10.

The data statement is a tabulation of the 10 positive zeroes and weights (the

zeroes and weights alternate) of a n=20 Legendre polynomial (Ibid, p. 916).

DATA 7.65265211D-02, .1527533871#, .2277858511#, .14917298644#,
3737060887#, .1420961093#, .5108670019#, .13168863844,
.63605368074#, .1181945319#

DATA .7463319064#, .1019301198, .8391169718#, 0832767415,
.9122344282#, .0626720483, .9639719272#, 0406014298, .9931285991#,
0176140071

RESTORE
B=1/AA
A=1/BB
S=0
FOR I=1 TO 10
READ XI
READ WI
X=1-XIr2
W=2*WI
Y=A+(B-Ay*X
F=SQR(B*Y)*(1/Y 2y*(I/(EXP(1.76/(T*Y))+1)-
/(EXP(1.76*(1/Y+HW)/T)+1))*(1/YA2+E0A2+HW/Y)/(ABS((1/Y+E0)*((1/
Y+HW)A2-EQA2)N.5
S=S+(B-A)"5*W*F
NEXT I
END SUB
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SUB MATBA2(S.EO,HW,T) STATIC

This subroutine computes the second integral of formula 3.9 of Mattis and
Bardeen's paper.

S returns the value of the integral.

A=E0-HW

B=-1*EQ

NMAX=10

S=1E+20

ST=-1E+20

FOR N=1TO NMAX
CALL DBLSQ2(A,B,S.N,T,HW,EO)
IF ABS(S-ST)<(.0001)*ABS(S) THEN GOTO 20
ST=S
NEXT N

20 END SUB

SUB DBLSQ2(A,B,S,N,T,HW E0) STATIC

This subroutine integrates a function with a square root singularity at both
the lower and upper bounds, as described in Abramowitz and Stegun, p. 889,
formula 25.4.39 |

int(f(y)isqri((y-ay*(b-y))dy)=sum(wi*f(yi))
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S=0

FORI=1TON
YI=(B+A)2+(B-A)/2)*COS((2*1-1)*3.14159265#/(2*N))
$=S + (3.141593/N) * (1-2*(1/(EXP(1.76*(YI+HW)/T)+1)))
* A BS(YIN2+E0A2+HW* YI)/(ABS((YI-EO)* (YI+HW+E0))N.5
NEXT I
END SUB

SUB MATBA3(S,E0.HW,T) STATIC

This subroutine computes the integral of formula 3.10 of Mauis and

Bardeen’s paper for hw<2EQ.(frequency<A(T)). § returns the value of the

integral.

A=E0-HW

B=E0

NMAX=10

S=1E+20

ST=-1E+20

FOR N=1 TO NMAX

This loop calls the integrating subroutine. The order of the integration
routine is increased until successive calculations of the integral are closer than

0.01%, or until NMAX iterations are performed

CALL DBLSQ3(A,B,S,N,T,HW,E0)
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IF ABS(S-ST)<(.0001)*ABS(S) THEN GOTO 30

ST=5
NEXT N
30 END SUB

SUB DBLSQ3(A.B,S,N,T,HW,E0) STATIC
S=0

This subroutine integrates a function with a square root singularity at both
the lower and upper bounds, as described in Abramowitz and Stegun, p. 889,
formula 25.4.39

int(f(y ) sqri((y-a)*(b-y))dy)=sum(wi*f(yi})

FOR I=1 TON
YI=(B+A)2+((B-A)/2)*COS((2*1-1)¥3.14159265#/(2*N))
S=S + (3.141593/N) * (1-2*(I(EXP(1.76*(YI+HW)/T)+1)))
*(YIA2+E0A2+HW*YD)/(ABS((YI+EO)* (YI+HW+E0))A.5
NEXT I |
END SUB

SUB MATBA4(S,E0.HW,T) STATIC

This subroutine computes the integral of formula 3.10 of Mattis and

Bardeen’s paper for hw>2EQ.(frequency>2A) S returns the value of the

integral.
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A=-1*E0

B=EQO

NMAX=10

S=1E+20

ST=-1E+20

FOR N=1TO NMAX
CALL DBLSQ4(A,B,S,N,T,HW ,E0)
IF ABS(S-ST)<(.0001)*ABS(S) THEN GOTO 40
ST=S
NEXTN

40 END SUB

SUB DBLSQ4(A,B,S,N,T,HW,E0) STATIC

This subroutine integrates a function with a square root singularity at both
the lower and upper bounds, as described in Abramowitz and Stegun, p. 889,
formula 25.4.39

int(f(y)sqre((y-a)*(b-y))dy)=sum(wi*f(yi))

5=0
FORI=1TON
YI=(B+A)/2+((B-A)2)*COS((2*1-1)*3.14159265#/(2*N))
§=S + (3.141593/N)* (1-2*(1/(EXP(1.76*(YI+HW)/T)+1)))
*(YIN2+E0N2+HWHYD/(ABS((YI+HW)A2-E0AZ)A.S5
NEXT I
END SUB
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Appendix B: Analog simulations of and analytic approximations to a

model of charge-density-wave elasticity

B-1. Analog simulator

We constructed an electronic circuit which has equations of motion isomorphic to Egs.
8-4 and 8-5. The circuit diagram is shown in Fig. B-1. At the heart of this analog
simulator is a circuit that simulates a Josephson Junction (the x in the circuit diagram, a
Walker-Gillette Mode! JA-100). The details of the operation of this kind of Josephson
Junction analog simulator are to be found in the Ph. D thesis of Dr. Qing Hu (Harvard,
1986). For our purposes, the JA-100 is a black box which is a perfect analog for a
Josephson weak link. The voltage between the two terminals of the JA-100 is given by the

equation

V= BQ@%& (B-1)

The current through the JA-100 is
iy = icsin($1-¢2) (B-2)

In the language of Josephson Junctions, ¢1 and 62 are the phases of the superconducting
‘ wax)cfunctions on either side of a weak link and i is the critical current (variable, <1 mA,
in the JA-100). V is the voltage across the JA-100, and B is the proportionality factor
relating V to the time derivative of the superconducting phase difference (1/2r8 =10*Hz/V
in the JA-100).

The equations of motion for the circuit pictured in Fig. B-1 are determined by applying
Kirchoff's laws. Since the JA-100 is designed to be operated current-biased, the entire

circuit is current-biased.

i1 =icy +ir1 +iLy + iRz +igg (B-3)
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ip=icp +iL2-ir2 -iny (B-4)

iL2 =ic3 (B-3)

i1 and i are the currents supplied by current sources 1 and 2, and the other currents in eqs.
B-3 to B-5 are the currents flowing through the components identified by their subscripts.
Expressing the currents flowing through the components in terms of the phase difference
across the Josephson Junction simulator (using egs. B-1 and B-2), we find the following

equations of motion:

1 doy 1 d¢1 1 d(91-92)

ElFCOS(O)rt) Cry2*®yar L1 TR T Esm(fbi ¢2) (B-6)
2 d

‘E<mc+iaccos<wt>>=c¢ddgz ) L o B-sm(q»z on ®-7)

d2¢3

1
r5(02-03) = Crz (B-8)

The components are all defined in Fig. B-1. Eq. B-6is isomorphic to the lattice equation
Eq. 8-5, and B-7 is isomorphic to the CDW equation 8-4. The correspondences between
electrical and mechanical components, and the values of the components used in the
simulations described in Chapter 8, are listed in Table B-1.

Eq. (B-8) does not appear explicitly in chapter 8. The role of the very large capacitor
C3 is to act as a high pass filter (the heavy wall in fig. 8-1 that moves at the velocity of the
CDW center of mass) and thus enforce the boundary condition that the spring k¢ (L2 in the
simulator) responds only to ac excitations. The ratio of the impedance of the inductor L7 to
the impedance of the capacitor C3 goes as (14 Hz/f)2, where f is the excitation frequency.
The mechanical resonant frequency @y in our simuladon was roughly 200 Hz. Cz exerted a

negligible influence at this frequency. However, at frequencies much less than 14 Hz, the
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impedance of C3 dominated. The spring k. (L) was not stretched, allowing the CDW to

slide.
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Fig. B-1: Circuit diagram of the analog computer used to model Equations 8-4 and 8-
5. The values of the components and the corresponding constants from the CDW

equations are listed in Table B-1
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B-2. . Analytic calculation of Kegrin the Ege>>Er limit

To determine the elastic constants in the high field limit (Egc>>ET, Eac=0), we lincarize
the equations of motion about a state of rapid dc velocity. We will show that the
sinusoidal coupling between the CDW and the lattice averages to zero for a rapidly moving
CDW. For this calculation, we make the common approximation that the CDW is
massless. The equation of motion for the CDW is then |

eEgc = y(-j—(ar-;-)-(-)--}- ke(r - veomt) + eETsin(ke(r-x)) (B-10)

where Vcom is the dc velocity of the CDW center of mass. For Eqc>>ET, the terms eEqc

dr . . .
and irms dominate. The other terms may be treated as perturbations. The solution to the

unperturbed equation is then

Ez%zvcom (B-1D)

where rg is the unperturbed CDW position.

There is a natural separation of time scales in this problem. The period of a narrow
band noise oscillation (AcDW/Veom Jis much faster than the period of the mechanical
resonance (2n/w;). Thus, in order to determine the effective spring constant felt by a
mechanical force acting on the system at frequency @, we may average the equations over
the fast time scale. We define dimensionless variables p = 2kgr and § = 2kpx. We then

separate the variables p and & into fast and slow components as follows:
p(®) = po + Pstow(t) + Prasi(t) (B-12)

E() = Egtow(D) + Epast(D) | (B-13)
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where psiow and Egjow vary on the time scale of the mechanical resonance and prag and

E a5t vary on the time scale of the narrow band noise frequency. In terms of these fast and

slow variables, the equation of motion for the lattice is

L@,P)'*'FT‘Sin(ésiow‘*”&fast‘mnbnt’ Pslow - Prast) = F'cos(yt) (B-14)

where Fr' = eET/2kp , F' = eE/2kp, Onbn=2KEVcom is the narrow band noise frequency,

and L(E,p) represents the linear part of the equation,

d2e  dE  dE-
LEGp) = M'dt-g‘+ I‘L-a% + ?c-—(égtﬂ)% KL§ (B-15)

We now concentrate on the nonlinear term in Eq. B-14 and show that it averages to
zero in the limit of infinite Egc. The forces acting on the variable E are due to the small
applied mechanical force F'cos(tt) and the small amplitude oscillations of p as it slides
through the sinusoidal pinning potential. Thus it is safe to assume that £ is small and go
only to linear order in €. The variable psiow is parametrically excited by the already small
Eqiow» SO We may neglect pPglow altogether if we are only carrying out the calculation to first

ordér in Egow. Expanding to linear order in £, the nonlinear term in Eq. B-14 1s

-Fr'sin( pagt + @nbnt) + FT' East + Sslow) €0s{Wnbat + Prast) (B-16)

We now assume the following form for pag and Egase:
Prast = ACcos(Onpnt + 8¢) (B-17)
Efast = ALcOS(Wnbnt + 6L) (B-18)

" prast and &g oscillate with frequency Gnpn, the washboard frequency. We assume that

higher harmonics of the oscillation frequency are unimportant (reasonable for a high-field
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limit calculation). Ap and A are the amplitudes of the oscillations, and 61 and 8¢ are the

phases. Without loss of generality, we may set 8c=0 (we are free to choose the point t=0).

The equation of motion for the lattice may now be written
L(&stow) + FT' &slow COS(Wnpnt +Pfas) = F cos (@) +
L(&fast-PfasD) -F1' sin (Pfast + Onbnt) + F1' Efast cos(@nbnt + Prast) (B-19)

All the terms on the right hand side now appear as driving terms for the linearized

differential equation for &gjow . Only the terms on the left hand side determine the effective

spring constant. Expanding the sinusoidal term on the LHS of B-19,
cos(Wnbnt + ACcos(@Wnbat)) = COS(Mnbat)cOS(ACCOS(Wnbnt))-
sin(Wnbnt)sin(Accos(@npnt)) = ¢cos{®pbnt) - ACSin(nbnt)cos(@nbnt) (B-20)

We now perform the average over the fast time scale and Poof! It all goes to zero. We are

left with the equation for the slow variable

dEE désiow
M %) +T T

+ Ky Egiow = Fleos(wgt) (B-21)

As advertised, the effective spring constant goes to Kp, and the effect of the sinusoidal

potential averages to zero.
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CDW Simulator Value (in simulator)
X 03] variable
o variable
Veomt o3 variable
F ip/PB small
o e =200 Hz
W W 5 KHz
eEac iac/B 3ig;0
eEg igo/P varied
B ic 0.76 mA
2kE 1/ 2rx104 Hz/V
Kp /14 29.4 Henry-!
ke /Ly 2.85 Henry-!1
G 20 uF
Ca 40 pF
T 1/R1 10-3 mho
Yo 1/R3 0.95x10-3 mho
C3 -4000 pF

Table B-1: Correspondence between components in the electronic analog computer and
constants in Equations 8-4 and 8-5. The values of the components used in the simulation
are listed in the third column.






