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ABSTRACT

The phenomenon of switching has been studied in the lower charge-density-
wave (CDW) state of NbSez. The dc current-voltage characteristics of selected
crystals of nominally pure and iron-doped material display abrupt, hysteretic
thresholds for nonlinear conduction. Narrowband current oscillations indicate
that the thresholds represent the sudden onset of Fréhlich conduction by the

CDW condensate.

Switching has been characterized by measurements of de¢ and ac electrical
conductivity, Measurements of dc conductivity show that switching is
distinguished from nonswitching transport by discontinuities in CDW current,
large polarization before the onset of CDW motion, and an unusual temperature
dependence of the electric fields necessary to initiate CDW motion. Switching is
found to originate in the crystalline bulk of NbSe;. Switching is not caused by
surface defects or external electlrica! contacts, but is instead associated with
strong, nonuniform pinning of a CDW. Measurements of ac conductivity show
that switching CDWs are dynamically overdamped when pinned, but

underdamped when sliding.

Switching has also been characterized by investigation of dynamical
instabilities that occur under particular combinations of ac and dc drive. In

crystals biased by a de¢ current, large and intermittent 1/f noise is observed in



regions of negative differential resistance. In crystals biased by combined de
and ac electric fields, period-doubling routes to chaos are observed during CDW
mode-locking. The conditions necessary for the instabilities to oceur are
mapped out as a function of temperature, de¢ bias, ac frequency, and ac

amplitude.

Analysis shows that switching can not be explained by standard models of
CDW transport. Phase slippage and strong pinning are proposed as
mechanisms of switching. A classical Hamiltonian is constructhed to describe the
dynamics of strongly pinned CDWs, and overdamped equations of motion are
derived to model phase slippage in the CDW order-parameter. The equations
qualitatively reproduce the experimental characteristics of switching CDWs,
Thus, phase slippage provides a self-consistent explanation for the transport
properties of switching CDWs.
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CHAPTER 1: SURVEY OF THE THESIS

This thesis studies the phenomenon of switching in charge-density-wave
(CDW) transport.! The term su}z'tchz"ng refers to the threshold behavior of a
CDW.2 In nonswitching CDW transport, the velocity of a CDW increases
gradually as an applied electric field exceeds the threshold field Er for CDW
depinning.®=% In switching transport, the CDW velocity increases abruptly and
often hysteretically. The resulting difference between I-V curves for switching
and nonswitching CDWs is quite striking. A nonswitching I-V curve departs
smoothly from ohmicity at threshold, whereas a switching CDW displays one or

several® steplike breaks.

The thesis research accomplished two results, First, switching was
characterized in one type of CDW conductor, NbSes, through an extensive
series of experiments.’ !° Second, a theoretical model was constructed to
explain the experimental results.!®!” The main conclusion of the work is that
switching represents a unique regime of transport in which the dynamics of the
CDW amplitude is as important as the dynamics of the CDW phase. This
conclusion is significant because amplitude dynamics is thought to be
unimportant in nonswitching CDW trar;sporc. Therefore, the differences
between switching. a-nd nonswitching transport are caused by qualitative, not

just quantitative, differences in physiecs.

The purpose of this chapter is to provide an overview of the thesis research.
The chapter is organized into four sections. The first section is an introduction
that briefly reviews CDW transport. The second section is a survey of the

experiments that were performed on switching CDWs. The third section



discusses the process of phase slippage in the CDW order-parameter, which is
the physical mechanism proposed to explain switching. The fourth and

concluding section is a guide to the rest of the thesis.

I Charge-Denstty-Wave Transport

A charge-density wave (CDW) is a spatially periodic modulation of a metal's
ionic lattice and electronic charge density. CDWS occur most readily in
anisotropic metals whose Fermi surfaces share certain characteristics with the
Fermi surfaces of idealized one-dimensional metals.! A charge-density wave is
also called a Peterls distortion after R. E. Peierls, who noted that the electronic
energy of a one-dimensional metal can be lowered by a spatial modulation of the
metal's lattice.’® In 1953, concurrently with Peierls’ work, H. Frohlich proved
that the total energy (the combined electronic and lattice energies) of a one-
dimensional metal can also be lowered by a modulation of the metallic lattice.'
In ~addition, Frohlich proved that a Pelerls distortion can act as a
superconductor of electrical current. In 1976, CDW conductivity was discovered
in a real material, NbSez, by Monceau, Ong, and coworkers.® Charge-density
waves in NbSez do not <act as superconductors, because of the defects, lattice
anharmonicities, and other imperfections that are inevitably found in real
materials. Since Frohlich’'s dynamical theory is exact only for perfect crystals,
experimental and theoretical research since 1976 has focused on finding a theory

which describes CDW conduction in nonideal erystals.

Even though Frohlich’s theory is not exact for real CDW materials, it still

serves as the starting point for more sophisticated models of CDW transport.



After a CDW material has undergone a Peierls distortion, the spatially-
modulated electronic charge density of the material may be written as
n 4+ popw(z), where n is the average electronic density and pepw(z) is the
density modulation produced by the Peierls distortion. The spatial variation of

the electronic charge-density wave is given by

pepw(z) = peos(Qz + ), (1.1)

where p is the amplitude of the electronic density wave; @ = 2kr is the CDW
wavevector, with kg the electronic Fermi wavevector; and ¢ is the CDW phase
with respect to the undistorted lattice. If the CDW wavelength A = 27 /Q is
incommensurable with the lattice constant a, then in an ideal crystal the energy
of a CDW is independent of its phase.!® Frohlich showed that electric fields
couple directly to the phase of a CDW, and that the application of an electric
field to an incommensurable CDW, even a vanishingly small electric field, causes
the CDW phase to advance continuously, or to slide. Sliding CDWs carry an
electrical current, because variations in ¢ correspond to displacements of
electronic charge. The mechanism of current transport by CDW sliding is

known as Frohlich conductivity.

In a real, non-ideal material such as Nb.SeS, the energy of an
incommensurable CDW is not independent of the .CDW: phase, because
impurities and defects pin the CDW phase to preferred local values.?®~ 23
Therefore, infinitesimal electric fields do not cause the CDW to slide. If

impurity and defect concentrations are small enough, however, finite electric

fields can still depin the CDW, leading to a sliding CDW state with enhanced



conductivity. In conventional CDW depinning, the depinning process is smooth,
with a well-defined threshold field Ep for the onset of CDW conduction and
with no discontinuities in either chordal (V/I) or differential (dV/dI) resistance.®
At very high electric fields the CDW dynamie conductance saturates as the

CDW approaches a high-field, high-conductivity state,35

In contrast to conventional CDW depinning, the phenomenon of switching
produces a sharp, often hysteretic discontinuity in the I-V characteristic of a
CDW conductor. In many cases, the critical field Ey at which éwitching oceurs
corresponds to the onset of CDW motion, hence Ep = Er. In other cases,
switching is preceded by apparently conventional CDW depinning, so that
Egs > Ep. Multiple switches in a single IV characteristic have also been
reported.® Switching may be observed in real-time pulsed experiments, where
application of a current pulse causes an abrupt transition to a high-conductivity
state after a short delay.®?* Switching was first reported in the lower CDW
state of NbSe;. Since then, switching has been observed in selected crystals of
TaS; (Ref. 25), (NbSes)assl (Ref. 26), Kg3MoO; and RbgzMoOsz (Ref. 27).
Furthermore, switching has been intentionally induced or enhanced by iron-
doping NbSey (ref. 6) or by irradiating the blue bronzes.?® Therefore, switching

has proven to be a general CDW phenomenon.

The magnitude of switching thresholds is characteristic of CDW depinning
energies and suggests that the nonohmic current in switching crystals is carried
by the CDW condensate, just as in nonswitching crystals. On the other hand,
CDW transport is dramatically different in switching ecrystals than in

nonswitching crystals. For example, this thesis will show that switching in



NbSez is associated with negative differential resistance, bistability and large

8

1/f noise;® an inductive ac response;® and period-doubling routes to chaos.!® In

nonswitching NbSej crystals, all of these effects are absent.

Most experimental and theoretical research has concentrated on smoothly
depinning CDWs in nonswitching crystals. A number of models, both

qu antum?®

and classical,®®3! have partially explained the dynamics of
nonswitching CDWs. Despite a wide diversity of physical assumptions, these
standard models commonly ascribe CDW motion to variations in the CDW
phase and treat the CDW amplitude as constant and homogeneous throughout
a crystal. The physical gature of CDW transport remains controversial,
however, since it is unclear whether quantum tunneling or classical mechanics is

the appropriate framework for describing CDW dynamics. ‘

Because of the drastic differences between switching and nonswitching
crystals, various ed hoc mechanisms have been introduced to explain switching:
domain-coupling,>3? CDW self-blocking,3® phase inertia,’® and CDW current
noise.®* Ad hoc explanations for switching are rather unsatisfactory, because
they obscure a fundamental issue. A theoretical model that correctly deseribes
nonswitching transport should be a limiting case of a more general description
that also encompasses switching. Thus it is important to understand switching
at a fundamental level, because switching could provide a stringent test for any

general theory of CDW transport, whether quantum or classical.

II. Ezxperiments on Switching CDWs

This section summarizes the experimental results of the thesis research on



switching in NbSez. The primary goal of the research was to determine whether
switching is an intrinsic aspect of CDW transport. The results of the research
" show that it indeed is. More precise goals of the research were to characterize
the dynamics of switching CDWs; to relate these dynamics to the dynamics of
nonswitching CDWs; and to compare the dynamics of switching .CDWs to the
predictions of existing models. The main result of the experiments is that
switching corresponds to a qualitatively different type of CDW dynamics: CDW
motion in the presence of strong, nonuniform pinning. Current discontinuities,
phase slippage, and amplitude fluctuations are basic features of this type of
CDW transport. As a result, switching cannot be adequately described by any
purely phase-dynamical model of CDW sliding — a dynamical treatment of the
CDW amplitude is also required. Although study was limited to a single CDW
material, the thesis results are believed to be applicable to other CDW

conductors as well.

Experiments on switching erystals of NbSez may be grouped in one of two
ways. A straightforward method is to ciassify experiments by the type of
measurement probe that is applied to a crystal. In the following experiments,
various combinations of de and ac electric fields were applied to switching
crystals. The combinations can be classified as 1) pure dc fields, 2) de fields
plus small ac fields, and 3) de¢ fields plus large ac fields, where “large” and
“small” are measured relative to the threshold field of a crystal. This
classification scheme is essentially how experiments are grouped in the main

body of the thesis.



An alterngte method of classifying experiments is to group them according to
the type of response that is observed during an experi‘ment. Although switching
crystals display a wide varievy of responses, most of which “are very different
from comparable responses in nonswiiching crystals, the responses are now
thought to be manifestations of just four general effects: CDW current
discontinuities, phase polarization, avalanche depinning, and pseudo-inertia.
Table 1 lists the four effects and the associated responses. (For completeness,
the table lists some experiments that were not part of the thesis. Appropriate

references are listed for these experiments.)

CDW current discontinuities are the most important category of effect_s
associated with switching,'* and for this reason they will be the focus of the
present discussion. Current discontinuities are important first of all because
they distinguish switching from nonswitching crystals. Current discontinuities
are usually absent in nonswitching crystals, although they are sometimes
present due to extrinsic factors such as gross crystal defects or temperature
gradients. In contrast, current discontinuities are usually present in switching

crystals, even in nearly ideal samples held at uniform temperatures.

CDW current discontinﬁities are als;) important because their presence
requires fluctuations of the CDW amplitude. A discontinuity in CDW current
actually represents a discontinuity in CDW phase velocity. A velocity
discontinuity creates a compression of the CDW phase, because the phase
accumulates on one side of the discontinuity. But CDW phase can not pile up

indefinitely at a discontinuity, since there is an energy cost associated with



EFFECT PROBE FIELDS | REFERENCE

CURRENT DISCONTINUITIES de Chap. 3
CDW POLARIZATION
Abrupt depinning dc Chap. 3
Hysteresis dc Chap. 3
Changes in low-field de Chap. 3
resistance '

AVALANCHE DEPINNING

Hysteresis-loop de Chap. 3
sublevels

Negative-differential de Chap. b
resistance

Delayed response to pulsed Ref. 2
pulsed fields )

Breakup induced by de Ref. 13
temperature gradients

AC switching noise de + large ac Ref. 15

PSEUDO-INERTIA

AC Conductivity

Overdamped pinned dc + small ac Chap. 4
respomnse '

Underdamped sliding dc + smail ac Chap. 4
response

Dynamical Instabilities

Period-doubling de + large ac Chap. 5

Chaos de + large ac Chap. 5

Noisy precursors de + large ac Chap. 5

Table 1-1}) Experimental effects associated with switching.
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compression of the phase. Eventually the energy cost of compressing the phase
exceeds the energy cost of destroying the CDW state, and when this happens,

the CDW disappears momentarily at the discontinuity.

The disappearance of the CDW is equivalent to the collapse of the CDW
amplitude. When the amplitude collapses, the CDW phase becomes
indeterminate and therefore may “'slip” by factors of 27. When the phase slips,
some of the accumulated phase is released and it becomes energetically
favorable for the CDW state to reform. The amplitude then regenerates, and
this sets off a new cycle of phase compression and amplitude collapse as the
phase begins to reaccumulate. Each time the CDW amplitude collapses, CDW
current is converted into normal electronic current. The process of current
conversion by periodic coll.a.pse of the CDW amplitude is known as phase
slippage, and sites where the CDW amplitude fluctuates are called phase-slip

centers 1?35

The other effects listed in Table 1 are straightforward consequences of phase
slippage. For example, the category of CDW polarizaiion refers to effects
agsociated with compression and deformation of the CDW phase around phase-
slip centers, and the category of avalanche depinning includes effects caused by
phase slippage at one center triggering phase slippage at nearby centers. The
last category of pseudo—i;lertia includes effects caused by the time-lag that it

takes a 27 change of phase to diffuse from a phase-slip center into the bulk of a

crystal. These effects are described in greater detail in Chapters 3-5.
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ITI. Phase-Slip Dynamics

The discussion now turns to how phase slippage produces the abrupt
depinning that is characteristic of switching transport. As mentioned earlier,
amplitude fluctuations are a crucial feature of swi’bching. Most models of
nonswitching transport neglect the effect of amplitude fluctuations, because
amplitude fluctuations are energetically expensive compared to phase
excitations of the CDW order-parameter. In NbSez, for example, typical phase-'
pinning frequencies are 109 Hz (Ref. 36), whereas amplitude fluctuation
frequencies are 10'2 Hz (Ref. 37). The observation of current discontinuities,
and hence of amplitude fluctuations, indicates that CDWs are very strongly
pinned in switching crystals, at least within localized regions near phase-slip

centers.

The starting point for a phase-slip model of switching is a Hamiltonian H
that includes the effects of both strong pinning and amplitude fluctuations.

The form of the Hamiltonian is the same as for a phase-only model:

H=H, + Hpin + Hﬁe{d . ‘(1_2)

Here H, is an elastic energy that minimizes deformations of the CDW order-
parameter; Hp;, is 2 ;;)inning term that binds the CDW to defects and impurities
within a crystal; and Hpeyq is an interaction term that couples the CDW to
external electric fields. What is new in a phase-slip model is that H,;, includes
the effect of strong pinning and that H, includes the effect of amplitude

fluctuations.
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The physies of the phase-slip model is contained in the amplitude

2123

dependence of H,. In a phase-only model, the elastic energy is written as
d¢ :
H. = d3x {—=1 , )
0 fo f X [ dx ] (1.3)

where f, represents the CDW condensation energy and leng_ths are measured in
units of the amplitude coherence length. The important feature of Eq. 3 is that
the elastic energy increases monotonically with gradients in the CDW phase,
This occurs because the CDW amplitude is assumed to be constant and
homogeneous throughout a erystal, In contrast, the CDW amplitude is treated
as a dynamical variable in the phase-slip model,!” and the elastic energy is

written as

2
Ho=1,{ de{M [% + (A--—Ao)2}. (1.4)
Here A represents the normalized amplitude of the CDW and A, represents its

equilibrium value.

The phase-slip Hamiltonian, Eq. 4, can be derived from a Ginzburg-Landau
;expansion of the CDW free energy.®® (Spatial derivatives of the amplitude
should also be preéent in the Hamiltonian, but these terms have been neglected
for simplicity.) Alternatively, Eq. 4 can be derived from the vibrational
frequencies of the CDW nérmal modes. (This is the approach taken in Chap. 6.)
The important feature of Eq. 4 is that the amplitude enters multiplicatively in
the phase‘eiasticity term. Because of this, large phase gradients reduce the_ size

of the CDW amplitude, and conversely, reductions in the amplitude diminish
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the elasticity of the CDW phase. If the amplitude collapses entirely, for
example, then the elasticity vanishes completely. The second term of the
Hamiltonian, proportional to (A—AO)Q, adds a large energy penalty for
amplitude collapse. Therefore, the CDW amplitude decreases only if large
phase gradients are present. Note that if the CDW amplitude were always
equal to its equilibrium value, then the phase-slip Hamiltonian of Eq. 4 would

reduce to the simpler phase-only expression of Eq. 3.

The difference between a phase-slip and a phase-only Hamiltonian becomes
important when strong pinning is considered. A strong pinning center can be
defined as a site whose pinning energy is comparable to the CDW condensation
energy, and the effect of such a center is to essentially fix the value of the COW
phase at that site.)”** As a result, when an electric field is applied to a strongly
pinned CDW, the phase becomes extremely polarized, as indicated in Fig. 1a.
In a phase-only model, that is all that happens. As larger electric fields are
applied, the phase just becomes more polarized. Eventually the elastic energy
of the phase exceeds the condensation energy of the CDW, and a 27 phase-slip
must be put in by hand in order to relieve polarization. In contrast, large phase
gradients in a Ginzburg-Landau model reduce the CDW amplitude, as shown in
Fig. 1b. By the time the elastic energy of the phase has reached the
condensation energy, the amplitude has collapsed completely. Therefore, phase

slippage occurs spontaneously in a Ginzburg-Landau model.

During phase slippage, the elasticity of the CDW phase becomes unstable,
and this has an important effect on how a CDW depins.!® The elasticity of the

CDW phase is effectively 2 function of its polarization, Figs. 3.16 and 6.1.



14

a PHASE-ONLY

E i

b3
b PHASE -SLIP
E —»
¥
¢ PHASE-SLIP LENGTH
 E e
\/\M/\M/\WWV
- Lps o ‘

Fig. 1-1)  The effect of an eléctric field £ on the order-parameter of a strongly
pinned CDW. The asterisks denote strong pinning cenfers.
a) Phase polarization in a phase-only model, Eq. 1.3. b) Phase-
polarization and amplitude collapse in a phase-slip model, Eq. 1.4.
¢) The characteristic phase-slip length Lpg between phase-slip
centers. :
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When gradients in the phase are small, the phase acts like an ideal elastic field,
with a restoring force that increases Hnearly with polarization. When larger
gradients are present, however, the elasticity softens until the restoring force
peaks at some critical gradient X. For gradients larger than X, the restoring
force actually decreases with increasing polarization, making the phase unstable.
In this unstable regime, phase po-Earization accelerates until the CDW amplitude
collapses at some maximum gradient X5 Just below the threshold electric field
for CDW depinning, the phase gradients within a strongly pinned CDW are at
the critical value X, and the elastic restoring force is at its maximum value.
With a slight increase in the electric field, the phase gradients exceed X and
the restoring force decreases. The electric field therefore becomes slightly

uncompensated and the CDW begins to slide.

Whether CDW depinning is abrupt or smooth depends on the characteristic
spafcing Lpg between phase-slip centers, Fig. 1c. After a phase-slip occurs at a
strong-pinning center, the phase gradient at the center is about Xz — 27/Lps.
If this gradient is smaller than X, then at some point during the phase-slip
cycle the elastic restoring force reattains its maximum value and the field energy
is again almost compensated. Therefore, the average CDW velocity only slightly
exceeds zero and the depinning process is smooth. On the other hand, if
Xy = 27 /Lpg exceeds Xg, then the restoring force emergy never reapproaches
its maximum value, and the electric field is always grossly uncompensated. In

this case, the depinning process is abrupt.

Thus, the ratio of two length scales determines whether a strongiy pinned

CDW displays switching. The first length scale is just the spacing Lpg of the
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strong-pinning centers. The second length scale is the critical value Lgwrren

defined by the phase gradients X¢ and Xz

o

X~ %o -

Lswirey =
If Lps < Lswrrcn, then smooth depinning occurs; whereas if Lpg > Lowrrom,
then switching occurs. This simple criterion for switching can become
complicated in its application,'® but the basic idea remains unchanged. Because
of the elastic instability of the CDW order-parameter, the CDW phase can
respond to the presence of a strong-pinning center only over a limited distance.
Far away from a center, the phase is essentially unaffected by the center’s
presence once the CDW has become depinned. Therefore, when strong-pinning
centers are spaced far apart in a crystal, the dynamics of the CDW phase
become decoupled from the forces exerted by the centers. In this sense,
switching is caused by strong pinning that is nonuniform on the length scale

defined by the elastic coherence of the CDW phase.

IV, Guide to the Thesis

Sections II and III have stated the main points of the thesis: that phase
slippage experimentally distinguishes switching from nonswitching CDW
transport, and that phase slippage provides a natural theoretical explanation for
switching. The rest of the thesis develops these points in greater detail. The
thesis is organized into four parts. The first three parts sequentially cover CDW
fundamentals (Chaps. 1-2), experiments on' switching CDWs (Chaps. 3-5), and

tﬁe phase-slip model of switching (Chap. 6). The last part of the thesis consists
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of a conclusion (Chap. 7} and four appendices. With the exceptions of Chap. 2
and the conclusion, each chapter is divided into result and analysis sections,

with a concluding section that summarizes the important points of the chapter.

Chapter 2 begins the main body of the text with a detailed and original
introduction to theories of CDW formation and dynamics. The formation of
charge-density waves is discussed in terms of single-electron wavefunctions and
classical lattice dynamics, not the usual electron and phonon creation and
annihilation operators. Most of the second-quantization results are rederived.
Chapter 2 also collects together some useful results on the structure of NbSes,
and discusses why a three-dimensional crystal can be treated as though it were
a one-dimensional metal. The last part of Chap. 2 deals with CDW dynamics,
which are introduced in terms of so-called sombrero surfaces. These surfaces
provide a conerete way of thinking about the CDW amplitude and phase, about
the difference between strong and weak pinning, and about the dynamics of the

CDW order-parameter during phase slippage.

Chapter 3 is the first chapter that discusses the thesis research in detail, and
it focuses on the response of switching CDWs to dc electric fields. Chapter 3
begins by discussing the growth of switching versus nonswitching crystals.
Basically, very little is known about what causes one crystal to be switching and
another one to be nonswitching. The thesis research did not attempt to address
this question directly, because it was suspected that the problem might be one
of chemistry rather than physics. The thesis results do touch upon the issue in
a peripheral way, because an analysis of CDW welocity discontinuities leads to a

conjecture about the role of lattice defects in switching crystals. The rest of
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Chap. 3 is divided into experimeptal and analytical sections. The experimental
section of Chap. 3 discusses a variety of effects, ranging from the temperature
dependence of threshold fields to the bias-induced changes in low-field
resistivity that are observed in switching crystals. The analytical section of
Chap. 3 is divided into two parts. The first part deals with several phase-only
models of switching, one of which was proposed by the author and co-workers.
Phase-only models are shown to be inconsistent with the experimental results;
therefore, the second part of the analytical section turns to a qualitative
discussion of phase slippage. The discussion parallels Sec. Il of the present
chapter, but considers additional details such as velocity discontinuities,

impurity and defect concentrations, and finite temperature effects.

Chapter 4 focuses on the response of switching CDWs to small ac electric
fields. Small ac fields ideally act as nonperturbative probes of intrinsic CDW
dynamics. The results of Chap. 4 reveal a dichotomy between the dynamics of
pinned and sliding CDWs. When switching CDWs are pinned, they are
dynamically equivalent to nonswitching CDWs (overdamped); but when
switching CDWs are depinned, their dynamies is quite different (underdamped).
Chapter 4 provides the first demonstration of an effective phase inertia induced

by phase slippage.

Chapter 5 provides a second example of an effective phase inertia. When
large ac fields are applied to a switching CDW in combination with a de¢ bias
field, the CDW response displays a period-doubling route to chaos. Such a
response is possible only if the CDW is effectively underdamped and, more

importantly, only if the CDW dynamics has collapsed onto a single degree of
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freedom. Period-doubling routes to chaos are an example of a dynamical
instability in the CDW response. Chapter 5 also discusses a second type of
dynamical instability, which is associated with negative differential resistance.
This kind of instability depends on the couplings between phase-slip centers in

a crystal.

Chapters 3-5 comprise the experimental work of the thesis. In the analysis
sections of these chapters, the effect of phase slippage is explored in qualitative,
model-independent terms. Chapter 6 represents the theoretical side of the
thesis, and it introduces a specific model of phase slippage. Under certain
conditions, the model reduces to a set of three coupled equations. The
equations were analyzed in collaboration with M. Inui, who performed extensive
numerical calculations of their dynamics. The equations exhibit switching,
hysteresis, period-doubling routes to chaos, and an inductive, sliding ac
conductivity. Thus, the equations qualitatively reproduce the dynamics of
switching CDWs. Chapter 6 closes by scrutinizing the quantitative agreement

between theory and experiment.

Chapter 7 concludes the main body of the text by briefly resummarizing the
results of the thesis. The chapter includes a companion table to Table 1.1 that

lists the physical origin of the effects associated with switching.

In addition to the main chapters, the thesis contains four appendices.
Appendix Al contains some derivational details of results cited in Chap. 2.
Appendix A2 works through the calculation of a Peirls distortion in a model
system, the Kronig-Penney model of one-dimensional metal. Appendix A3

describes a nonperturbative, four-probe sample holder used to map out current



20

domains within switching crystals. Appendix A4 is a list of publications written

as a part of the thesis research.
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CHAPTER 2: CDW FORMATION AND DYNAMICS

This chapter reviews previous research on CDW tranéport. The review is
arranged as follows. Sec.l presents the theory of CDW formation in one-
dimensional and quasi-one-dimensional crystals. The discussion emphasizes that
CDW formation is due to classical properties of crystal lattices: electrons are
described by single-particle wavefunctions and ions by Hamilton’s equations of
motion. Sec. II shows how the general theory of CDW formation applies to a
real material like NbSez. The crystal and band structures of NbSej are
discussed, as well as the CDWs that are experimentally observed in NbSej.
Sec. III describes the dynamics of sliding CDWs. Frohlich superconductivity
and the amplitude and phase modes of CDWs are introduced in terms of the
classical dynamics of Peierls distorted lattices. The effects of impurities on
CDW dynamies are examined next, and the Fukuyama-Lee-Rice Hamiltonian is
introduced. Some experiments on CDWs are reviewed, and the chapter closes

with a survey of phenomenological models of CDW motion.

I Microscopic Theory of Charge-Density Wave Formation

A. Peterls’ zone-folding argument

R. E. Peierls proposed an elegant explanation of why a periodic lattice
modulation lowers a crystal's electronic energy.! Consider a one-dimensional,
linear array of atoms with an average spacing ¢. Fig. la shows the first

electronic energy band for such a erystal in a nearly-free electron
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Fig. 2-1.a) A one-dimensional erystal in the nearly free electron
approximation.
Top: the crystal lattice. Circles represent ions. All ions are
identical; the shaded jons are only a guide to the eye. See the
next figure.
Bottom: the first conduction band. The Brillouin zone extends
from —r/a to r/ea.
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A one-dimensional crystal after a Pelerls distortion.

Top: the distorted lattice. Arrows indicate shifts of the ions.
Bottom: the conduction band of the distorted crystal {solid line).
The Brillouin zone is half its original size, and the original
conduction band is folded back onto itself (dashed line}). An
energy gap 2A opens up at the new Brillouin zone edge because

of Bragg reflection by electrons from the displaced ions. After
ref. 1.



approximation. If every rih

atom is displaced by a small amount, then the
translational symmetry of the crystal is considerably reduced. The erystal’s unit
cell expands from 1 atom to r atoms, whereas the crystal’s Brillouin zone shrinks
from 7/a to m/ra. Figure 1b shows the reduction in Brillouin zone for the case r
= 2, If the crystal electrons did not interact with the displaced atoms, the
electronic energy band would simply fold over onto itself, as shown by the
dashed line in the figure. (Note that in Fig. 1b and succeeding figures, the
distortion of the lattice is exaggerated for the sake of clarity. In real crystals, a

Pelerls distortion is small. In NbSes, the distortion amplitude is about E}.GSA,

compared to a lattice constant of 3.5A..)

Because electrons do interact with displaced atoms, the displaced atoms
change the electronic potential Vg(z) by an amount V,(z). The perturbing
potential Vi{z) is periodic with wavelength A= ra, so it can have Fourler
components at wavevectors +Q, +2Q, - +(r~1)Q, where Q = 27/ra. The
perturbing potential Vi{z) opens gaps in the electronic energy spectrum, as
shown by the solid line in Fig. 2.1b. Essentially, the new gaps are caused by
Bragg reflection of electrons from the distorted lattice, just as the original
bandgaps at #m/a are caused by .Bragg reflection from the undistorted lattice.

The magnitude 24, of each new gap is

28, = | [ doX1g/0(2)Vi(2)X_rgsa(2) | (2.1)

where X(x) is an electronic Bloch function of the undistorted lattice. If the
electronic energy spectrum is viewed in an extended zone scheme, the gap index

¢ labels the wavevectors # k, = +£Q/2 at which Peierls gaps open up.
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* Each portion of an energy band below a Pelerls gap is lowered in and energy,
each portion just above is raised. If a gap occurs right at the Fermi surface,
then at zero temperature filled electronic states are lowered in energy whereas
empty states are raised. Pelerls observed that the net electronic energy is

therefore lowered by a periodic lattice distortion of wavelength A= 7 /kp.

Peierls’ zone-folding explanation can be applied rigorously only to erystals in
which the Fermi wavevector is a rational fraction N' /M  of the Brillouin
wavevector m/a. The integer M' is called a distortion's order of
commensurability. As the integer M’ increases, i.e. as the ratio kp /(7 /a) tends
toward an irrational number, the distorted Brillouin zone steadily shrinks. In
the limit that kp/{w/a) is an irrational fraction, the unit cell of the distorted
erystal becomes the entire crystal and its Brillouin zone a single point. Pelerls’
explanation breaks down, although perturbation theory shows that a periodic
distortion of wavelength A = m /kp still opens gaps in the electronie spectrum of
a crystal. A Peierls distortion is commensurate if the fraction a /A= kg /{r /a)
is equal to the ratio of low-order integers, incommensurate otherwise. The
distinction between commensurate and incommensurate Peierls distortions
becomes important when vibrations of the disiorted lattice are considered in

See. 111,
B. Frohlich’s model

Not only does Peierls’ zone folding explanation break down for
incommensurate distortions, it also says nothing about the increase in lattice
strain energy caused by Pelerls distortions. In order for a Peierls’ distortion to

oceur, the decrease in electronic energy must compensate the increase in lattice
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oceur, the decrease in electronic energy must compensate the increase in lattice
strain energy. Using perturbation theory, Frohlich demonstrated that a Peierls

distorted crystal has lower fotel energy than an undistorted crystal.?

Frohlich’s Hamiltonian for a one-dimensional metal contains three terms: the
unperturbed energies of electrons, the unperturbed energies of phonons, and a
perturbing term due to the interaction of electrons and phonons. The
Hamiltonian neglects any electron-electron interaétions, and any effects of
erystal dimeﬁsionality or temperature. In many-body notation, the Hamiltonian

is

He= Yezaf ap+ Thw, by bq—%—N"l-/zEg(k,q)anak(b'_" 0, (2.2)
k q k)q

The ¢; are single-electron energies; the af and a; are electron creation and
annihilation operators; the w, are phonon frequencies; and the l‘)'qF and b, are
phpnon operators. The integer N is the number of lattice sites in the crystal,
and the energy ¢(k,¢) is the Frohlich electron-phonon coupling parameter,
which is usually approximated by a constant g and taken outside the

summations.

The Frohlich Hamiltonian is more sophisticated than is necessary for
charge-density waves. First of all, electron operators in the Hamiltonian are
constructed from creation and annihilation operators to ensure that solutions
are properly antisymmetric in electron coordinates. But the Hamiltonian
neglects Coulomb reépulsion between electrons, so that all potentials in the
Hamiltonian are functions of a single electron coordinate. Antisymmetrization

has no effect on a single-coordinate potentials, and therefore the creation and
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wavefunctions may be used in place of Slater determinants to desecribe
electronic wavefunctions. Product wavefunctions, unlike Slater determinants,

permit single-particle perturbation calculations of electronic energy shifts.

Similarly, the discrete nature of phonons never becomes important in Peierls
distortions, even though a Pelerls distortion is often called an ‘“‘electron-phonon

condensate’. The number @ of condensed phonons is huge:

2
2 b2 A o

Q=L
A Ephwgy,

N (2.3)

Here v is the degree of band-filling in a crystal, A\ a dimensionless electron-
phonon coupling constant, 24, the magnitude of the gap in the electronic
energy spectrum, Er the Fermi energy, and wy, the frequency of the 2kp
normal mode. For NbSe;, v~ X\~0.25 A,=35meV, hwgy, =12 meV, and
Er~1eV. These values give @ ~ 0.1N'/2, Since the number N of lattice sites
is a very large number (for example, roughly 10'? for the crystal of Fig. 2.8), the
quantum number @ is also large. By the Bohr correspondence principle, the

distortion of a crystal’s lattice may be calculated classically.

The approach of the following discussion, therefore, is to treat electrons as
single particfes moving within a classical, deformable lattice. Most of the usual
second-quantized results will be rederived. For this thesis, the most important

results are the following:

1) The gap equation, Eq. 2.18, shows that a Peierls distortion always

occurs in a one-dimensional crystal at zero temperature.
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2)  The distortion energy Ep.ns shows a well-defined minimum at an

optimal value of the lattice distortion, Fig. 2.2a.

3) The electronic gap A, the lattice distortion u, and the induced
charge-density wave amplitude p are all equivalent order parameters

for the Pelerls instability, Egs. 2.22 and 2.24 and Fig. 2.3.
Readers should feel free to glance at these equations and figures, and then skip
ahead to the next section, unless of course they are interested in the derivations.
Appendix Al contains derivational details not shown in tiais section, and
Appendix A2 shows how the results of this section apply to an idealized model

of a one-dimensional erystal.
1. Mean-field dpprozimation

In an undistorted crystal, the energy Eq(k) of an electron of wave vector k is
given by the Hamiltonian Hy= p?/2m+ Vy(z). The crystal potential Vy(z) is
the sum of ionic potentials v(z—gz;) where 7 is the electron coordinate and I;is
the position of the ;% ion. A mean-field calculation of a Peierls distortion
assumes that each ion is periodically displaced. The position of the ;¥ ion

hecomes T; + uy where
’uj= Uy QE'.QZJ"‘}‘ que—-—foJ-. (24)

Here Q is the wavevector of the distortion. Since u; must be real, the Fourier
components in (2.4) are given by u.g= uexp (#¢) where u is the amplitude of
the distortion and ¢ is its phase. The phase ¢ will be set to zero for most of this

discussion, but its physical significance is discussed further in Sec. III.
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The ionic displacement given by (2.4) perturbs the original potential Vy(z)
by an amount Vy{z). To first order in the distortions uj, the potential V(z) is

given by

Vile)= = 2w & (2.5)

A Bloch function of wavevector k is mixed by V{z) with states of wavevector
k +Q. For an electronic band less than half-filled, umklapp processes may be
neglected and perturbation theory shows that the energy of an electron is given
by
Ef (K)= T1B,(k+ Q)+ B, (b)
+{[Eo(k+ Q)= E,(k)* + 4] Ak, + @)1}/ (2.6)
The plus sign applies for [ k| > @ /2 and the minus sign for |k| < @Q/2. The

matrix element A(k, + Q) is given by

Ak, Q)= fdmxk*-t- Q(z)xk(x)vl(x)r (2.7)

where k is assumed to be negative. (Energies for positive & are obtained by

substituting — @ for + Q.) When |k]| = @ /2, Eq. (2.6) reduces to

Ef (Q/2)=E,(Q/2) +1a(—Q/2, Q)] (2.8)

Just as Peierls noted, a gap opens up at the wavevector @ /2. If Qis chosen to
be the twice the Fermi wavevector, then the net electronic energy is lowered by

the distortion. Henceforth, @ will be taken to be 24p.

Equation 6 is valid for both commensurate and incommensurate distortions.
The only difference between commensurate and incommensurate distortions

occurs when nonzero values of the phase ¢ are considered. For an



31

oceurs when nonzero values of the phase ¢ are considered. For an
incommensurate distortion, HEgq.6 ~remains valid when ¢%0. For a
- commensurate distortion, nonzero values of ¢ raise electron energies on the
average by [|Alz/EF}[IA|/MM"2[COS(M’¢)-1] where W is the electronic

bandwidth and M is the distortion’s order of commensurability.>
2. Electron-latiice interaction energy

Since AL g= A{— Q/2,Q) determines the size of the electronic gap, Ag is
called the gap parameter. Its modulus is denoted A = {Agl. The gap
parameter is basically the Q* Four_ier component of the perturbing potential
Vi(z). The gap parameter is préportionaf to the distortion amplitude ug

because of the linearization (2.5):
Ag= Goug (2.9)
where

o . d
Goo=—[dz¥, g/ale)%o Q,g(z)—&-i—. (2.10)

Here tildes over Bloch functions indicate that the functions are normalized to

unity over one unit cell. The modulus of G is denoted G.

The perturbed energies E;{k} may be approximated by substituting A for
| A(k,+ Q)] in Eq. 8. The perturbed energies then may be summed to give the
total electronic energy of the distorted crystal. The electronic energy consists of
two components: ES, the unperturbed electronic energy, and E, . i, the

electron-lattice interaction energy. The interaction energy E._ jatice 1S given by
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This energy may be integrated to give a particularly simple form:

E = A%lnA . ‘ (2.12)

~ gl gitice ~

Single tilde subseripts indicate normalized variables: ~el-lsttice =
E,i— tattice /12 (0)Ep) and A= A /[2Eg]. Here Ep is an energy roughly equal to

the bandwidth and n(0) is the density of states at the Fermi level of the
undistorted crystal. Figure 2a shows a graph of E,;_,4/.., which is minimized

when A =1/,/¢ = 0.6065. Although not apparent from Fig. 2a, the behavior of

Eoi_iattice is slightly subquadratic for small values of A. Fig. 2b shows this
subquadratic behavior on a logarithmiec plot. The dashed line in the figure has a
slope of two, and the.siope of Eo_iattice 18 asymptotic to - but always slightly
less than - two as A approaches zero. As will be discussed shortly, the
subquadratic behavior of E,;_ ... makes one-dimensional lattices absolutely

unstable against Peierls distortions at zero temperature.
3. Peierls energy

A decrease in electronic energy due to E,; 4. must balance an increase in
lattice energy due to strain. The lattice may be treated as a classical, linear
array of ionic masses M that are tied together by springs of spring constant C.

In the mean field approximation, the energy cost of the distortion is

Ejgttice = NMWQQk;.-u 2 (2'13)
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Fig. 2-2.a) The normalized electron-lattice interaction energy versus the
normalized gap parameter, shown on a linear plot. The
interaction energy is minimized by a finite distortion of the
lattice. ‘
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Fig. 2-2.b) The electron-lattice interaction energy versus the gap parameter,
shown on “a logarithmic plot. The dashed line displays a
quadratic dependence on the gap parameter. The subquadratic
dependence of the interaction energy makes one-dimensional
crystals unstable against Pelerls distortions.
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where wog, is the frequency of the 2ky normal lattice mode when electrons are

absent.
The total crystal energy is given by
E= Egl + Ejattice + Eei- lattice - (2.14)

This equation is the single-particle version of the many-body Frohlich
Hamiltonian, Eq. 2. Only the lattice energy and the electron-lattice coupling
energy are affected by the distortion, and it is convenient to lump these two
terms together into a Peierls distoriion energy, Epgens. The distortion energy
Epeieris may be expressed in terms of a single distortion parameter, either A or
u, since these two parameters are equivalent. Using the variable A, the Peierls

energy may be integrated to give:

1

~ A2
A%+

~ Peterls + mé)

(2.15)

where the dimensionless parameter X\=n(0)G?/2NMw3;,. Because the
electron-lattice interaction energy is slightly subgquadratic in A, the magnitude
of the electron-lattice energy is greater than the magnitude of the lattice energy
for small values of A. Because the electron-lattice energy is negative for small

values of A, the Peierls energy and the total erystal energy are reduced by small

distortions of the lattice.

The parameter X\ sets the scale of energy for Epg.ps, a5 may be seen by

rewriting the Pelerls energy in terms of scaled variables:

E = A2
== Pererls Q lﬁé (2.16)
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where Eﬂ:‘pﬂ_cm = gpﬂ_em exp(2/)) and and 4 = Aexp(1/\). The scaled Peierls
energy has the same dependence upon the scaled gap parameter as the unscaled

electron-lattice energy has upon the unscaled gap parameter.

The Peierls energy displays a minimum at an optimal value of A which is

determined by:

d
= E{Eclwlattice'i'Elattfce} (2.17)

Ignoring the unstable A == 0 solution, this gives the equilibrium value of A as
A, =2Ege "1/ (2.18)

Eq. 18 is the standard result obtained from the second-quantized Frohlich
Hamiltonian. Usually X is written In terms of the Frohlich constant ¢. The

coupling constant G is related to ¢ by
g = G(fi/2Muwg,)'/? (2.19)

Substituting ¢ for G gives the familiar form of the electron-phonon coupling

constant:

A= n(0)g?/(Nhwy). (2.20)

The Peierls gap equation, Eq. 18, has the same form as the BCS gap
equation, with one important difference. The occurrence of the BCS
groundstate depends on an attractive electron-electron interaction at the Fermi
surface to produce Cooper pairing. In contrast, the Peierls distortion occurs
regardless of the sign of the electron-lattice interaction, because of the g?

dependence of A. The sign of ¢ determines only the phase of the induced
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dependence of A. The sign of g determines only the phase of the induced

electronic density wave.
4. The charge-density wave induced by a Peterls distortion

The amplitude of the electronic density wave induced by a Peierls distortion
is usually derived using the Lindhard response function, but it can be derived
without using this formalism; see Appendix Al. By either method of
calculation, t_he CDW amplitude p is proportional to the distortion amplitude 2u

and the electronic gap 24A:

2 2
mwQ;;F MUJng
2u)= 2A). 2.21
—(20)= ——(24) (2.21)

p=

The CDW amplitude, the electronic gap, and the distortion amplitude are all
equivalent order parameters for the Peierls instability. The equivalence of the
parameters is a direct result of linearizing the perturbation energy Vy(z) and

the electronic density popw(z) to first order in the distortion amplitude u.

While Eq. 21 is sufficient to show that g, A, and u are equivalent order
parameters, a real-space picture clarifies their relationships. The Fourier
components of the lattice distortion, potential perturbation, and electronic

density are given by

ug = uexp(ig) (2.22a)

Ag= Ggug= Guexp(i¢+1i§,) (2.22b)
Muwjy Mw};

po=— % o L Ag= L uexp(i€41€,+1m) (2.22¢)

where the phase &, is determined by Gg:
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The phase £, is —m/2 for repulsive ionic potentials v(z) and +7/2 for
attractive potentials; see Appendix Al. Egs. 22 may be Fourier transformed

back to real-space functions:

u;= 2ucos(Qr + ¢) (2.24a)
vi(z)= 2Acos(Qz+d+€,) (2.24b)
pepw(z)= pcos(Qz+¢+§,+180 °) (2.24¢)

The induced CDW is shifted by 180 ° from the @ modulation of the crystal
potential. In turn, the potential modulation is either in-phase {v > 0), or 180 °
out-of-phase (v < 0) with the iattice distortion depending on the sign of.the
ionic potentials. Fig. 3 shows the spatial relationships of the several order
parameters for both attractive and repulsive ionic potentials. Note that the

lattice distortion in Fig. 3 is 90 * out of phase with the displacement vectors u;.

The spatial relationship of the potential perturbation V,(z) to the lattice
distortion is easy to u'nderstand. Where the Peierls distortion crowds lattice
ions together, the magnitude of V{z) has a maximum. If the ionic potentials
are repulsive, this maximum corresponds to a maximum of Vi(z); if they are
attractive, to a minimum of V(z). This quantity is the potential energy of the
CDW, so the electrostatic potential that one would measure with a voltmeter (or
a scanning tunneling microscope) is V(z)/(-e). The electron density is 180°
out-of-phase with V;{z) because electrons move toward regions of lower

potential and away from regions of higher potential.
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The spatial relationship of various CDW order parameters. (a) The
lattice displacement vectors wu; versus the resulting lattice
distortion. (b) The ionic perturbation potential V; versus the
electronic density modulation peopw, for the case of an attractive
electron-ion interaction. (¢) The same plot for the case of an
attractive electron-ion interaction.
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C. Effects of temperature, dimensionality, and electron-electron interactions

The discussion so far has neglected the effects of finite temperature, lattice
dimensionality, and electron-electron interactions. These factors play a critical
role in the formation of CDWs in real crystals. At nonzero temperatures, for
instance, electrons in a Pelerls distorted crystal are thermally excited above the
Peierls gap. Electronic states below the Peierls gap have reduced energy
because of the distortion, but states above have increased energy. Nonzero
temperatures reduce the occupancy of the sub-gap states and raise the
occupancy of the super-gap states. Past a critical temperature Tp, a Peierls
distorted crystal has higher energy than an undistorted erystal, and the crystal
undergoes a phase transition from the distorted to the undistorted state. This
section shows how the Perterls temperature Tp may be calculated from the
Lindhard response function.* (Appendix Al relates the Lindhard function to the
mean-field theory of the previous section.) Similarly, the discussion so far has
been limited to CDW formation in strictly gne~dimensiona1 crystals, one atomic
diameter in width. Real crystals, of course, have a width much larger than a
single atomic diameter. This section shows why charge-density waves occur in
three-dimensional crystals, again by‘ using the Lindhard response function.®
Finally, the Frohlich model contains no term to represent coulombic repulsion
between electrons. Coulombic repulsion acts to smooth out variations in
electron density, and thus suppress CDWs (Ref. 6). This section concludes by

summarizing very briefly the effect of electron-electron interactions on Peierls

distortions,
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1. Lindhard response function

The Lindhard response function is given by’

X(q, T;u)——— Z fa(k)_ fo(k""?)

Bk o—E(E) (2:25)

where f° is the Fermi-Dirac distribution function and E(k) = E{k;u) is the
electronic energy of a state of wavevector k in the presence of a Pelerls
distortion of magnitude u. Above the Pelerls temperature v =0 and E(k) =
E,(k); below the Pelerls temperature, u# 0 and E(k) = E (k). The response
" function X determines the normal mode vibrational frequencies of a crystal.

Above the Peierls temperature, the frequency of a normal mode g is given by

(2.26)

where w, is the frequency of the q”‘ normal mode in the absence of electrons.?

The response function X(¢,T; u) may be calculated for several limiting
cases. If no distortion is present, the electronic Bloch functions may be
approximated by plane waves. At zero temperature, the response function for a

cne-dimensional crystal is

1+ (g /2kp)
1“(:5'/2.’6;')

X(q, T=0; u=0) = n(0) In

(a/k5) . (2.27)

The one-dimensional response function diverges logarithmically at ¢= 2kp. At

temperatures above zero, the response at ¢= 2k is given by:

X(qg=2kp,T; u=0) = é—n(O)ln(l.MEB/kBT) _ (2.28)
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decreasing temperature, it steadily increases.
2. Effect of temperature

Combining Egs. 26 and 28 implies that a Peierls transition always occurs at a
nonzero temperature regardless of the stiffness of a one-dimensional lattice (at
least in the mean-field approximation). The onset of the transition occurs when
the frequency of the 2kr normal mode reaches zero. This mean-field

temperature is given by?
kg THF = 1.14 Ege —'/ (2.29)
Below the Peierls temperature, the frequency of the 2kr normal mode must

remain zero. This places a consistency condition on X(2kp,T; u,) which reduces

to:
1 (E d
=17 * tanh(E/2kpT) (2.30)
o

In the integrand of Eq.30, E = (2 + A2)*. Equation 30 is an implicit
equation for A ,, identical in form to the BCS gap equation. Combining Eqgs. 18

and 29 gives a relationship familiar from the BCS theory:
2A,(T=0)= 3.5 kg THF (2.31)

This mean-field transition temperature is only an estimate of the true transition

temperature, as discussed in the next section.
3. Effect of dimensionality

As the transverse dimensions of a hypothetical crystal increase from one

atomic diameter to thousands or millions, they eventually exceed the transverse
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3. Effect of dimensionality

As the transverse dimensions of a hypothetical crystal increase from one
atomic diameter to thousands or millions, they eventually exceed the transverse
mean free path of the crystal’s electrons, When this happens, the Brillouin zone
becomes three-dimensional and an electron’s energy may become dependent on
the transverse components of its wavevector k. The degreew to which energy
depends on transverse components of k is reflected in the topology of the
erystal’s Fermi surface. For a band in the {irst Brillouin zone, a near isotropic
dependence of electron energy on wavevector produces a three-dimensional
Fermi surface that is topologically equivalent to a sphere; dependence on one
but not both transverse components of k& produces a two-dimensional,
cylindrical Fermi surface; and a minimal dependence on either transverse

component produces a one-dimensional, planar Fermi surface.

The last section showed that divergence of X(g=2kp,T; u=0) is sufficient to
cause a Pelerls transition. Divergence of X produces a softening of the lattice’s
2kp normal mode and a 2kr modulation of the lattice at the Pelerls
temperature. The divergence of X is determined by the shape of the Fermi
surface. A one-dimensional surface causes X to diverge at ¢= 2kp, but two- and

three-dimensional surfaces result in a finite X at all wavevectors.

A divergence of the electronic response at eny wavevector q, not necessarily
lql == 2kp, will cause a softening of a lattice’s normal mode and a
corresponding ¢ modulation of the lattice at sufficiently low temperatures, If

there exist large portions of the Fermi surface for which E(k+q)= E(k), then
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Fermi surface need not be perfectly planar. NbSe; is an example of a real

crystal whose Fermi surface is nested but not planar, Fig. 2.7.

It is fortuitous that strict one-dimensionality is not necessary for a Peierls
transition, because a phase transition due to short-range forces can not occur in
one dimension above zero temperature.® This statement contradicts the results
of the last section, which showed that a mean-field phase transition occurred at
nonzero temperature. The mean-field results are in fact incorrect, because
Eq. 2.14 for the total crystal energy neglects the energy of all lattice modes
beside the 2kp mode. The short-range, screened electron-ion and ion-ion forces
of the Frohlich Hamiltonian are effectively turned into- long-range forces of
wavevector 2kp by omitting the other modes. Inclusion of all lattice modes
suppresses the Peierls transition. However, a pseudo-transition may still occur
for a weakly three-dimensional crystal. Lee et al’ estimate that the true

transition temperature is about one-fourth the mean-field value, Tp= THF /4,
4. Effects of electron-electron interactions

The Frohlich Hamiltonian neglects all electron-electron interactions. This
approximation simplifies treatment of the Peierls phase-transition, but it also
precludes the occurrence of other types of phase-transitions. The Frohlich
Hamiltonian is justified only to the degree that a Peierls distortion dominates
the low-temperature groundstates of certain materials, such as NbSes. In other
materials, or in some CDW materials under applied stresses, the Pelerls
transition may be suppressed and other broken-symmetry groundstates may
dominate. For example, applying pressure to NbSes increases the energy cost of

lattice distortions and causes [NDSez to enter a superconducting phase.
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the low-temperature groundstates of certain materials, such as NbSes. In other
materials, or in some CDW materials under applied stresses, the Pelerls
transition may be suppressed and other broken-symmetry groundstates may
dominate. For example, applying pressure to NbSey increases the energy cost of
lattice distortions and causes NbSez to enter a superconducting phase.
Considerable research has gone into studying the compeﬁtion between the
various groundstates of low-dimensional conductors.t Besides CDWs and Cooper
pairs, these groundstates include spin-density waves. The Frohlich Hamiltonian
appears adequate for NbSez, however, and other groundstates will not be

discussed further.
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II. Charge-Density Wave Formation in NbSeg

A. Crystal structure of NbSejy

Crystals of NbSes are long and skinny., A section of an NbSez crystal is
shown in Fig. 4a. The crystal is 2.5 mm long, but only 2.7 um X 1.0 gm in
cross-section; a thousand-fold physical anisotropy is typical for NbSez crystals.
The cross-section of an NbSe; crystal tends to be uniform over the entire length
of the crystal; crystals do not taper off near their ends. Changes in cross-

section, when they do occur, usually occur abruptly.

NbSez crystals may be cut cleanly with an ordinary surgical scalpel. Fig. 4b
shows a cut end of the crystal from Fig. 4a. Under close examination, the end
appears layered. The layering is caused by the anisotropic tensile strength of
NbSez. An NbSes crystal can withstand large longitudinal stresses, but may be

peeled apart easily by transverse stress.

Dimensional and tensile anisotropies are reflections of the crystalline
structure of NbSes. Fig. 5a shows the structure of NbSez over several unit cells,

one of which is outlined in the figure.!!

Fig. 5b depicts a more three-
dimensional view of the of Nb and Se atoms. The building block of the unit cell
is a trigonal prismatic cage, six Se atoms at the cage corners and an Nb atom at
the center. Trigonal edg;s of neighboring cages are shared to create long chains

which run the length of a crystal. Six chains make up each unit cell with

neighboring chains staggered by half a cage length.

The axes of a unit cell are shown in Fig. 5. The b axis is parallel to the chain
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Scanning electron micrographs of an NbSeg crystal. (a) A typical
crystal section. Left: magnification of 1,570 times. Right: detail of
boxed region on left, magnification by an additional factor of 10.
Scale bar of 8.37 um refers to left-hand photo. (Same photograph
as Fig. 3.4.) (b) A cut end of the crystal, magnification of 20,300
times. The scale bar represents 0.493 ym.
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Fig. 2-5.a)

The crystal structure of NbSes. The parallelogram outlines a
single unit cell. The Nb and Se ions form trigonal chains in the b
direction, which points out of the page. In each unit cell, there
are three types of chains, denoted I, II, and III. Each chain type
is represent twice. From ref. 21, after ref. 11.
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Fig. 2-5.b) A three-dimensional view of the Nb-Se chains. From ref. 21, after
ref. 13.
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direction. The a and ¢ axes are perpendicular to the b axis, but at a monoclinic
angle of 109 . with respect to one another. As shown in Fig. 5a, Nb-Se bonds
tie neighboring chains together to form layers which lie parallel to the b-c plane.
Van der Waals forces hold neighboring planes together. The relative weakness

of the van der Waals forces produces the layering of Fig. 4b.

Intra-chain Se-Se spacings vary among the six chains of a unit cell. A cross-
section of an NbSes chain is an isosceles triangle, and the length of the Se-Se
bond along the short edge may be used to classify the chains into three types.
In descending order, type I chains have strong Se-Se bonds (Se-Se distance of
2.37 f;;), type II chains have intermediate strength Se-Se bonds (Se-Se distance
of 2.49 A), and type III chains have weak Se-Se bonds (Se-Se distance of 2.91 A).
Two chains of each type exist within each unit cell. Fig. 5a shows the chain
locations. The symmetry of a unit cell is P2; /m: the unit cell has a screw axis
parallel to the b axis, a mirror plane parallel to the a-¢ plane, and a space

inversion point. The unit cell of NbSe; measures 10.1 X 15.9 X 3.5A3,
B. Electronic band structure of NbSeg

The three types of Se-Se bonds play a critical role in the band structure of
NbSez. Shima and Kamimura!? performed a band structure calculation for
NbSes, based on a linear combination of atomic orbitals, by constructing
electronic bands from the s and p orbitals of Se (4s°4p*) and the d and s
orbitals of Nb (4d*5s). For each chain, the three Se atoms contribute three s-
type bands and nine p-type bands, and each Nb atom contributes a d-type
band. In type I and II chains, however, oné of the p-type bands is constructed

from an antibonding o’ orbital and lies above the d-type band contributed by
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from an antibonding o' orbital and lies above the d-type band contributed by
Nb. In ascending order, therefore, the lowest energy bands of NbSez are 18
(6X3) s-type bands, 48 (6X8) p-type bands, 2 (2X1)o antibonding p-type
bands, and 6 (6X1) d-type bands. The total number of electrons per unit cell is
138. Each band takes 2 electrons per unit cell, so the Fermi level lies in the

middle of the d-bands.

Fig. 6a shows the Brillouin zome of NbSes, and Fig. 6b shows the®band
structure caclulated by Shima and Kamimura. The Fermi level cuts bands 69 -
- 73, the first through fifth of the d-type bands contributed by Nb. These bands
have mainly a d,2-type symmetry because of the hexagonal ligand field.
Consequently, the conduction bands of NbSez tend to be aligned along the b
axis with little transverse spread. This quasi-one-dimensionality is evident in
the energy band diagram of Fig. 6b. Conduction bands 69 - 73 are fairly flat
along the transverse directions of the Brillouin zone, e.g. in the planes G-B-A-
Y-G and Z-D-E-C-Z. Along longitudinal directions, e.g. the G-Z line, the bands

display considerable dispersion.

Five Fermi surfaces are associated with the five conduction bands. By
calculating partial densities of states, Shima and Kamimura assigned conduction
bands 69, 72, and 73 to type I and II chains, and bands 70 and 71 to type III
chains. As shown in Fig. 7, Fermi surfaces 69 and 72 form a nesting pair, as do
surfaces 70 and 71. Fermi surface 73 is warped and partially closed; it does not

appreciably nest.
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Fig. 2-6.a)  The Brillouin zone of NbSez. From ref. 12.
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The band structure of NbSez. The Fermi energy intersects 5

bands, 69-73, that are formed mainly from Nb d-type orbitals.
From ref. 12.
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The five Fermi surfaces of NbSe;. Fermi surfaces 69 and 72 form a
nesting pair that is assigned to type I and II chains; the nesting is
associated with the lower CDW state {(T; = 58K). Fermi surfaces
70 and 71 form a second nesting pair that is assigned to type III
chains; the nesting is associated with the upper CDW state
(T = 142 K). Fermi surface 73 is associated with type I and II
chains and does not nest. From ref. 12.
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C. Charge-density waves tn NbSej

Measurements of de electrical conductivity are the easiest tests for charge-
density wave formation. Formation ofr a CDW creates a gap at the Fermi
surface, thereby destroying conduction states. In the presence of pinning, small
electric fields do no accelerate a CDW, so CDW conductivity‘cannot compensate
for the decrease in normal elect.onic conductivity. Therefore, CDW formation

is usually marked by an increased de resistivity in low-field measurements.

Fig. 8 shows the low-field resistivity of NbSe; as a function of temperature.’®
Starting at room temperature, decreasing temperature causes a decrease in the
metallic resistivity of NbSesz. A large resistive anomaly occurs at T, =142 K
and peaks at 125 K. Below 125K, resistivity again decreases down to
Ty =58 K, where u second resistive anomaly occurs. The second anomaly peaks
at 48 K, and resistivity again decreases down to very low temperatures, where it
saturates at an impurity-limited value. The resistive anomalies at T; and T,
mark the formation of two independent CDWs. From tﬁe changes in
conductivity, Ong and Monceau!® estimate that 20% of NbSesz's Fermi surface

is destroyed at T, and 60% of the remaining surface is destroyed at T',.

Lattice diffraction experiments are conclusive tests of charge-density wave
formation. A Peierls distortion causes a modulation of the crystal lattice which
produces satellite peaks around the main Bragg peaks in a diffraction
experiment. The position of a satellite peak depends on the wave\-rector of the
Peierls distortion, whereas the intensity of a satellite peak depends on the

amplitude of the distortion. In NbSes, two sets of satellite peaks are observed:



56

0.6

p (10'3ﬂ.cm )
<o o]
™~ tn

o
o

0.2

0.1

0 | | § i i {
0 50 100 150 200 250 T{K) 300

Fig. 2-8) The low-field resistivity of NbSesz as a function of temperature.
Resistivity anomalies at T, = 142 K and T, == 58 K signal the
formation of two independent CDW states. From ref. 13.
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one set for the CDW which forms at T, (Ref. 11) and a second set for the CDW
which forms at T, (Ref.14). The wavevector of the upper CDW is
q; = (O,.243b',0), and the wavevector of the lower CDW s
q2=(.5a*,.263b*,.5c*). NMR measurements!® suggeét that the upper CDW
forms on type III chains, whereas the lower CDW forms on type I chains. Low-

temperature tunneling experiments!® indicate an electronic gap of

2A,="T70 meV due to the lower CDW.

The band structure and Fermi surfaces calculated by Shima agree
reasonably well with the experimental data. The Fermi surfaces of bands 70
and 71 are the flattest surfaces and therefore the most suscpectible to a Peierls
distortion. The upper CDW is assigned to this nesting pair, in agreement with
the NMR measurements. The calculated nesting vector is q; = (0,.236 *,O), in
good agreement with the experimental value. The lower CDW is assigned to
Fermi surfaces 89 and 72. This assignment places the lower CDW on chains |
and III, in slight disagreement with the NMR result. The calculated lower
nesting vector is q2=(0,.22b*,0), in poor agreement with the experimental
value. Agreement between the calculated and observed nesting vector qu is
improved if one assumes that adjacent g, CDWs are spatially ordered. If
adjacent CDWs are out of phase by 180°, then their Coulomb energy is
minimized. Such ordering changes the calculated nesting vector to

qq = (.5a f 226" 5¢ *), in better agreement with the observed value.

The warped and partially closed seventy-third Fermi surface explains the

metallic conductivity of NbSes below the second CDW transition. The density
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based on low-temperature specific heat and Knight shift data. The shape of the
Fermi surface, however, is in poor agreement with Shubnikov-de Haas

measurements. '’
D. Mean-field parameters for NbSeq

Table 2.1 summarizes the measured mean-field parameters of NbSe;. These
values may be used to check the mean-field theory for éeif—consistency. For
example, the gap parameter and mean-field transition temperature should be
related by 2A,=3.5kp Tg{F. If dimensionality effects are important, the mean-
field temperature is reduced by about 4 (Ref. 9), so that 2A, = 14k Tp. In the

lower CDW state of NbSej, the experimental value of (24, /kgTp) is 13.8.

The values in Table 2.1 may also be used to estimate the mean-field
parameters A and G,. The gap equation is A,=2Fgexp(—1/)\). If 2Ep is
assumed equal to NbSes’s bandwidth (see Appendix A2), then A= 0.33 for the
lower CDW state of NbSez. As a check on this value, A may also be estimated

from the Frohlich mass:
(m*/me)= 482 /N (A, ) .

{See Sec. IIL) Sridhar et al'® estimate that (m */m,)= 100, which combined

with the listed values of A, and wyy, gives A = 0.34. This excellent agreement

may be coincidental because of the uncertainty in 2Ep.

The Frohlich parameter G is given by G?=X\2NMwj,./n(0). Estimating

that n({0)/N = 1 state/eV (Ref. 12) and that M = 93 amu gives G = 1.5 eV/A



Parameter Value Measurement Ref.

A, 35 meV Tunneling 16

Wapp[2m 2.75 THz Neutron 19
scattering

n{0}, 300K | 1.3 states/{Nb-eV) | Band calculation 12

1.6 states/{Nb-eV) NMR 15

n{0), 0K | .41 states/(Nb-eV)} | Band calculation | 12

.35 states/(Nb-eV) Specific heat 20

.28 states/{Nb-eV) NMR 15

Bandwidth 1.4 eV Band calculation 12

1.2 eV Susceptibility 21

2.8 eV Thermopower 21

Table 2-1) Mean-field parameters for NbSe;z.
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for. the lower CDW state. Combined with the gap parameter A,, this implies
that the amplitude of the lower Peierls distortion is 2u, = 0.05A. The lattice

constant of NbSej is 3.5 A, so the Peierls distortion is a 1% effect.

II1. Sliding Charge-Density Waves

A. Dynamics of charge-density waves in perfect crystals

This section discusses the transiation and vibration modes of Peierls
distortions in perfect crystals. A Pelerls distortion has two independent degrees
of freedom, its amplitude u and its phase ¢. The dependence of the Peierls
distortion energy on u has been discussed in some detail already. This section

begins with a discussion of the dependence of Ep,.p, o1 ¢.

Eq. 2.24 and Fig. 2.3 show that ¢ determines the orientation of a Pelerls
distortion with respect to the undistorted crystal lattice. For a commensurable
CDW of order 2, theré are two energetically optimal orientations: ¢=0" and
¢==180 ° with u given by (2.18). An order M’ commensurate CDW has M’
optimal orientations with respect to its host lattice: ¢ = QTI'/M", 2(27r/M’), e
(M'—1)(2x/M’). At each equivalent orientation, the Peierls energy has the
same dependence on u as at ¢==0°. A convenient way of displaying this
equivalence is to combine thé amplitude u and phase ¢ into a single polar

coordinate, 1= ue '®.

If all values of ¢ are considered, Epy.ns forms an energy surface over the ¥
polar plane. At each optimal value of ¢, the energy surface has a “pocket” of

minimum energy: 2 pockets for an order 2 commensurable CDW, 4 pockets for
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an order 4, M' pockets for an order M'. As ¢ moves away from one of its
optimal values, the distortion energy ihcreases. Fig. 9 depicts energy surfaces
for commensurable CDWs of increasing order. As the order of
commensurability increases, the “walls” between the pockets in the energy
surface become smaller because the effect of commensurability goes as
[AZ/ER)IA,/ W]M’"2 (Ref. 3). As M’ increases, the distinction between a high-
order commensurable CDW and a truly incommensurable CDW becomes
academic, and the energy surface Ep,.n; assumes the sombrero shape shown in

Fig. 9d.

The sombrero energy surface of Fig. 9d is fundamental to widely disparate
branches of physics, as P. W. Anderson points out.** The shape is characteristic
of a broken continuous symmetry. Sombrero curves appear in physics ranging
from Goldstone bosons in particle physics to cosmic strings in astrophysics. The
translational invariance of aﬁ undistorted lattice is the broken symmetry of
inqommensurabie CDWs. Associated with broken continuous symmetries is a
phenomenon which Anderson calls generalized rigidity. For CDWs, generalized
rigidity results from the rotational invariance of Epyens. As Eq. 2.39b will show,
the energy of a CDW in a perfect crystal is minimized if ¢ is uniform
throughout. If one ‘‘grabs’” ¢ at an end of a crystal and starts cranking it
through revolutions of 2x, the phase ¢ in the rest of the crystal will follow the

rotations rigidly.

Rotational invariance of FEp.ens occurs because the energy of an

incommensurable CDW does not depend on ¢. In the language of Hamiltonian
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Fig. 2-9)

Energy surfaces for CDWs with = increasing orders of
commensurability: (a) order 4, (b)order 8, (c)order 16, and
(d) incommensurable. Because of its shape, the energy surface of an
incommensurable CDW is referred to as a socmbrero surface.
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mechanics, ¢ is a cyclical coordinate and therefore a conserved, generalized
momentum is associated with qz’) Frohlich? noted that a constant angular
frequency qb corresponds to the periodie oscillation of lattice ions but to the
time-independent sliding of conduction electrons. The combination of ionic

oscillation and electronic sliding is the generalized momentum associated with ¢5

The basic idea of Frohlich conductivity is shown in Fig. 10. As time
advances through one period T= 211'/&), an ion in the lattice oscillates one cycle
about its equilibrium position. In contrast, the electronic densit‘y wave advances
by one wavelength along the crystal. The sliding CDW carries a current
Jepw= nepcq-’)/QkF where n is the spatial density of electrons in the undistorted
(as well as distorted) lattice. The fractional charge density p, is related to the
CDW amplitude p and is normalized to 1 at zero temperature. Because the
generalized momentum associated with ¢5 is conserved, CDW current flows
without dissipation once it has been set into motion. Therefore in a perfect

erystal, an incommensurable CDW is a superconductor of electrical current.

Although only the electrons in a CDW slide along a crystal, the lattice ions
also contribute to the kinetic energy of a CDW. In order for the CDW electrons
to slide with a velocity v, the lattice ions must oscillate with an angular
frequency éﬁz 2rv/A. The kinetic energy of a sliding CDW is therefore much
larger than the kinetic energy of its electrons. Frohlich adopted a convention of
lumping the ionic kinetic energy into the electronic kinetic energy by means of
an effective electronic mass. The difference between the kinetic energy of a

sliding CDW and the unrenormalized kinetic energy of the electrons is ascribed
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FROHLICH CONDUCTIVITY

Fig. 2-10) The motion of electronic and ionie charge during Frohlich
conductivity. Solid lines represent electronic charge and circles
represent lattice lons. As time advances from the top to the
bottom of the figure, the CDW completes one period of its motion.
The electronic density wave advances by one wavelength, while
the ionic lattice oscillates through one cycle.
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to an increased electronic mass.

An elegant calculation of the electronic effective mass is due to M. J. Rice.?®

The effective mass m " at zero temperature is defined by

n(=m v?)= n(é—m‘u“’)+ %(%M <i¢§- >} (2.33)

The first term on the right is the electronic kinetic energy; the second term is

the lonic kinetic energy. The rms ionic velocity is

<ui>= <[2u,¢sing|? > (2.34)

== 2u%¢2 .
Therefore the effective electronic mass is

2 Mu ¢* )

ap . nvim

m” = m{1+ (2.35)

The second term may be rewritten in terms of the electron-phonon coupling

constant, the 2k phonon frequency, and the zero temperature gap parameter:

m” = m(14+4A% /\(Fwy, )?) . (2.36)

In contrast to uniform perturbations of the CDW phase, a uniform
perturbation of the CDW amplitude raises the CDW energy. The increase in
energy may be calculated by expanding Epei.n, about the equilibrium value of
u,. If the CDW amplitude changes by an amount éu, the change in CDW

energy is
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o d2E
du *

SE= %(511,) (2.37)

b

= —(5u)’n(0)G? .

o)

In Fig. 9d, n(0)G ? is the curvature of Ep,;s in the brim of the sombrero.

In a distorted lattice, a uniform perturbation of either amplitude or phase
has a wavevector of 2kp. By analogy with Eq. 13, the change in energy due to a
2kp amplitude distortion may be expressed in terms of an effective 2kr normal

mode frequency:
§E = NMiwd, (6u)? , (2.38)

For comparison, note that the energy of a CDW is not changed by a 2kp phase
distortion, so the 2kp normal frequency is zero; i.c. the charge density wave
slides uniformly. For wavevectors different from 2kp, Lee, Rice, and Anderson®

calculate the amplitude and phase frequencies to be

1
Q2 = dwd, + —3---"%-11% | g—2kp|?, (2.392)
m
and
02 = - vEiq—2kp|?, (2.39b)
m

where {1, is the frequency of the amplitude mode and Q_ is the frequency of
the phase mode. Eisenreigler®* and Walker®> both note that the CDW phase
and amplitude modes are the classical normal modes of an incommensurable

lattice.
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B. Pinning of charge-density waves in nonideal crystals

Real crystals are not perfect but contain impurities, defects, grain
boundaries, and surfaces. In a reél crystal, the energy of even an
incommensurable CDW depends on its orientation (i.e. phase) with respect to
the imperfections of its host lattice. This loss of transiation invariance is known
as pinning. A CDW is pinned to a particular orientatién because in that
orientation its interaction energy with the erystal is minimized. Pinning is
reflected in the energy surface of a CDW. As a first approximation, the
distortion energy Epgq. loses its rotational invariance and becomes a tilted
sombrero, Fig. 11a. (The figure is only = first approximation to the true pinning
potential of a CDW. A real pinning potential is more ‘‘ragged’ than the smooth

sinusoidal potential illustrated.)

The effect of pinning is actually more complicated than shown in Fig. 11a.
Besides the loss of translational invariance, phase uniformity is also lost. The
CDW phase retains uniformity only over short regions called domains,®® as
shown schematically in Fig. 11b. The length of a domain is determined by
balaneing the elastic energy of a CDW against the pinning energy of

imperfections within a crystal.

To calculate CDW elasticity, a useful approximation is due to Fukuyama,®’

who noted that CDW dynamics often can be simplified. Equation 39 shows that
the phase mode of a CDW requires much less energy to excite than the
amplitude mode. It is usually valid to treat the CDW amplitude as.rigid and to

consider 6nly phase excitations of a CDW. With this approximation, Fukuyama
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a. PINNING

b. DOMAINS

. (a) The

le CDW
(b) The formation of

energy surface within a pinning domain.

Fig. 2-11) The energy surface of a pinned incommensurab
pinning domains within a crystal.
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derived a Hamiltonian for CDW phase dynamics. At zero temperature, the

kinetic energy of a CDW is %nm *(A&»/QW)Q and the elastic energy of the CDW

increases quadratically with (d¢/dz). In other words, the CDW phase behaves

like an elastic continuum. An appropriate Hamiltonian for the CDW phase is

*
nm

2

Eid
2

(—d—?i)g} , (2.40)

H,= [dz{ iz

(A¢/2m)? +
where K = nmv%/(ﬁkp)g is the stiffness of the CDW phase.

Impurities are the most common type of ecrystal imperfection. The

interaction energy of a CDW with impurities (of a single type) is
Hyin=5, [ dz pepw(z) v (z—12;), (2.41)
i

where summation is over all impurities, which are randomly distributed within 2
crystal at positions z;. Because the CDW amplitude mode is rigid, the
Hamiltonian (2.41) is valid only over long length-scales. Also, the interaction of
an impurity with a CDW is screened, so the impurity potential is relatively
short-ranged. Therefore, Fukuyama approximates the impurity potential by a

delta function:

Hyin=%V1 po cos (2kpx;+ ¢;) . (2.42)
p

Here ¢; is the CDW phase at the 7™ impurity site. The Fukuyama phase

Hamiltonian is H= H, + Hyjy.

The elastic energy of a CDW is %Kf dz{V ¢)* and is minimized when ¢ is

uniform throughout a crystal. On the other hand, the impurity interaction
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energy is minimized when the CDW phase adjusts so that ¢;=r— 2kpz; at
each impurity site. The energy gained from a nonuniform phase is Vyp, per
impurity, whereas the elastic energy cost per impurity is approximately

—;—K(n;)2/n,v, where n; is the (one-dimensional}) impurity concentration.

Fukuyama and Lee?® define a dimensionless parameter which is the ratio of

impurity to elastic energies:

2Vip,

£ == -

Kn,-

(2.43)

Strong pinning corresponds to € >> 1: a CDW minimizes its energy by adjusting
its phase at each impurity. Strong pinning occurs for'large impurity potentials
or small impurity concentrations. Weak pinning corresponds to € << 1: a CTDW

minimizes its energy by keeping its phase as uniform as possible.

With strong pinning, a CDW is ‘“‘stuck”™ at each impurity site. On the
average, the CDW phase changes by n between each impurity site, so the
average length L, of a domain is L, = 1/n for the case of strong pinning. A
reasonable (three-dimensional) impurity concentration is 10 ppm, so a typical

domain length is L, = (3.5A)(10°)!/% = 140A.

With weak pinning, a CDW is not pinned by any one impurity. Instead, the
CDW phase adjusts to minimize the CDW energy at many impurity sites

simultaneously. Within a-domain, the impurity potential energy is

V(Lo)= Vip,Re{y e it ?)y (2.44)
J

The sum is restricted to impurities within a length L,, where ¢ is the average
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phase within that length. Eq. 44 may be viewed as a random-walk problem, and

on average the sum gives
V(Lo)m VIPU(":'LO)I/QCOS(¢0+—) * (2-45)

where ¢, is some random angle that depends on the exact spatial distribution of
impurities within a domain. If the average phase e;djusts to be (m—¢,), then the

impurity pinning energy is minimized:

Vimin(Lo)=— Vip,(niL,)¥/? . (2.48)

Neighboring domains have different optimal phases, so the CDW phase must
interpolate smoothly from one domain to the next in order minimize pinning

energy within each domain. The elastic energy cost of this variation is

1, d
Ee!astt’c(Lo)# EKI dm <(j§')2 >average (2.47)
o

!

1 -
?K(O‘Lo) ! s

where o« is a numerical factor of order 1 that depends on details of averaging
and phase interpolation. Minimizing the combined energy of Egs. 45 and 47

gives

L,= {(ame)*/3n;}! (2.48)

For weak pinning, L, ~ n}“l/3.

Thus for equal concentrations, domain lengths
are larger for weak impurities than for strong impurities. In NbSesz, x-ray

diffraction measurements have demonstrated the presence of (presuinably weak)

domains longer than 0.5 pm (Ref. 14).
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The Fukuyama Hamiltonian may be used to calculate the strength of an
electric field sufficient to depin a CDW. Independent of the assumptions behind
the Fukuyama Hamiltonian, a quasi-static electric field couples only to the
phase of a CDW, since the Frohlich current depends on g;b, not p. An electric
field is quasi-static if its frequency w is much smaller than the minimum
frequency of the amplitude mode >\1/2LU2kF. For NbSes, the amplitude
frequency is about 1600 GHz (50 ecm™!), so frequencies less than infrared are

quasistatic,

An electric field term may be added to the Fukuyama Hamiltonian which, in

the absence of pinning, accelerates a CDW to reproduce the Frohlich current:

pegrenk ¢

Hiua= | dz
s = | (2kr)

(2.49)

The field E, is the longitudinal component of the electric field and the
normalized density p.y is related to the density p,. Near zero temperature
{where p. approaches 1) and near the Pelerls temperature (where p, vanishes as
A,), the densities are equal, but in between these extremes, p.;y may differ from
p.. The Fukuyama-Lee-Rice’® Hamiltonian is H= H, + Hyin + Hiiola, where the

different terms come from Egs. 2.40, 2.42 and 2.49, respectively.

Using a Ginzburg-Landau expansion for the free energy of a CDW, Lee and
Rice?® estimate the threshold field Ep necessary to depin a CDW. For weak
pinning,

Ep= (6] &imi)? (A7 /Ep)/(eA), (2.50)

where €, and §&; are the transverse and longitudinal amplitude coherence
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coherence length is given by &= Kvp/mA,. For NbSes, this length is about
90A . The transverse coherence length is reduced by the ratio of bandwidth
anisotropy ratio, which in the case of NbSez is about a factor of 10. The
important feature of Eq. 50 is that E'p is proportional f,o the square of the Weak
impurity concentration. In contrast, for strong impurities at low temperature,
the threshold field is proportional to the first power of the strong impurity

concentration:
Er=n;a,/eA . {2.51)

In addition, because of the factor of 54(535”)2, the threshold field for weak
impurities is much less than the threshold field for comparable concentrations of
strong impurities. For concentrations of one part in 10°, Lee and Rice estimate
Ep=10meV/em for weak impurities and Ep=1000 meV/cm for strong

impurities.
C. Ezperimental characteristics of sliding charge-density waves

Currently no microscopic theory exists that describes CDW motion when
impurities are present. The models that do exist are phenomenological and
based on experimentally observed characteristics of sliding CDWs. As a prelide
to a discussion of these models, this section reviews some experiments on CDW

dynamics.
1. Field and frequency dependent conductivity

Sliding CDW transport was discovered by Monceau, Ong and coworkers®

when they observed that the resistivity of NbSe; depends on the electric field
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applied across the material. Fig. 12a displays the field-dependent conductivity
associated with the first resistivity anomaly of NbSes. An inset shows the low-
field resistivity of NbSes for reference. As the strength of an applied electric
field increases, the resistivity of NbSey decreases as the current density through
the material increases. Fig. 12b shows that the lower resistivity anomaly of
NbSe; is also field dependent. At high electric fields, the resistivity of NbSe;
saturates at a value which is field-independent. This limiting value of resistivity
is indicated by the solid lines in the figures; its reciprocal value is known as the

high-ﬁeld conductivity of NbSea.

The field-dependent resistivity of NbSe; is associated with the CDWs that
cause the anomalies at T, and T,. At temperatures above T, = 144K, for
example, NbSes's resistivity is independent of electric field. X-ray diffraction
studies show that the field-dependent resistivity is not caused by a destruction
of the CDW state.!? Since the discovery of nonlinear conductivity by Ong et al.,
transport studies have provided both direct and indirect evidence that the

field-dependent resistivity of NbSes is due to CDW sliding.3%3!

CDWs do not slide in NbSez until sufficiently large electric fields are
‘applied.32 Fig. 13 displays an I-V curve of NbSejz in the lower CDW state. At
low electric fields, the I-V curve is linear, indicating normal ohmic conductivity.
At larger fields, the I-V curve bends upward as the lower CDW begins to slide
and NbSez begins to carrjr an excess current. Excess current may be sensitively
monitored by measuring the dynamic resistance of a crystal, dV/dl. At low

fields, Fig. 13 shows that the dynamic resistance of NbSej is constant, but past
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a sharp threshold field, the dynamic resistance drops as the lower CDW begins

to slide.

The nonlinear conductivity of NbSes usually may be described by an

empirical formula suggested by Fleming:®3
o(E)=o0,+ oyexp[—E, /(E—ET)] . (2.52)

The prefactor o, is the low-field, ohmic conductivity of NbSe; and the sum
(o, + o4) is the high-field conductivity. In the exponent, F is the applied

electric field, Er is the threshold field, and E, is an adjustable parameter,

Eq. 52 is usually interpreted in terms of a two-flutd model. Electrons in a
Peierls-distorted metal are either normal electrons or belong to the CDW
condensate. Normal electrons are electrons that are thermally excited above the
Peierls gap or that belong to a portion of the Fermi surface which is unaffected
by nesting. The CDW condensate are electrons that have energies below the
Peierls gap and that belong to the nested portion of the Fermi surface. {In a
material such as NbSez, which has two ‘independent CDWs, electrons are
 further distinguished as belonging to either the first or second CDW

condensate.)

A two-fluid model assumes thét. normal and CDW electrons act as
independent carriers of electrical current; L.e. that in an electric fleld the drift
velocities of the two types of electrons are independent. Assuming that a two-
fluid model is appropriate, the first term in Eq. 2.52 is due to normal electrons
and the second term is due to the CDW condensate. In other words, a two-fluid

model assigns excess current above Ep entirely to the current Igpw carried by
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the CDW condensate. Equation 2.52 predicts a smooth increase in CDW

velocity as the threshold field for CDW conduction is exceeded.

Threshold fields in NbSez are both temperature and sampfe dependent.®

The temperature dependence is displayed in Fig. 14, where a dashed line shows
the low-field resistance of NbSes for reference. In each CDW temperature
regime, the minimum threshold field coincides with the peak of the resistivity
anomaly. Thresholds fields in the lower CDW regime are much lower than
threshold fields in the upper regime, so the threshold field below T» may be

assigned unambiguously to depinning of the lower CDW,

The sample dependence of threshold fields is due to variations in impurity
concentration. In high quality NbSez crystals, the most common impurity is
Ta, which generally occurs at levels of 200 ppm. Since Ta is isoelectronic with
Nb, it should act as a weak impurity. Deliberate doping of NbSe; with Ta,

® where n; is the Ta concentration and « is an

however, shows that Eq~ (n;)
exponent detween 1 and 2 (Ref. 34). This exponent indicates that Ta's strength

as impurity is intermediate between the strong and weak behavior predicted by

T.ee and Rice.

Conductivity in NbSey is not only field dependent, but also frequency
dependent. At 9.3 GHz, for example, the resistivity anomalies of NbSey are
suppressed to the same limiting value reached with high (dc) fields.’®
Frequencies both above and below 9.3 GHz are not as effective in suppressing
the resistivity anomalies.!®3® The frequency dependence of conductivity in

NbSe; provides important information about CDW dynamies. Using a two-fluid
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model, the contribution of the lower CDW to ac conductivity may be found by
subtracting the contribution due to normal electronic conduction. The result,

ocopw, may be described by the response of an overdamped oscillator:

P
Re ocpw(w)= nnij {1+(w%7‘/w)2}“1 (2.53a)
nelr wyT -
Im oopwlw)= — i Hi+(wir/w) ! (2.53b)

Here Re ogpw represents the in-phase component of de conductivity and
Im ocpw the out-of-phase compon?nt. The time-constant 7 describes CDW
dissipation and the frequency w, reflects the strength of CDW pinning; the
product w27/2m is typically 100 MHz in NbSes (Ref. 35). Both parameters will
be discussed in the section on phenomenological models. The important feature
of Egs. 532 and 53b is that CDW inertia is negligible compared to the viscous
damping experienced by a CDW. Recently, the conductivity of NbSe; was
measured at extremely high frequencies in the mm-wave range. These
measurements permit estimates of the CDW inertia. For the lower CDW,

Sridhar et al.'® estimate that

me

95 < —— <117, (2.54)

me
while for the mass of the upper CDW they measure m" =270 Mes
2. Conduction noiwse and interference effects

When a CDW slides, its velocity is not constant, even if the applied electric
field is kept constant. Instead, the CDW velocity consists of a time-

independent de¢ component and a small, oscillating ac component. The



82

oscillating component is called narrow-band noise.> Narrow-band noise may be
viewed directly on an oscilloscope or may be decomposed into Fourier
components using a spectrum analyzer. In high quality NbSe3 crystals, narrow-
band noise consists of a single, sharp Fourier fundamental and higher harmonics
of the fundamental. The fundamental frequency of narrow-band noise depends
on the electric field applied across a sample. Monceau et al.®® found that the
frequency of a narrow-band noise fundamental is proportional to the excess
current Iepw carried by a CDW. In most samples, the frequency of the
narrow-band noise fundamental begins at zero and increases linearly as Iopw

increases.

A second type of conduction noise associated with CDW sliding is broad-
band noise? As its name implies, broad-band noise possesses a wide
distribution of Fourier components. A power spectrum of broad-band noise
shows that its frequency compornents fall off as w08 {Ref. 37). At frequencies
above 1 MHz, broad-band noise is at least 10 times smaller than narrow-band

noise in a typical sample.

If an ac electric field is applied to NbSes in addition to a de field,
interference may occur betw.een the extrinsic ac signal and the intrinsic narrow-
band noise. The effects of such interference are observed in a variety of
measurements.®® Fig. 15 shows the ac conductivity of NbSe; when a de field
larger than threshold is simultaneously applied. In this kind of experiment, the
ac electric field E,, is small compared to both the de electric field F;, and the

threshold field Fp. The biased ac conductivity is generally similar in shape to
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the unbiased conductivity. One rather trivial difference between the
conductivities is that Re o(w) is offset from zero for the biased measurement,
which is due to the reduced de dynamic resistance of a CDW past threshold. A
more important difference between the biased and unbiased conductivities is
the presence of sharp, inductive dips in the both the real and imaginary
components of the biased ac conductivity curves. In Fig. 15, prominent dips
occur at 14, 28 and 42 MHz, frequencies which exactly match the narrow-band
noise fundamental and its higher harmonics. Inductive dips in ac conductivity

measurements are one example of ac-de interference.

A second type of ac-dc interference may be observed in de I-V curves,
Fig. 16a. In this type of measurement, the frequency of the ac signal is fixed
and the dc bias is varied. The amplitude of the ac signal is no longer small, but
is now comparable to the dc and threshold fields. The curves in Fig. 16a are
parametrized by the amplitude of the applied ac signal, whose frequency is
100 MHz. When the applied ac signal is zero, as in the top trace, a normal I-V
curve is measured. (To compare this I-V curve with Fig. 13, note that the
horizontal and vertical axes are interchanged between the figures. In Fig. 16a,
the sample was current-biased and its voltage response was measured.}] When
the amplitude of the applied ac signal is nonzero, a regular series of steps
appear in the IV traces. “These steps are called Shapiro steps, in analogy with a
similar phenémenon in superconductivity, Steps are numbered n= 1, 2, 3, ..
according to the figure. The height of a Shapiro step, shown schematically in

the inset, depends on both the frequency and magnitude of the ac signal.
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I-V characteristics of NbSeg in the presence of a 100 MHz ac
signal. The curves are parametrized by the amplitude V; of the
ac signal. As V), increases, Shapiro steps are observed when the
narrowband noise frequency matches the first (n = 1) or second
(n = 2) harmonic of the ac frequency. From ref. 35.
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For low ac frequencies, Shapiro steps are small and difficult to resolve
directly on an I-V curve. A dV/dl measurement allows more sensitive detection
of the steps. Fig. 16b shows a series of dV/dl curves when the ac frequency is
5 MHz. On a dV/dl curve, a Shapiro step appears as a peak; when current-
driven, the area underneath a peak equals the height of the corresponding step.
In addition to the peaks due the main harmonic steps, close examination of the
dV/dl curves reveals small, smeared peaks which occur midway between the
main peaks. These subharmonic peaks are labelled n= 1/2, 3/2, 5/2, ... in later

plots.
3. Switching and hysteresis

In some NBSeS crystals, the velocity of the lower CDW does not increase
smoothly as a crystal’s threshold field is exceeded. In these anomalous crystals,
the excess current carried by a CDW jumps abruptly from zero to a large value.
This phenomenon is known as switching.®® Switching may be observed directly
in I-V curves, Fig. 17. In this figure, the (current-driven) I-V curve becomes
smoothly nonlinear in the usual way at 42 K. As the sample’s temperature is
lowered to 37.5K, a region of negative differential resistance develops th
threshold. This region sharpens into an abrupt switch at 34K. At lower
temperatures, the CDW no longer repins at the same bias at which it depins.

This hysteresis is quite prominent by 28.5K.

At threshold, the switch from the ohmic to the nonohmiec state is not
instantaneous, but occurs after a short delay.®® The time-dependent response of

a crystal during a switch is shown in Fig. 18a. At time ¢t =0, a 200 pgsec pulse of
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The response of a switching crystal to an applied current pulse.
For current pulses above threshold, the voltage response
switches from V,; to V, after a delay time T. The response
requires a transition time 7 for completion. From ref. 38.
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current is applied to the crystal. If the pulse height is less than the crystal’s
threshold current, then the voltage response of the erystal is rectangular. If the
current pulse height is larger than Ir, however, then the voltage response of the
erystal jumps downward from an ohmic voltage V) to a non-ohmic voltage V,.
The switch from V| to V, occurs after a time delay T and requires a transition
time 71 for completion. The delay time T depends on how much the bias pulse
exceeds threshold. Fig. 18b schematically displays the average delay time T as a
function of (I — I7). When (I — Ir) is small, the ohmic and non-ohmic states
dissipate about the same amount of power, so the energy difference between the
states is small and the switch between the states is delayed a relatively long
time, T= 100usec. When (I — I7) is large, the energy difference between the
states is large and the switch is delayed a short time, T=1 psec. The delay
times displayed in Fig. 18b represent average values. For any given value of the
pulse height I, there is considerable scatter about the mean. As [ increases
above Ip, not only does the average delay time decre.ase, but also the scatter in

delay times decreases. Data are fit reasonably well by Lorentzian line shapes.
D. Phenomenological models of sliding charge-density waves

There is a myriad of phenomenological models that attempt to describe
CDW dynamics. Each model correctly describes at least one aspect of CDW
sliding, but no model has successfully described all aspects. This section will
discuss some of the dynamical models that apply directly to the thesis results.
These models fall into three groups. The first group consists of classical, phase-

only models that neglect the dynamics of the: CDW amplitude and treat the
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amplitude models that treat the CDW amplitude, as well as the phase, as a
dynamical variable. The last group consists of CDW switching models. Only
models in the first two groups will be described here, because CDW switching

models are discussed at length in Chap. 3.
1. Classical models of phase dynamics

As mentioned earlier, pinning destroys the translational invariance of the
CDW phase. If pinning is not severe, howevei‘, then the CDW amplitude is not
affected, even when an electric field is applied to the CDW. This is shown in
the energy surface of Fig. 11a, where pinning destroys the azimuthal symmetry
Of Epejertsy but does not change its radial dependence. When an electric field is
applied to such a CDW, the amplitude of its order-parameter remains constant
while its phase revolves around the brim of the tilted energy surface. This is
the starting point for phase-only models of CDW dynamics, in which the

amplitude is kept fixed and only the phase is allowed to vary.

The condition on CDW pinning can be made more quantitative by requiring
that any change éu in the CDW amplitude be much smaller than the CDW

amplitude wu itself. From Eq. 37, the energy 6F required to change the
amplitude by éu is given by O0F = —;—n(O)Gz(éu)Q. Setting this energy equal to
the pinning energy poV; in Eq. 42, the condition on pinning becomes

po Vi << %—n(O)Ag; i.e., the pinning energy must be much smaller than the

CDW condensation energy. In terms of Fig. 11a, the requirement is that the
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Phase-only models of CDW dynamics. (2) Pinning energy versus
CDW phase. {b) The rigid-phase approximation, in which the
CDW phase is treated as a single domain. (c¢) The deformable-

phase approximation, in which the phase is treated as a collection
of domains.
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azinuthal curvature be much smaller than the radial curvature in the brim of
the energy surface. When this condition is met, the potential energy of a
Fukuyama-Lee-Rice domain is {to first approximation) a sinusoidal function of

just its phase ¢, as shown in Fig. 19a.

Classical, phase-only models of CDW dynamics are built directly on the ideas

introduced so far. From Eq. 40, the kinetic energy of the phase is written as

-2
-é—m *¢5 ; from Eq. 49, the coupling to an applied electric field is written as E¢;

and from the above discussicn, the interaction with pinning cs,:nters is written as
a term periodic in ¢. In order to reproduce the conducti}rity limits observed in
CDW transport, a phenomeunological dissipation term is introduced in which
CDW damping is proportional to qﬁ Finally, the elasticity of the phase itself
must be described. There are two ways to do this. As shown schematically in
Fig. 11, the CDW phase is fairly rigid within a Fukuyama-Lee-Rice domain.
Therefore one approach is to treat the phase within an entire crystal as though
it formed a single, rigid domain (Fig. 19b). The second approach is to treat the
phase as though it comprised a deformable array of domains, with each domain
in the crystal elastically connected to its neighbors {Fig. 19¢). Because of its

relative simplicity, the rigid model is considered first.
a. Rigid classical model

In the rigid classical model of Griiner, Zawadowski and Chaikin,® the

equation of motion for a CDW is

2
‘fitf + %_- -%‘*’ti + wlsing = me, EQ, (2.55)
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where 7 is a time-constant describing dissipation, w, is a pinning frequency
representing the strength of the impurity potential, m” is the Frolich mass of
the CDW electrons and E is the applied electric field. Another useful form of

Fq. 55 1s

2
Ll 4 Lot sing = o, (2.56)

where 8= (w,7)? and ¢’ = E/Er with Ep= m'w?/eQ. (Henceforth, the
prime will be dropped from the normalized electric field.) The constants # and
Er are respectively known as the inertial parameter and the threshold field of
the rigid classical equation. In Eq. 56, time is measured in units of (wg)_i,

where the product w?7 is known as the cross-over frequency.

Egs. 55 and 56 have a very intuitive interpretation, Fig. 19b. In the rigid
classical model, a CDW is dynamically equivalent to a point particle uioving
over a sinusoidal potential, such as a marble rolling on a laundry washboard.
Applying an electric field to the CDW is like tilting the washboard underneath
the marbje. When the washboard is tilted a small amount, the washboard
corrugation prevents the marble from rolling, but when the washboard is tilted
a lot, the marble starts to roll in a bumpy manner over the washboard’s peaks
and valleys. Similarly, small electric fields (less than Er) do not depin a CDW,
but large electric fields (greater than Ep) do. Just like the rolling marble, a
sliding CDW also moves in a bumpy manner. The bumpy motion leads to a
CDW current composed of two components: a time-independent dé current and
an oscillatory ac current, where the frequency of the ac current is exactly

proportional to the de current. Thus the rigid classical equation not only
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predicts the existence of a threshold field Ey for the onset of CDW sliding, it

also predicts the presence of narrowband noise in the current carried by a

sliding CDW.

Besides narrowband noise and threshold fields, the rigid classical equation

qualitatively models a variety of other CDW phenomena. For example:

1)

CDW conductivity in the classical model is bounded by well-defined
limits for electric fields of large amplitude or high frequency. These
high-field and high-frequency limits are equal, just as they are in real

CDW materials.

The ac conductivity of the classical equation is easily calculated, for
pinned CDWs, and leads to overdamped behavior, as in Egs. 2.53, in
the limit that w,7 << 1. For this reason, the inertial terms are
usually dropped from Egs. 55 and 58, and the rigid classical equation

simplifies to:

$ = e — sing . (2.57)

The rigid classical equation also predicts the occurrence of Shapiro
steps when large ac as well as dc fields are applied to a CDW. The

height 8 of the n t {(voltage-driven) Shapiro step is given by

51 = 2| Ju(eae /)] (2.58)

where (1 is the normalized ac frequency, e,, is the normalized ac
amplitude, and J,(z) is the Bessel function of order n. With one

modification, the Shapiro steps that are observed in NbSez display
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modification, the Shapiro steps that are observed in NbSez display
an oscillatory dependence on ac frequency and amplitude which is
well described by Eq. 58. The modification is that the maximum
height of a (current-driven) Shapiro step is reduced by an empirical

factor a,:

V=2 a, ]Jn(iae/ﬂ)l . (2.59) -
Here 1,, is the normalized ac bias current, I, /I.

Despite these successes, the rigid classical model does not accurately
reproduce all aspects of CDW motion. One failure of the model is its prediction
for sliding ac conductivity, as will be discussed in Chap. 4. A second, closely
related failure is its prediction for CDW wvelocity near threshold. The rigid
classical model predicts the CDW velocity to scale as (E—Er)*, whereas
experiments show that the velocity scales as (E—E7)” with v > 1. Both of the
failures can be traced to the assumption of a rigid CDW phase. The next

section discusses deformable-phase models that avoid this assumption.
b. Deformable-phase models

In the sliding regime, the phase elasticity of a CDW plays an important role
in its dynamics. Phase elasticity may be included in CDW dynamics by using

the Fukuyama-Lee-Rice Hamiltonian.#0~42

Since CDW dynamics are
overdamped, the kinetic energy of a CDW may be neglected. The energy

density becomes:
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(In Eq. 60, the sign of the impurity pinning energy is trwxally redefined so that
Eq. 64 resembles the rigid classical model.) Motion of the CDW phase is

described by relaxational dynamics:

k
i‘%ﬂ 2 FT{ (2.61)

Qkp‘i‘ d2s

a.’;r:2

enel .
)— p(g:;) + 0, V[ZJ.é(Iuwj)s;n(QkFx+¢)}

K

Equation 61 is an extremely nonlinear partial-differential equation. To
obtain numerical solutions, a discretized equation may be obtained by ignoring
phase variations on length-scales shorter than the average impurity spacing.
This approximation allows the damping term, d¢/d¢t, to be evaluated only at
impurity pinning sites. The rest of Eq.{2.61) may be integrated exactly

between impurity sites. The result is

dé;  2kpr bip1—0;) (bj—di-
d;#'— F; E{K{( i+l J) (J— J 1)]
mo Tijp1— E'] Ty—Tj—1
1 Peffnﬂ

2 QK [‘rEJH— $j-1]+pa VISin(/BJ‘*” ¢’J)} y (2.62)

where ¢;= ¢(z;) and B;= 2kpz;. The distances (z;4;—z;) and (z;—z;_) are
randomly distributed, but numerical simulations show that an adequate
approximation is to set these distances equal to their mean value (n;)”‘l, where
n; is the impurity concentration. The phases 3, however, are usually kept
random. Just as with the rigid classical model, a characteristic time may be
defined from the impurity interaction and the damping coefficient 7. A
threshold field cannot be analytically determined, but a characteristic field

strength is defined by the impurity strength and concentration. A natural scale
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threshold field cannot be analytically determined, but a characteristic field
strength is defined by the impurity strength and concentration. A natural scale

of parameters is the following:

length: z,=(n;)" !
energy: Vieo
time: to=m"[2pVip,T

electric field: B, = 2kpn;Vip,/pegne

{2.63)
In these units, the CDW phase electricity is a= Kn;/V;p,. Note that a=2/¢,
where € is the Fukuyama-Lee pinning parameter from Egq.43. The final

normalized version of Eq. 62 has a particularly simple form:
c;a.f>j= e—sin{B;+¢;)—a(2¢;— ;41— dj—1). (2.64)
Here e= E /E,.

Eq. 64 is an almost infinite se§ of coupled, first-order differential equations,
one equation for each impurity site z; in a crystal. Although nontrivial to solvg,
Eq. 64 also has a simple interpretation, Fig. 19¢c. Instead of a single particle on
a washboard, as in the rigid classical model, Eq. 64 describes many coupled
particles on a washboard. Each particle represents the CDW’s phase at a
particular impurity site, and the particles are coupled together by springs of
force constant . Because of the random phases §;, all the particles do not sit

simultaneously in their respective washboard minima.
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is about 20, and the phase elasticity dominates impurity pinning. However, by
coarse-grain averaging the effect of many impurities, Eq. 64 may be scaled in
order to study CDW dynamics on length-scales comparable to the Fukuyama-
Lee-Rice 1enéth. In the scaled equation, a~ 0.2 and each sealed phase ¢;
corresponds to the average phase within a Fukuyama-Lee-Rice domain. The
scaled phases §; represent the optimal domain phases m7—¢, caleulated in
Eq. 45. In some cases, Eq. 64 may be simplified further by assuming that the
phases 3; are not random, but are merely incommensurate with the impurity
washboard potential. (If the periodicity of the 3; is commensurate, Eq. 64 is
essentially equivalent to the rigid classical equation.) L. Sneddon?? uses this
incommensurate chatn approximation to calculate ac conductivity above

threshold. Sneddon’s result is discussed further in Chap. 4.
2. Models that include amplitude dynamics

Phase models may be adequate to describe CDW slidiﬁg in the bulk of a
erystal, but they are inadequate to describe CDW motion near the ends of a
crystall, where a moving CDW collides with a stationary CDW. This is shown in
Fig. 20, which sketches the electronic and ionic components of a sliding CDW at
the end of a one-dimensional crystal. The int rface region (hatched symbols)
between the sliding and pinned segments of the CDW represents a discontinuity

in the CDW phase velocity, and hence the CDW amplitude must periodically
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PHASE SLIPPAGE

The motion of electronic and ionic charge density phase slippage.
Solid lines represent electronic charge and circles represent lattice
ions. As time advances from the top to the bottom of the figure, a
moving CDW (open symbols) collides with a pinned CDW (fiiled
symbols). The CDW phase slips by 27 in the interface region
(half-filled symbols).
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collapse therg (see Chap. 1). For this reason, any model of CDW dynamics must
treat both the CDW amplitude and phase as dynamical variables at the end of a
crystal. Two models have been proposed. The first model, by Ong and Maki,*®
is a qualitative description appropriate to three-dimensional erystals; whereas
the second model, by Gorkov,** is a quantitative theory appropriate to one-

dimensional crystals. The model of Ong and Maki is considered first.
a. Phase vortices

Ong and Maki point out that in a three-dimensional crystal, the CDW
amplitude should collapse at a velocity discontinuity via the generation of phase
vortices, A phase vortex is a topological singularity in the CDW order-
parameter which consists of an inner core and an outer whorl. In the core of
the vortex, the CDW amplitude is zero and the CDW phase is indeterminate.
The core is essentially a one-dimensional filament that extends across the width
of a crystal with a diameter equal to the coherence length £ of the CDW
amplitude. In the whorl of the vortex, the amplitude is nonzero and the phase

is described by

#(z,y) = arctan(y/z) , (2.65)
where the zaxis is chosen parallel to the vortex core.

The function (2.65) resembles an Escher staircase, Fig. 21. Starting at any
point in vortex whorl, the CDW phase increases as the vortex core is
circumnavigated. After a complete circuit around the core, the phase has
increased by 2 from its starting value. But because 27 changes of phase are

not significant in this context, the phase has actually returned to its starting



102a

(For page sequence only.)



103

Fig. 2-21}  Detail of the lithograph Ascending and Descending by M. C.
Escher (1980). The staircase in the figure is a way of visualizing
the phase of a CDW at a phase vortex, Eq. 2.65. From ref. 45.
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value. The only point where the phase is ever discontinuous is at the vortex

core itself.

The essential feature of a vortex is that it can act as an “‘eraser’” of CDW
phase. Figure 22a shows the geometry considered by Ong aﬁd Maki. In region [
of a crystal (x > 0), an electric field forces a CDW to slide toward a current-
extraction contact. In region II of the crystal underneath the contact (z < 0),
the electric field is zero and the CDW is stationary. Vortices form as the
electric field pushes phése frents toward the sliding-stationary interface (z = 0),
and they act as the terminating edges of the fronts, Fig. 22b. The arrival of a
phase front produces a 2r phase difference across the inte‘rface, but the passage
of a vortex removes the difference. In the geometry of Fig. 22, vortices move
parallel to the interface, in the y direction, toward the current contact. Each
vortex vanishes when it reaches the contact, eliminating 2w of the accumulated

phase.

Phase vortices occur in three-dimensional crystals because they are the most
efficient means of removing excess phase. In a three-dimensional crystal, the
interface between the sliding and stationary segments of a CDW is a two-

dimensional sheet. If the CDW amplitude were to collapse across the entire
sheet, the energy cost would be -é—n(O)Ag‘LzLyEu, where L, and L, are the
transverse dimensions of the crystal. But when vortices occur, the amplitude
collapses only along the cores, with an energy cost of %R(O)A(?szlfgg. An

additional energy penalty is the energy cost of stretching the CDW phase

around a vortex core. This cost is given by
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Fig. 2-22) A cross-section (a) and a three-dimensional view (b) of a silver
paint contact on NbSesz. Volumes I and II represent bulk and
shunted regions of the NbSes crystal, respectively. Circles (a) and
thin lines (b) represent phase vortices. From ref. 43.
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K
= dedy(V8)F = mn(0)A26En(L, /&),
so that the total energy cost of vortex formation is

Evortes = ‘n(O)Angé‘HE.L(I + Qﬂin(Lo/EH)) : (2'66)

1
2
Compared to the cost of complete amplitude collapse, the cost of vortex
formation is smaller by a factor of (£, /L,) (1 + 2rln(L, /&y)). Typical numbers
are & ~ 107 %m and L, ~ 107% — 10" %m, so vortex formation is favored to
oécur in crystals forty to seventy times wider than £,. Since £, is about
107 °m, whereas typical crystal diameters are 10* times larger, this means that
vortex formation should oceur in practically all crystals. Thus, CDW dynamics
are quite complex in a three-dimensional erystal, because the ends of the crystal

generate a turbulent interaction of the CDW phase and amplitude.
b. Ginzburg-Landau equation

The model of Ong and Maki is extremely important as a conceptual
description of CDW motion, but it does not provide a dynamical description of
the CDW phase and amplitude. Independently of Ong and Maki, Gorkov
proposed a complementary description of CDW motion, in which he derived a
set of Ginzburg-Landau equations for the phase and amplitude, and then
studied the dynamics of.the equations in one dimension. Gorkov's normalized

equations for the phase and amplitude are

A = [1—(d¢/dz)? — A%A + d2A/dz? (2.672)
A?h = — EA? 4 L2480 (2.67b)
dx dz
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A = [1—(d¢/dz)? — A%]A + d*A/da? (2.67a)

. d d¢

24 = — 2 —_ARZEY
A%9 EA® + 7 A - (2.67b)

Alternatively, when the amplitude and phase are combined into a single

complex order parameter ¢ = Ae"“"’, the equations reduce to

. d? .
v=v— |90+ ——v— By (2.68) .
In these equations, the normalized CDW current is given by j = — Azq.b. The

dynamics of the phase and amplitude are not determined until appropriate
boundary conditions are specified. Gorkov's choice was to fix both the phase

and amplitude at the ends of a crystal, ¢ = 0 and & = 1.

The dynamics of Gorkov’s equations are generally consistent with the
description of phase-slippage presented in Chap. 1. In thé absence of an electric
field, the CDW phase and amplitude are uniform throughout a crystal. When
an electric field is applied to the crystal, the phase becomes distorted. The
largest phase distortion occurs at the center of the crystal, but the largest phase
gradients occur a few coherence lengthes away from the ends of the crystal.
The largest distortions of the amplitude also occur at the erystal ends, because
of the (d¢/dz)? term in Eq. 67b. When a sufficiently large field Ey is applied,
the amplitude is suppressed.comp!etely at these points. For fields larger than
E7, the CDW begins to slide and the amplitude begins to oscillate. The CDW
motion is periodic, and during most of a CDW cycle, the amplitude remains
close to its undistorted value. Amplitude collapse and subsequent Fegeneration

occur very quickly, on a time-scale that is fast compared to the CDW period.
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at threshold. However, the nonswitching behavior is probably the result of
Gorkov's boundary conditions, which preclude biétabi}ity in the CDW
amplitude. With another choice of boundary conditions, for example
dA/dz = 0, the CDW amplitude could be suppressed by strong phase
polarization, and therefore Egs. 67 and 68 should display switching and

hysteresis.

Despite the possibility of switching and hysteresis in Gorkov's equations, the
equations are not a useful starting point for understanding the results of this
thesis. The equations have two disadvantages. First, the equations do not
include the effect of pinning on CDW dynamics, and the results of this thesis
show that strong pinning plays an important role in switching crystals. Second,
the equations do not reproduce the dispersion relations of Lee, Rice, and
Anderson, which serve as the basis of nonswitching models of CDW dynamies.
Therefore the equations cannoct be used to compare the dynamics of switching
and nonswitching CDWs. For these reasons, another set of equations is derived

in Chap. 6 to describe the coupled dynamics of the CDW amplitude and phase.
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CHAPTER 3: DC CHARACTERISTICS

This chapter discusses the response of switching crystals of pure and iron-
doped NbSe; to applied de fields. Experimental methods include measurement
of I-V and dV/dl characteristics, narrowband noise spectra, and the spatial
distribution of CDW currents. The chapter and results are organized as follows.
Section I, on materials and methods, discusses factors that influence the
occurrence of switching in NbSegz crystals. Section II reports measurements of
de CDW conductivity., The measurements fall into three groups:
characterization of de properties, study of their temperature dependence, and
examination of their spatial uniformity within single switching erystals.
Section III discusses the implications of the experimental results and then
analyzes the results in terms of several models. Section IV, the conclusion,

summarizes the results of the chapter.

I Materials and Methods

Samples used in the experiments consisted of single crystals of nominally
pure and iron-doped NbSez, prepared by conventional vapor-transport
methods.! The amount of iron incorporated into the Fe,NbSez crystals
(z = 0.03 by starting materials) was much less than the nominal doping, below
the approximately 1% sensiti;fity of a microprobe analysis. Precisely where in
the NbSez; matrix the iron was incorporated (substitutionally or between chains)

was not determined. Typical crystal dimensions for both the Fey;NbSez and

NbSes crystals were 2mm X 3 pm X 2 pm.

Crystals of nominally pure NbSe; were obtained from several different
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preparation lots, each produced by identical procedures. Switching was
observed only in the lower CDW state; but was not extensively searched for in
the upper CDW state. The ratio of switching to nonswitching samples varied
widely among NbSe; batches. In some lots, no samples displayed switching,
whereas in others over 509 showed switching. The incidence of switching was
found to depend on the age of a batch. In particular, crystals over 6 months old
did not display switching. Nearly the original incidence of switching could be
restored, however, by etching the batch in hot, concentrated HySO4. A similar
aging effect was observed in Fe,NbSes, but etches of HoSO, were less effective
in restoring switching in this material. The incidence of switching was

consistently higher in Fe,NbSez than in NbSej.

The incidence of switching was studied as a function of sample dimension
and quality. Sample quality was monitored either by the number of surface
def_‘ects, measured by scanning electron microscopy, or by erystal purity,
measured by either the threshold field at 48 K or by the residual resistivity
ratio. No dependence was observed on either sample dimension or quality.
Preliminary results had shown switching to be more prevalent in thinner

samples,?

but simply reducing a given sample’s cross-section did not
consistently induce switching. For example, reducing the cross-section of a
well-aged crystal had no effect on its I-V characteristic. A correlation of

switching with cross-sectional area does exist, but it is related to the issue of

transverse CDW coherence, as is discussed later in this chapter.

Current leads were applied to crystals using silver paint and fine gold wires.

Both two-probe and four-probe conductivity measurements were made. For the
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four-probe measurements, a special sample holder was constructed that enabled
voltages to be measured anywhere along a sample’'s length;® this probe is

described in Sec. II and in greater detail in App. A3.

II. Results

A. IV characteristics and threshold fields

Switching -V characteristics of pure and iron-doped NbSez crystals were
found to be nearly identical.* Fig. 1a shows current-driven I-V characteristics
that are typical for switching erystals of NbSes, at selected temperatures in the
lower CDW state. Fig. 1b shows similar I-V characteristics for Fe,NbSes.
Switching occurs only over a limited temperature range, from about 15 to 35 K
in NbSes and from about 40 to 50 K in Fe;NbSe;. These temperature ranges
are somewhat sample-dependent. In NbSes, for example, switching may occur
at temperatures as high as 42 K, or it may not begin until below 30 K. In both
NbSe; and Fe,NbSesz, at temperatures above the switching regime, the chordal
resistance V/I is a smooth function of the applied current bias, and the
differential resistance dV/dl remains positive along the -V curve. As the
switching regime is entered, a region of negative differential resistance appears
and develops into an abrupt switch with decreasing temperature. Well into the
switching regime, switching becomes hysteretic, and departure from the
switching regime occurs at still lower temperatures, as the switch height
decreases and hysteresis increases. Multiple as well as single switches are .

observed in Fe,NbSe; and NbSes, and switching occurs in either voltage or
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Fig. 3-1.a) Current-driven de -V curves for a switching crystal of NbSej.
Arrows indicate the direction of bias sweep. For temperatures
below 30 K, the traces for forward and reverse bias sweep have
been vertically offset for clarity.
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Current-driven dc I-V curves for a switching crystal of Fe,NbSe,.
Arrows indicate the direction of bias sweep. For temperatures
below 48 K, the traces for forward and reverse bias sweep have
been vertically offset for clarity.



115

current-driven experiments. {As an example, Fig. 6b shows a voltage-driven IV
characteristic of an NbSe; erystal with nine switches.}) The size of switching is
sample-dependent. The largest switching, i.e. the largest relative discontinuity

in an I-V characteristic, was observed in undoped NbSez crystals.

A feature common to both NbSez and Fe,NbSe; is that dynamic
conductance is roughly constant past the switching ‘ehresholld.2 This may be
seen in the I-V curves of Fig. 1, where the switching curves have neariy uniform
slope in the nonlinear region. In neonswitching crystals, the inverse differential
conductance dV/dl attains constant values only when the applied field is about
4 to 5 times the threshold field.® Switching crystals reach the high-field
conductivity state immediately past threshold, which suggests that CDW

pinning effectively collapses at threshold.

The critical threshold field E¢y in switching crystals is nearly independent of
temperature. The temperature independence of switching thresholds in NbSej
crystals is quite striking.? Fig. 22 shows threshold fields of switching and
conswitching NbSes crystals, normalized to their extrapolated T = 0 values.
(Normalization is necessary because of the wide spread in threshold fields; see
below.) For reference, the figure also displays Fleming's curve for threshold
fields in nonswitching NbSes crystals.” Threshold fields Ep have the same
general temperature dependence for all nonswitching samples; e.g. they begin
to rise gradually as the temperature is cooled below 50 K and change by about
100% between 35 and 20 K. In contrast, Ep rin switching samples rises quite

abruptly just before the switching regime is entered, and then is roughly
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Normalized threshold fields for CDW depinning in switching and
nonswitching crystals of NbSez. The open symbeols represent
thresholds Er for smooth depinning, the solid symbols represent
thresholds Fo = Ep for switching, and the half-filled symbols
represent switching thresholds E; when a crystal depins smoothly
at a lower bias Ep. Fleming's curve for nonswitching thresholds
is adapted from ref. 5.
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Fig. 3-2.b) Normalized threshold fields for a switching Fe,NbSe; crystal and

a nonswitching NbSes crystal. Fleming's curve for nonswitching
NbSe; is adapted from ref. 5.
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constant, to within 10%, inside the switching regime where Ey = Ep. In the
temperature range 41 K to 46 K, half-filled symbols indicate switching

thresholds E¢ that are preceded by conventional depinning, with Ep < Eg.

The temperature independence of switching thresholds in Fe,NbSe; is
somewhat less dramatic, because nonswitching thresholds are less témperature
dependent between 40 to 50 K. Fig. 2b shows threshold fields of a switching
FeyNbSe;z crystal and a nonswitching NbSeg crystal. The threshold fields have
been arbitrarily normalized to their 51 K values, and again for reference the
figure displays Fleming's curve for nonswitching NbSey threshold fields.
Switching in this Fe,NbSez crystal occurred mainly between 40 and 48 K. In
this temperature range, the crystal’s threshold field Er = E is nearly constant
(solid circles). In contrast, threshold fields of nonswitching crystals change by
50% between these temperatures. Outside of the switching regime, the
threshold field E7 of the Fe,NbSez crystal is strongly temperature dependent
{open circles). The atypical temperature dependence of switching thresholds -
in NbSe; and Fe,NbSez - suggests that a different physical mechanism is
responsible for CDW depinning in switching crystals than the usual

phase-depinning that occurs in nonswitching crystals.?

Switching threshold fields Ey are generally large, and in the switching
regime the onset of n;nlinear conduction typically occurs at Ep = Ep. In
NbSes, switching thresholds are between 300 and 1500 mV/cm, and in
Fe,NbSes, switching thresholds are between 100 and 500 mV/ecm. These fields

are 10 to 100 times larger than nonswitching thresholds observed at comparable
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Fig. 3-3) Vo!tage-driven, switching I-V curve for an uncut crystal of NbSes,
and nonswitching I-V curve for the same crystal after it has been
shortened from 2.8 to 2.5 mm.
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temperatures in the highest quality NbSes crystals.®® Although switching fields
are always large, nonswitching thresholds can be equally large, and comparisons
of threshold fields in randomly selected crystals reveal no critical value of

threshold field above which switching always occurs.

A more fruitful comparison is of £y for switching and Ep for nonswitching
behavior in the same crystal. Other researchers have performed this kind of
comparison by irradiating nonswitching crystals.” They find that irradiation
produces switching, and that the onset of switching is accompanied by an
increase in threshold field Er. We have performed the inverse experiment: we
have induced nonswitching behavior in switching crystals. By physically cutting
and thereby shortening a switching ecrystal, switching can be eventually
eliminated. Fig. 3 shows J= I/A (A = sample cross-sectional area) versus E
curves for an NbSes crystal at 35 K. The uncut crystal was 2.8 mm long and
displayed a large hysteretic switch at a threshold field of Ey == 1450 mV /em.
The cut erystal was 300 pm shorter, and depinned smoothly at
E, = 480 mV/cm. (No additional nonlinearity was observed at 1450 mV/em.)
Other crystals displayed the same general dependence of switching on length,
.although not as dramatically; some crystals were shortened to 100 um before

they stopped switching.
B. Nonuniform pinning and current discontinuilies

Reducing the length of a nonswitching crystal does not induce switching, but
reducing the cross-sectional area sometimes does. NbSej crystals may be easily

cleaved by splitting them parallel to the b-c or b-a planes of the unit cell. Fig. 4
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Fig. 3-4) SEM micrograph of a switching NbSes crystal. No surface defects
are apparent. Left: typical crystal section. Right: detail of boxed
region on the left, magnification by an additional factor of ten.
Scale bar of 6.7 ym refers to the left-hand photo.
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shows a micrograph of a crystal that was split from a larger crystal. The length
of both split and unsplit crystals was 2.5 mm. The cross-sectional area of the
unsplit crystal was 28 um?, whereas the cross-sectional area of the split erystal
was 2.7 um®. The split crystal appears uniform, with no damage visible
anywhere along the crystal surface, indicating that splitting is an effective way

of reducing a crystal’s cross-sectional area in a nondestructive way.

Figs. 5a and 5b show J-E curves at 29 K for the parent crystal and for the
split crystal of Fig. 4, respectively. The parent crystal depins smoothly at
Ep = 48 mV /cm, but the split crystal switches at Eg = Ey = 875 mV/cm.
Threshold fields at 48 K, a standard measure of crystal quality, also changed.
The threshold field of the starting crystal was 16 mV/cm, but the threshold
field of the split crystal was 70 mV/cm. The higher threshold fields of the split
crystal - both at 48 and 29 K - indicates that the CDW is pinned more

effectively in the split (switching) than in the unsplit {(nonswitching) crystal.

Similar changes in switching and threshold field were observed in a number
of other split erystals. The effect of splittir;g suggests the presence of localized,
strongly pinning regions, sparsely distributed within NbSes and Fe,NbSez
crystals. Elimination of these strongly pinning regions {(as occurs by physically
cutting them from the crystal) causes a switching erystal to become
nonswitching. Conversely, reducing the cross-sectional area of a crystal by
splitting may induce switching in a previously nonswitching crystal. If the
width of a crystal is large compared to the CDW phase coherence length, then

CDW current can flow around localized regions that are strongly pinned,
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Current-driven I-V characteristics of an NbSe; crystal at
T = 20 K. The traces for forward and reverse bias sweeps have
been offset vertically for clarity. The threshold field Er is
indicated by an arrow for the lower trace.
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Current-driven [-V characteristics for an NbSe; crystal at
T = 29 K. The crystal was obtained by “splitting’”” the parent
crystal of {a). Multiple switching is clearly observed. The traces
for forward and reverse bias sweeps have been vertically offset for
clarity.
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leading to uniform depinning with no switching. Oun the other hand, if the
crystal width is comparable to the transverse coherence length, then localized
regions of strong pinning can initially obstruct CDW current and ultimately
result in switching. Transverse phase coherence lengthes in NbSez are roughly
0.4 — 0.8 um for threshold fields of 16 to 70 mV/em.® Therefore the diameter of
the split erystal in Fig. 4 is comparable to the transverse CDW coherence
length. In contrast, the diameter of the unsplit crystal is much larger, which is

consistent with the much smaller pinning in that crystal.

The discussion now turns to another series of experiments, where current
domains were directiy observed by nonperturbative measurements of local de
conductivities.® Fig. 6a schematically illustrates the four-terminal probe used to
make such measurements. Current leads, terminals 1 and 4, were attached to
the ends of a crystal using silver paint. Two additional voltage-sensing leads,
terminals 2 and 3, were formed by pressing fine metal wires against the crystal
surface. The pressures as well as locations of probes 2 and 3 could be adjusted
independently during an experiment. Adjusting the pressure of the probes
changed their contact resistance to the crystal. When the probes were lightly
applied, their contact resistances were large and the probes did not perturb the
current distributions within a crystal. The probes could be placed anywhere

along a crystal with an accuracy of +5 pm.

Fig. 6b displays a voltage-driven I-V characteristic of an NbSes crystal with
nine switches, measured across terminals 1 and 4. The switches were unaffected

by either contact 2 or 3, whether the contacts were lifted or applied. Fig. 6¢c
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4-terminal measurement configuration. Terminals 2 and 3 are
movable and non-perturbative. The indicated distances refer to
terminal positions used in b) and c}.

Voltage-driven I-V characteristics of an NbSes crystal at
T = 29 K, measured between terminals 1 and 4 (2 probe) as
indicated in a). The traces for forward and reverse bias sweeps
have been offset vertically for clarity. The switches are identified
with a number, which also identifies a particular peak in the
narrow band noise spectrum (see Fig. 3-7).
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Current-driven I-V characteristics for the same NbSez crystal as
used in b). The three traces refer to the local IV characteristic
of three different segments of the crystal (see a).
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shows curregt-driven [-V characteristics across successive segments of the same
crystal, when probes 2 and 3 were lightly applied to the crystal. (Segment
lengthes are shown in the inset.) Fig. 8¢ shows that when a switch occurs in a
complete I-V characteristic, a corresponding switch occurs in at least one, but
not all, of the partial I-V characteristics. Therefore each switch signals local
depinning of the CDW. Threshold fields vary by 50% in Fig. 6¢, so the CDW is

nonuniformly pinned within the crystal.

In general, switching in NbSez and FeyNbSe; is characterized by
nonuniform pinning and formation of current domains. Narrow-band noise
measurements show that the CDW drift velocity within a current domain is

independent of its drift-velocity within other domains.?

For example, each
successive switch in Fig. 8b corresponds to a new fundamental noise frequency
entering the total noise spectrum. Fig. 7 shows traces of frequency versus total
CDW current for the first six narrow-band noise fundamentals. Unlike
nonswitching crystals, the frequency of a fundamental is not proportional to the
total excess CDW current. Each switch produces a jump in the total CDW
current and thus a break in the traces of Fig. 7. After each switch, the slope of

each frequency trace is lower, as would be expected if CDW current were to flow

in spatially separated domains.

The size of a current carrying domain may be estimated from J’CDW = neAf,
where JICDW is the excess current density carried by that particular domain, n is
the density of carriers condensed in the CDW state, A is the CDW wavelength,

and ff is the frequency generated by that domain. For example, assuming that
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symbols refer to noise peaks which first appear at a particular
switch, and are associated with a specific current domain. The data

“become linear and extrapolate to (0,0) only if the excess current axis

is that appropriate to the specific current-carrying domain.
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n= 101 ¢m 3

and A= 14 fo\, the first switch in Fig. 6a corresponds to a
volume of 2100 pm®, which agrees with the crystal dirﬁensiens and the probe
spacing. This volume indicates a serial arrangement of domains, i.e. domains
stacked end-to-end along the crystal rather than side-by-side across the crystal.

The slope of frequency versus current in Fig. 7 also indicates a serial

arrangement of domains within the crystal.

The volume and arrangement of current domains may be determined
direc?ly by moving probes 2 and 3 independently along a crystal and measuring
I-V characteristics in different sample segments.® Such measurements were
performed in a number of NbSez and Fe,NbSez crystals. Fig. 8a shows the
probe arrangement and Fig. 8b shows the -V characteristics for a single
Fe,NbSes crystal. The full I-V curve (between terminals 1 and 4) indicates two
distinct switches. By independently moving probes 2 and 3 and remeasuring
the I-V characteristics, it was determined that the first switch at Ig;
corresponds to the depinning of a region “A”, whereas the second switch at Ig,
corresponds to the depinning of a second region “B’. The two regions are
identified at the top of the figure. The interface between regions A and B is
very sharp. Fig. 9 shows the magnitude of the switch at Is; and the magnitude
of the switch at Igp, measured as functions of the positioﬁs of probes 2 and 3,
respectively. The intersection of the lines through the data points indicates
that the interface between regions A and B is well defined, and located 776 pm
from terminal 1. Figs.8a and 8b are characteristic of switching samples of

NbSe; and Fe,NbSes. It is consistently found that current domains are
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Voltage probe configuration for I-V traces shown in (b).

Simultaneously recorded current driven I-V traces for different
segments of a single Fe,NbSey crystal at T = 42 K. I3, and I
identify the two critical currents for switching.
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arranged serially and that interfaces between domains are abrupt to within the
experimental resolution (several micrbns). In these interface regions, CDW
current is discontinuous. Condensed electrons are converted into normal
carriers, and vice versa. Just as in superconductors’ and superfluids,!© cﬁrrent
conversion takes place by periodic collapse of the CDW amplitude, at a rate set
by the difference in CDW phé.se velocity between adjacent regions. These

interface regions are therefore referred to as phase-slip centers,>11

No distinguishing surface defects are associated with phase-slip centers.
Figure 10 shows a micrograph of the phase-slip region in the Fe,NbSes crystal
of Figs. 8a and 8b. Although some minor surface defects are evident, no major
surface features are found in the phase-slip region, Conversely, some switching
crystals, such as in Fig. 4, have virtually perfect surfaces. Thus switching can

not be uscribed to surface contamination or to surface defects.
C. Avalanche depinning

The previous secﬁion demonstrates that pinning is nonuniform within
switching crystals:ﬂ switching crystals consist ¢f 2 number of macroscopic current
domains with independent threshold fields. A related issue is whether pinning
is uniform inside one of these domains. This section describes a series of
experiments which show that current domains are susceptible to breakup into
smaller domains, and that pinning therefore can be non-uniform within a single

domain.* 12

Fig. 11 shows a series of voltage-driven I-V curves for NbSe; at selected
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Fig. 3-10) Composite SEM micrograph of the phase-slip region in the
FeyNbSes crystal of Figs. 3-8 and 9. The phase-slip center lays
within #20 um of the micrograph center. (The uncertainty is due
to possible error in alignment between the photo and Fig. 3-9.)
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temperatures in the lower CDW state, obtained by {irst monotonically
increasing, and then monotonically decreasing, the bias voltage.'* At 40K,
switching at the threshold Eg for CDW conductivity is clearly observed. At
35 K, switching is again observed at Ep, but a well-defined hysteresis loop has
developed for the single switching event into or out of the sliding CDW state.
With decreasing temperature below 35 K, the hysteresis becomes more

pronocunced.

An important feature of the hysteretic response in Fig. 11 is the appearance
of additional switching structure for temperaures below 30 K. For example, at
28.3 K the transition back to the pinned CDW state for decreasing bias is
comprised of a series of two small switches, rather than a single large switch as
occurs at 30 K. At temperatures below 28 K, additional switching structure is
observed during increasing bias as well, and in general, additional switching
structure appears with decreasing temperature. At 23 K, for example, the
transition to the “fully conducting” CDW state (where the hysteresis loop has
closed and increases in dc bias result in no further switches) occurs by a series
of at least four switches; the transition back to the fully pinned state occurs via

two switches.

The additional switching structure which develops in the hysteretic regime
reflects transitions between well-defined current-carrying states.!? Fig. 12a
shows the detailed I-V characteristics within the hysteresis loop at 23.5 K for
the same NbSes sample as was used for Fig. 11. The solid lines represent the

overall hysteretic I-V structure, consistent with that displayed previously in
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Fig. 3-11) Voltage-controlled I-V characteristics of NbSez at selected
temperatures in the switching regime. Additional switching
structure is observed on the hysteresis loop at lower temperature.



137

Fig. 11. The striking features of Fig. 12a are the dashed lines, which represent
distinct, repeatable, and quasi-stable current-carrying states. The direct
mapping of the first of these states (labeled 1 in the figure) was achieved by
slowly advancing the dc bias from zero into the hysteretic regime, until a small
switch occured, and then immediately reversing the direction of bias sweep.
The I-V characteristic of this sublevel state was then traced out by slowly
varying the dc bias and recording the resulting current. A vertical transition
from sublevel 1 to a second sublevel, labeled 2, is indicated by a vertical arrow
in Fig. 12a. This second sublevel, and subsequent sublevels, were traced out in
a fashion similar to that described for level 1. Since sublevels 1, 2 and 3 were
achieved by first starting the de bias voltage from zerd, these structures are
classified as lbwer sublevel states. As shown in Fig. 12a, distinet sublevel
structure is also observed if the de¢ bias is started from a high level exceeding
threshold. Sublevels thus achieved are labeled 4,5, 6 and 7 in the figure. These
structures are classified as upper threshold states, since they are arrived at by

first decreasing the de bias voltage from above threshold.

The substructure indicated in Fig. 12a was found to be entirely reproducible.
However, upon tracing out the various sublevels, transitions between sublevels
did not always occur at the same de bias value. The vertical afrows represent
repeatable transition points. Since these transitions are determined solely by
the bias magnitude, they are identified as electric field-induced. As indicated in
Fig. 12a, both upward and downward electric field-induced transitions are

observed. Other non-repeatable transition points, not indicated on Fig. 123,
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Detail of I-V structure of NbSez at 23.4 K. The numbered
dashed lines represent distinct sublevel states; the vertical
arrows correspond to electric field-induced transitions between
the states (see text).
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Fig. 3-12.b)  Detail of I-V structure at 30 K. Only one stable sublevel state is
observed within the hysteresis loop.



140

were also obtained. These transitions occured if the system was left
unperturbed for a sufficiently long time on a particuiar'sublevei, with a (fixed)
de bias voltage relatively close to the indicated vertical arrows. The time scale
for waiting for such transitions to cccur was often on the order of seconds to
minutes, and these transitions are identified as induced by thermal fluctuations.
Because of this sensitivity to thermal fluctuations the substrates in Fig. 12a are

classified as quasi-stable.

Ti;e importance in distinguishing between ‘“‘lower” and ‘“‘upper” sublevel
states in Fig. 12a lies in that no transitions were found to occur between a state
in the lower group to a state in the upper group, or vice versa. It is thus
possible that the two groups of sublevel states do not coexist. The lower
sublevel states might be established only as the de¢ bias voltage Vy, is increased
past the lower threshold field of the hysteresis loop, while the upper sublevel
state would seem to be established only as V. is decreased past the upper
threshold field. Increasing V. past the upper threshold field, or decreasing V.
past the lower threshold field, would then effectively eradicate the lower and

upper sublevel states, respectively.

The strong temperature dependence of the overall hysteresis loop shown in
Fig. 11 is reflected in the sublevel structure. Fig. 12b shows the complete
sublevel structure observed at 30 K. Only one sublevel state is clearly resolved,
in contrast to the six defined at 23.5 K. Above 30 K, no sublevel structure was
observed within the overall hysteresis loop. Clearly, the formation of stable

sublevel structure is a highly temperature-dependent process.
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The results are consistent with a macroscopic domain structure, where the
sublevel structure, corresponding to distinet current-carrying states, results
from a particular (relatively stable) configuration of pinned and current-carrying
CDW domains. The same basic model has been used to account for negative
differential resistance (NDR) in NbSes, where chaotic imstabilities are attributed
to rapid hopping between distinct current-carrying states.!® In fact, the only
significant difference between the states assumed in that analysis, and those
directly observed here (at lower temperatures), is the relative energy spacing
between the sublevels. In the NDR region, the energy spacing is significantly
less, allowing for an increased transition rate (assuming a temperature
independent attempt frequency}, and hence chaotic response in the kHz and

MHz frequency range.!®

As an independent test of whether the sublevels in Fig. 12 correspond to
different configurations of pinned and depinned domains within the crystal, the
narrowband noise spectrum of the crystal was measured using a spectrum
analyzer. The results support a domain interpretation. For example, on
sublevel 3 in Fig. 12a, the noise spectrum indicates three depinned domains,
while on sublevel 2, the spectrum indicates only two depinned domains. The
successive disappearance of the stable sublevel structure in NbSez; with
increasing temperature above 23 K suggests that the strength of the phase-slip
centers (i.e. the ability of the phase-slip centers to break the CDW veloeity
locally) is strongly temperature dependent. As the temperature is inecreased,
weak phase-slip centers are annealed out, effectively phase-linking domains

together and reducing the number of switches in the I-\" characteristic. At
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rel_atively high temperatures (still in the switching regime), only the strongest
phase slip center remains active, permitting at most two distinct éwitches.
Should one domain have a substantially greater depinning voltage than the
other (as might occur, for example, if one domain is relatively small), then only
one distinet switeh into and out of the “fully conducting' region will oceur, as

demonstrated in Fig. 12b.

The results of Figs. 12a and 12b show that large current domains are
susceptible to breakup into smaller domains, and that large current domains
contain latent phase-slip centers. The presence of latent phase-slip centers can
be demonstra.tea directly by temperature-gradient experiments.? Temperature-
gradient experiments show that latent phase-slip centers are present in small as
well as large current domains, and at low as well as high temperatures. The
ubiquitous presence of latent phase-slip centers strongly suggests that depinning
within a current doma{m occurs by an avalanche-type process. Depinning at one
center triggers depinning at the next center, which causes a depinning wave to
travel down the length of current domain.!* A current domain appears to depin
simultaneously along its length only when probed by isothermal de
measurements. Avalanche processes within a current domain become apparent
when switching is probed by temperature-gradient experiments or by
experiments sensitive to the time-development of switching (e.g. pulsed current

1

measurements,'® and experiments on negative differential resistance 5 and ac

switching noise!®).
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D. CDW polarization

Non-uniform pinning should produce local variations in the threshold field
for CDW depinning. In turn, local variations in threshold field should produce
macroscopic polarization of the CDW in a switching crystal.)” When an electric
field exceeds the local threshold field, the CDW attempts to slide. If an
adjacent region is not depinned, the elasticity of the CDW prevents CDW
current from flowing until a phase-slip center forms or until the adjacent fegion
depins. Phase-slip centers are energetically costly (see below), so the CDW
phase can develop appreciable gradients across distances comparable to the
Fukuyama-Lee-Rice length. Phase polarization is thought to be observed by

localized resistivity changes in switching TaS; crystals.!®

Large, subthreshold resistivity changes have been observed in a switching
NbSe; crystal by employing spatially resolved 3-terminal dV/dl measurements.
Fig. 13a shows the contact arrangement. (The crystal regions “A’ and “B” are
meaningful only in the low temperature, switching regime.) Fig. 13b shows
dV/dl traces at 48 K corresponding to the crystal segments between probes 1
and 4; probes 1 a;ld 2; and probes 2 and 4. At 48 K, the three regions depin
simultaneously and disg;lay ident;lcal dV/dl characteristics. No hysteresis is
present in the low-field resistance. This is not the case at lower temperatures

that are within the switching regime.

Fig. 13¢ shows localized dV/dl measurements of the same NbSes crystal at
27 K. At this temperature the crystal consists of two well-defined regions, “A”

and “B", which depin independently. These regions were mapped out in a
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Same as b}, but for sample temperature T = 27 K. Depinning is
not uniform throughout the crystal. The top trace shows the
dV/dl characteristics for the entire crystal. Strong low-field
hysteresis is observed below Ey, and switching occurs at high
bias current. The middle trace shows the dV/dI characteristics
primarily for region A (see Fig. 3-13a). No low-field hysteresis is
observed in this ‘“normally depinning’’ region. The bottom trace
shows the dV/dl characteristics for region B (see Fig. 3-13b).
This region is associated with strong low-field hysteresis and
switching.
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series of I-V experiments similar to those described for Fig. 8. Region A depins
normally at a current bias of 57 ‘[.JA, whereas region B switches at a current bias
roughly 3.5 times larger. The dV/dI plots of Fig. 13¢ were made with probe 3
raised and probe 2 placed inside region B. The top trace is the dV/dI response
of the entire crystal, and the second and third traces correspond approximately
to the regions A and B. The second trace, measured across mainly region A, has
a concave-upward shape characteristic of nonswitching CDWs, except for a
small contribution from region B. The third trace, measured across most of
region B, has an entirely different shape. Excluding the region near zero bias,
the trace resembles a hysteretic step function. The dynamic resistance of the
switching region changes ébruptly from the pinned, zero-field value to the
saturated, high-field limit. The top trace, the response of the entire crystal, is a

linear superposition of regions A and B.

Near zero bias, region B displays two repeatable and distinct resistivity
states. The lower resistivity state is reached by increasing the current bias past
Ir = 33 A and then reducing the bias to zero. The upper resistivity state is
reached by sweeping the bias below — Ip = 33 uA and then back to zero. The
low-field resistivity of region B displays a “memory” of the polarity of the
preceding bias sweep, provided that the bias exceeds either of the critical values
Hp. This polarization effect is large, approximately 15% _of the low-field
resistance of region B. The strong polarization effect is closely connected with

switching since it occurs in the switching region of the crystal.

Fig. 13c shows that the critical bias Ip, the polarization threshold for

switching region B, is comparable to the threshold bias of nonswitching region
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A. This suggests that polarization in region B is caused by the CDW depinning
from impurities in some parts of the region, but remaining pinned in others.
CDW current in region B is prevented from flowing by the CDW elasticity, untii
region B switches (and completely depins) at a much higher bias. The
temperature dependence of the polarization effect is consistent with this
interpretation. Fig. 14 shows dV/dl measurements across region B from 48 to
28 K. Between 48 and 40 K, the dV/dI curve loses its concave-upward shape
past threshold, and low-field hysteresis sets in at the same time. A change of
scale at 40 K and then at 35 K clarifies what is happening to the CDW in region
B. As temperature is reduced, the CDW only partially depins at the higher
temperature threshold /7. Further depinning takes place past Iy, and by 37 K,
a second threéhold is clearly evident as a pronounced downward bend in the
dV/dl curve. At lower temperatures, this bend sharpens into the switch that is
observed at 28 K. The polarization field Ip is a remanent of the nonswitching
threshold Ip at higher temperatures. Evidently, a large polarization and
accompanying elastic strain is necessary to produce depinning at the switching

threshold.

Near zero bias, the upper and lower resistivity states of region B appear to
be just two of an infinite number of stable polarization éonﬁgurations of the
CDW. Fig. 15 shows the low-field resistivity of region B in closer detail at 38 K.
If current is monotonically swept from below — Ip = — 10 uA to above + Ip
and then back again, only the upper and lower resistivity states of region B are
mapped out. If the current sweep is reversed as the transition is made from one

state to the other, however, then a series of sublevels are attained inside the
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(region B) of the NbSe; crystal of Fig. 3-13.
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Fig. 3-15) Detail of low-field polarization states of the NbSe; ecrystal of
Figs. 13 and 14. The arrows indicate bias sweep direction.
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hysteresis loop. Two such sublevels are indicated in the figure.

Similar polarization and memory effects have been previously observed in
NbSe; by Ong et al, although they were not recognized as being associated
with switching.!® In general, polarization experiments have been performed
using only a 2-contact configuration, which can obscure inhomogeneous
polarization and current distributions. Mihaly and Tessema®® have also
reported related polarization effects in Kg3MoOjz, where switching-like behavior
is observed. The large magnitude of the effect that is observed here in
switching NbSes is due to the coexistence of switching and nonswitching regions
within the same crystal. In switching crystals that contain no nonswitching

regions, smaller polarization effects have been observed.

III. Analysis

1. Ezperimental implications

Switching in pure and iron-doped NbSej is apparently caused by the same
mechanism, although switching occurs at higher temperatures in Fe,INbSe; than
in NbSez. In both materials, measurements of differential resistance suggest
that switching corresponds to an effective collapse of CDW pinning past
threshold. Consequently, CDWs in switching crystals make an abrupt transition
from a pinned, zero-velocity state to an effectively high-field state. This process
of depinning is very different from the usual process of phase-depinning that
oceurs in nonswitching crystals, as is underscored by the atypical temperature
independence of switching critical fields E¢. Threshold fields are generally large

in switching crystals, so that pinning forces must be large, but large threshold
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fields alone do not cause switching. Other attempts to distinguish switching
from nonswitching crystals - by crystal quality and by crystal dimensions - have
also been unsuccessful. Surface inspection of s“}itching crystals show that
switching crystals are not physically damaged or otherwise different from
nonswitching ecrystals. By elimination, strong impurities or internal lattice

defects remain as likely causes of switching.

Other experiments point directly to a random, internal distribution of étrong ‘
pinning centers - strong as strong impurities or lattice defects - as the probable
cause of switching. As demonstrated by examination of hysteresis loops or by
measurement of local conduectivity within a single crystal, a characteristic
feature of switching crystals is the tendency to break into spatially distinct
domains of uniform CDW current. These domains are separated by phase-slip
centers which convert excess CDW current into normal electronic current via
periodic collapse of the CDW amplitude. Narrow-band noise measurements,
hysteresis loop sublevels, and temperature-gradient experiments show that
strong pinning centers and amplitude fluctuations can exist even inside current
domains. Nonuniform pinning produces a large amount of CDW phase
polarization, with a threshold for the onset of polarization effects that is clearly

a remanent of the usual phase-depinning process.

In the analysis that follows, the discussion shall first consider previously
proposed models of switching. These models prove to be inconsistent with
experiment. The analysis therefore proposes another mechanism for switching:

phase slippage and CDW amplitude fluctuations.
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2. Phase dynamical models of switching

In NbSe; and Fe,NbSe;, switching is associated with hysteresis,!®
bistability,'® negative differential resistance,'® and chaos.?! Similar phenomena
have been observed in other systems, e.g. semiconductors under large electric
fields. There the effects are attributed to single particle processes such as
thermal runaway, impact ionization, or avalanche breakdown. None of these
single-particle processes appears appropriate to NbSez or Fe,NbSez. Impact
ionization and avalanche breakdown require fields of at least 1000 V/cm,
wher;eas in NbSez; switching results from fields between 0.1 and 1 V/em.
Thermal runaway is ruled out because it requires a material's resistivity to
decrease with increasi_ng temperature; in pure and iron-doped NbSejz, switching

oceurs only when dp/dT >0.

A number of CDW-based models have been proposed to account for various
aspects of switching. Joos and Murray** have proposed a domain coupling
model; Janossy and Krizal? have suggested a CDW self-blocking mechanism;
Hall et al.?! have considered a single degree of freedom model with inertia; and
Wonneberger?? has proposed a single degree of freedom model with current
‘noise. A common feature of these models is that they ascribe switching CDW
phase dynamics, and neglect or assign an insignificant role to amplitude
fluctuations. The models often reproduce certain experimental results, but they

cannot deseribe all the phenomena of CDW switching discussed in this chapter.

In the domain coupling model of Joos and Murray, a switching crystal is
divided into an arrangement of otherwise unspecified domains. When an

electric field exceeds the threshold for CDW depinning, each domain is assigned
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a certain probability for depinning, and once depinned, a domain can trigger
neighboring domains to also depin, so that a depinning wave propagates along a
crystal. This model reproduces the delay times observed in pulsed switching
experiments,’® but the physics behind domains and their intercouplings is
unclear, as is why they should behave differently in switching versus
nonswitching erystals. From a mathematical point of view, the description is a

kinetic Ising model.

The simplified nature of the Joos-Murray model results in problematic I-V
characteristics. A more serious difficulty is that the model requires no CDW
current to flow in a switching ecrystal until the CDW has depinned in all
portions of the crystal; this is inconsistent with numerous experiments that
demonstrate that current domains may depin independently within a given
crystal. The usefulness of the Joos-Murray model is that it involves a domain-
configuration {as observed experimentally) with tractable statistics in the time

domain (an issue not discussed here). It is a many-degree-of-freedom model.

The CDW self-blocking model of Janossy and Kriza is also a many-degree-
of-freedom model. It proposes that macroscopic polarization of a CDW
interferes with depinning and delé.ys CDW conduction until the CDW can relax
from a polarized state. As discussed earlier, and illustrated in Figs. 13 and 14,
large polarization effects aré indeed associated with switching CDWs. In the
self-blocking model, the origin of the unusual polarization (as opposed to
polarization in non-switching crystals) remains unspecified. An interesting
implication of the model is that if de bias is swept =lowly enough, then

switching should not be observed in the -V characteristics of a crystal. In
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experiments,_ however, no unusual time dependence (at long time scales) is
observed in the switching characteristics of NbSes or Fe,NbSe;. Finaii&, just as
with the Joos-Murray model, the self-blocking model requires that no CDW
current f!owsl in a crystal until the CD'W depins along the entire crystal length

(which is inconsistent with experiment, as stated previously).

Both the CDW inertial model of Hall ef al., and the CDW current model of
Wonneberger et al. are based on the single-particie classical equation of motion

proposed by Gruner, Zawadowski, and Chaikin,®

dg(,ﬁ 1 d¢ 2 . € ;
+ L - -2 F0Q, 3.1
T +wgsing=— EQ (3.1)

where ¢ is the CDW phase, ¢ is a time variable, 7 is a time-constant describing
dissipation, wg is a pinning frequency representing the strength of the impurity
potential, m * is the Frolich mass of the CDW electrons and E is the applied
electric field. Usually, the inertial term (first term on the left) is neglected
because the phase relaxation rate (order 107! sec) is much faster than either wq
or the frequency of the applied electric field. In the inertial model of switching,
the first term in Eq. (1) is retained, which is equivalent to specifying that
wg > 1/r. Thus the inertial model requires either large pinning or small
damping. In the current-noise model, the inertial term is neglected, but an.
additional noise term is added to the right-hand side of Eq. (2). The magnitude
of the noise term is a function of the CDW velocity, so Eq. (2) must be solved
self-consistently. For switching to occur, current-noise must increase sharply as
the CDW velocity approaches zero. The physical origin of this noise remains

unspecified.



The inertial model of switching is equivalent to the resistively-shunted-
junction (RSJ) model with capacitanée, which is commonly discussed in the
Josephson junction literature.®d It predicts switching hysteresis, bistability, and
chaos, all of which are observed in switching crystals of NbSe;. However, the
parameters of the model are not self-consistent when applied to CDW dynamics.
The model required either very large pinning (large values of wy) or very small
damping (small values of 1/r) for switching to occur, but neither assumption is
justified by experiment. Typically, wy in nonswitching crystals is much smaller
than 1/r, wer~ 3% 1072, .The phase relaxation rate 1/r does not appear to
change in switching crystals, because the high-field conductivity limit is the
same for switching as for nonswitching crystals.? Large pinning is observed in
switching crystals, but it is not so large as to indicate underdamped motion.
Since threshold fields*® scale as w3, underdamped motion in NbSe; would imply
threshold fields in switching crystals that are roughly a thousand times larger
th.an those in nonswitching crystals. In NbSey crystals, the ratio between
switching and nonswitching threshold fields is between a factor of three and
ten. This discrepancy can be overcome by invoking velocity-dependent pinning
or damping, but such extensions appear inconsistent with ac conductivity
measurements.?>?® Lastly, a serious limitation of the single-degree-of-freedom
inertial model is that it is unable to provide a plausible explanation for the

existence of current domains.

The current-noise model of Wonneberger suffers from the same problems
with current domains. The most objectionable feature of this model, however,

is the functional form of the conduction noise necessary to induce switching and
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hysteresis.??

During measurements of current noise using a voltage-driven
configuration, no large increases in noise have been observed near the critical

switching field F¢. This lack of noise is inconsistent with the basic mechanism

of Wonneberger's model.
3. A phase-slip mechanism for switching

A common limitation of all the models discussed above is a neglect of CDW
amplitude fluctuations. Experiments suggest that switching is intimately tied
to the amplitude fluctuations that are associated with velocity discontinuities in
switching crystals. The unusual phase polarization which precedes switching
also suggests that a primary role is played by CDW pinning and pinning
centers. The next section, therefore, turns to a discussion of how amplitude
fluctuations can affect both the phase elasticity of a CDW and the effective

pinning of a CDW at sites of especially strong pinning.
1. CDW elasticity and amplitude fluctuations

CDW dynamics can be drastically altered by amplitude fluctuations, because
the CDW phase and amplitude are not exact normal coordinates of CDW
motion.?” Often this distinction is of little importance. If only weak impurities
are present, then the CDW amplitude is uniform in the bulk of a crystal.
Therefore the parameters which determine phase motion may be treated as
constants. However, if CDW dynamics are dominated by phase slippage (as
occurs in regions of CDW velocity discontinuity), rather than by the usual
process of phase depinning, then amplitude fluctuations can result in an

unstable CDW phase elasticity.
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The elasticity of the CDW phase plays a critical role in CDW dynamics. In
the Fukayama-Lee-Rice (FLR) Hamiltonian,”®3° the CDW phase responds as
an elastic continuum to the net force resulting from impurity pinning and

applied electric fields. The equilibrium phase ¢(z) minimizes an energy given by
3 1 a9 \2
H= [d I{EZK,(—&;—) — Yo Vib(x—x)cos[Qx+ ¢(x}] (3.2)
- ; ~

—epenEd(x)/Q}

where the first term represents the elastic energy of the CDW, the second term
the pinning energy, and the third term the electric field energy. Here the K, are
elastic constants of the CDW phase, V; is the strength of the jth impurity, and
peyr is the effective coupling of the CDW to the electric field E. The CDW
elasticity is an-isotropic. In directions transverse to the CDW wavevector Q, the

elastic constant is given by®°
KJ. = 7]‘2K (3.3)

where K is the longitudinal elastic constant and n ~ 0.1 is the bandwidth
anisotropy of NbSes. Following Lee and Rice,?° anisotropy may be formally

eliminated by scaling the transverse spatial dimensions:
1 gt LRV
Hoppotic = "2"' fd:sdy dz' K (V ¢) (3.4)

where dy' = dy/n, d’ = dz/n, and K’ = n°K.

The FLR Hamiltonian is inappropriate for describing large amounts of phase
polarization, because it purposely neglects any fluctuations of the CDW
amplitude. Since the CDW amplitude is determined by balancing the lattice

energy cost of a Pelerls distortion against the energy gained from enhanced
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eIectron-phopon interactions in a deformed lattice, large CDW phase gradients
reduce the CDW amplitude for two reasons. First, deformations of the CDW
phase require an amoq_nt of energy proportional to (V¢)2, so the energy cost of
a Peierls distortion is increased. Second, gradients of the CDW phase effectively
change the CDW wavevector, so that the energy gained from electron-phonon
interactions is reduced. For sufficiently large phase gradients, the CDW

amplitude must collapse.

Large phase gradieﬁts also reduce the CDW phase elasti¢ity. The general
dependence of the restoring force §H, 50 /8¢ on {V ¢| is shown in Fig. 16. For
small phase gradients, 8H,u. /8¢ is linear in |Vq5|, as discussed by
Fukuyama. For large phase gradients, the CDW amplitude collapses; the CDW
phase becomes indeterminate; and therefore the restoring force &H,qu, /60
must vanish. The effective restoring force attains a maximum value at some
critical phase gradient X,. For phase gradients larger than X, the phase
elasticity begins to decrease and the restoring force enters an unstable regime.
In this regime, amplitude collapse occurs because of positive feedback between

increasing polarization and decreasing elasticity.

When amplitude coilapée is completlé, the CDW phase slips by = {or a
multiple, depending on boundary conditions); the gradient |V ¢ ] decreases; and
the amplitude reforms. If polarization has build up over a long distance L, then
the reduced gradient after collapse is (X,,—27 /L), where X,; is the gradient at
which the CDW amplitude vanishes. When 2r/L<(X,,~X,), the CDW
elasticity remains unstable after the amplitude reforms, and collapse reoccurs

until the forces which produce polarization are reduced. In essence, the
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Fig. 3-16) CDW phase elasticity as a function of CDW phase polarization (see
text).
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polarization (X,,—X,) defines a length scale for the stability of the phase mode.
Polarization of a CDW over distances longer than 27 /(X,,~X,) can lead to an

extremely nonlinear response, e.g. abrupt depinning. The critical length for

nonlinear effects may be estimated as follows. The energy density -;—K”X,i is at

least as large as the CDW condensation energy n(0)A 7, where n(0) is the Fermi
level density of states and A, is the equilibrium value of the CDW gap. If X is
defined to be the fractional polarization (X,,—X.)/X,,, then the eriticai

polarization length scale is

Lo 2 €3) /R7T0E T (6)

where € is the CDW amplitude coherence length and K/2n(0)A2Ze% = =° /8,
The fraction X is about 0.4 in Ginzburg-Landau theories, so the length L¢ is

about 15, In NbSez, this length is a few hundred angstroms.
2. Suntching and velocity discontinuities

This thesis proposes that switching results from the combined effect of
elastic instability and phase-slip at strong pinning centers; i.e. at crystal defects
that strongly pin the CDW phase. Later, the nature of the strong pinning
centers implied by experiments will be considered in detail, but for now a strong
pinning center is simply defined as a defect whose pinning strength exceeds the
condensation energy of ’the CDW state.”®® Depinning from a strong pinning

center therefore occurs only when the CDW amplitude collapses.

In order to make a connection with the results of Fig. 16, consider a highly

simplified case in which a CDW is pinned by a concentration n, of isolated
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strong pinning centers in an otherwise perfect crystal at zero temperature.
When an electric field is applied, sergments of the CDW that lay between
pinning centers are restrained from sliding only by the elasticity of the CDW
phase. As the strength of the electric field increases, these segments become
increasingly polarized. Eventually, the increasing polarization shifts the CDW
elasticity from the stable to the unstable region of Fig. 16. Phase slippage then
occurs at the strong pinning centers and the CDW begins to slide. If the

~1/3 of pinning sites is large enough, then the CDW

spacing L= (n’n,)
polarization is not significantly relieved by the phase-slip process.
Consequently, the CDW elasticity remains in the unstable regime of Fig. {15)
and the CDW velocity is determined only by the applied electric field. The J-E
curve is therefore linear past threshold and the CDW jumps immediately into
the high-field conductivity state. This produces a sharp switch at threshold and
a flat dV/dl eurve past threshold. The J-E curve is also hysteretic, because the
ele‘ctric field must be reduced below a smaller threshold E'p= Ep{L,/L)? in
order for the CDW elasticity to become stable again. Thus the instability of the

CDW phase under large amounts of polarization provides a natural mechanism

for abrupt depinning and hysteresis.

Besides abrupt depinning and hysteresis, phase slippage can also produce
velocity discontinuities under certain conditions. It is known experimentally
that not all strong pinning centers produce velocity discontinuities, since
temperature gradient experiments demonstrate the existence of phase-slip
centers within current domains. It is also expected theoretically that not all

phase-slip centers, e.g. isolated strong impurities, will be strong enough to break
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the velocity coherence of a CDW. The problem of velocity discontinuities has
been considAered in some detail by Gorkov, and independently by Ong and
Maki.3! For a crystal of sufficient width, the most efficient means of creating a
CDW velocity discontinuity is via phase vortices.® Around a phase vortex, the
CDW phase is described by ¢ = arctan(y/nz), where the z-axis is chosen to be
parallel to the vortex core. The energy density epppsx necessary to create a
phase vortex is quite large compared to the energy density sufficient to depin a

CDW. For strong impurities, this ratio is

eBrEAK/€DEPIN ~ (Lo /E{1 + a In(L, /€)} (3.8)

where the first term within the brackets is due to the vortex core and the
second term to the elastic energy of the CDW phase. The constant
o= K/n(0)A2¢" is of order unity, and for strong impurities the FLR length L,
is just the mean distance between impurities. For threshold fields less than
1V/em, the ratio L,/€ is greater than 8 (assuming A, = 35 meV and
= 20&40). Therefore the energy required to create a vortex is an order of
magnitude larger than the energy required to depin a CDW. This implies that a
random distribution of strong impurities will not lead to the velocity
-discontinuities that are associated with switching in NbSes;. A similar

conclusion holds for weak impurities.

A plausible suggestion is that the strong-pinning and phase-slip centers
associated with velocity discontinuities arise from “ultrastrong’ pinning sites.
Essentially, ultrastrong pinning centers are large-scale versions of single
impurities. Ultrastrong pinning centers, for example, might arise from

abnormally high local concentrations of strong impurities, or other crystal
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defects such as dislocation lines or phase inclusions (in the case of Fey, NbSe;).
Because of their larger size, however, ultrastrong pinning centers tend to form

vortices and hence velocity discontinuities.

The pinning effect of an ultrastrong pinning site depends on its size and, to
a more limited degree, on its shape. When a center’s cross-section is one-
dimensional, amplitude collapse occurs over the entire center. The pinning

energy of the center is
E(5) ~ n n(0)A5€% (3.7)

where ¢ is the effective center diameter. In contrast, if a center’s cross-section is
two-dimensional, then amplitude collapse over the entire center is energetically
unfavorable. Instead, phase-slippage occurs by vortex rings that form around
an effective circumference of the center. The pinning energy of the center

would be roughly

E(¢) ~ 1 n(0)A262¢{1 + a In(¢/n€)} (3.8)

where ¢ now represents the effective circumference. For any shape center, the

local energy density necessary for phase-slippage is about

e(5) ~ n E(Q)/s . (3.9)

Whenever the characteristic size of an ultrastrong pinning center becomes
comparable to the transverse dimensions of a crystal, the center is likely to

cause a discontinuity in CDW current.

Large phase polarization, and thus switching, would be produced by a

distribution of ultrastrong pinning centers whose concentration is sparse on the
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length scale of [K/2¢(¢)]® where ¢ is the effective center size. When a crystal
cc.mta,ins cex.:it_ers with a variety of sizes, the spatial arrangement of the centers
as well as tﬁeir sizes is importax_nt. With an absolutely uniform distribution of
centers, two  additional length scales are set by those centers whose combined

size ¢y and density n{¢pys) have the largest pinning effect on the CDW:
n(su)E(su) = max n(5)E(s) . (3.10)

The phase-slip length scale Lpg is the mean distance between defects of size ¢y,
The switching length scale Lsy is the critical pinning center spacing that
determines whether depinning causes the CDW phase elasticity to enter the

unstable regime of Fig. (15):

Lsw 2 /K/2e(Su) - (3.11)

In the absence of additional impurities, a CDW depins when the electric field
energy density exceeds n(¢u)E(¢h). Switching occurs if the phase-slip length

scale is longer than the switching length scale.

Real switching crystals have pinning inhomogeneities that presumably
correspond to a random distribution of centers, not a uniform distribution.
Randomness complicates the definition of phase-slip and switching length scales.
For a given electric field, whether phase-slippage occurs at centers of a
particular size ¢ depends not only on the product n(¢}E(¢), but also on the size
and density of neighboring centers. The dominant defect size ¢)y can be lowered
by avalanche effects. If ¢p is the dominant size in a uniform distribution, then
in a random distribution some centers of size ¢y will occur in portions of a

erystal that have less pinning than the average. The CDW at those centers will



depin at fleld energles less than n(¢y)E(cy). The premature depinning will

increase the strain on neighboring sections that have .not yet depinned, and the

additional strain can trigger a depinning wave within the crystal. Avalanche

events of this nature can explain the sublevels within hysteresis loops,!* the
j

breakup of switches under teﬁlperature gradients, and the delay times observed

in pulsed experiments.!® Avalanche events also provide an important connection

with the concept of a depinning wave in the Joos-Murray model.
3. Regimes of switching

For clarity, our discussion has thus far neglected the complications caused
by finite temperature effects and the presence of weak impurities. In this
section, we consider these effects, which play an important role in determining

whether switching is observed in real crystals.
a. Impurity concentrations

When only weak impurities are present within a CDW conductor, their
concentration determines a FLR phase-coherence length Lw.>~® When both
weak and strong pinning centers are present, the ratio of the weak impurity
FLR length Ly to the phase-slip length Lpg determines the qualitative nature of
CDW dynamics. For Lpg >> Ly, CDW sliding is dominated by phase-
depinning, but for Lpg << Lw, CDW dynamics are governed by phase-slip. For
Lgw << Lps << Lw, switching can occur. The existence of these regimes has
at least two experimental implications. First, doping a crystal with strong
impurities will cause switching only if the weak impurity concentration is

sufficiently low. If the weak impurity concentration is too large, then Ly is
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comparable to Lgw and consequently the condition for switching can not be
satisfied. Second, the current contacts to a crystal, even though they may
strongly pin a CDW, in general will not cause switching. In a crystal with only
weak impurities, the phase-slip length is simply the distance between contacts.
Since typical crystal lengths are much longer than the FLR length, contacts
cannot cause switching. Even if a sample’s length were reduced below the FLR
length, switching still might not occur, unless the weak impurity concentration
were sufficiently low so that Lgw << Lyw. This might explain why simply
reducing the length of nonswitching samples has not been observed to induce

switching.
b. Finite temperature effects

Nonzero temperatures cause the phase-slip and switching lengths to change

33

from their T = O values. In superfluids®® and superconductors,®® phase-

13¢ has recently proposed that phase slippage

slippage is thermally activated. Gil
at the contacts of CDW conductors is also thermally activated. The activation
energy in Gill’'s work would correspond to .the defect energy E{¢) described in
this paper. The result of thermal activation would be to reduce the pinning
effect of small centers compared to the effect of large centers. For uniform

distributions, this would make both the dominant center size ¢y and the

switching threshold field strong functions of temperature.

The fact that switching thresholds are independent of temperature is
evidence that strong pinning centers are distributed nonuniformly. If depinning
occurs by phase-slip cascades, then switching critical fields should be strongly

temperature dependent only until the dominant centers are “frozen in”’; after
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that, threshold fields should be determined by the spatial arrangement of the
dominant centers. In NbSes, thermal activation is consistent with the rapid
increase in threshold field that is associated with the onset of switching. Fig. 17
shows the threshold field as a function of temperature for a switching NbSes
crystal. Switching occurs below 40 K, where the threshold field is relatively

independent of temperature. Above 40 K, the threshold field has been fit to

Ep(T) = E, exp{E(¢)/ksT} (3.12)

where E, = 7.0 pV/cm, E(¢) = 41 meV, and kg is Boltzman’s constant. The
value of E(¢) is relatively insensitive to the form assumed for Ep(T); a fit to
Er(T) = (kgT/L'} exp{E(5)/kgT} yields E(g) = 50 meV. Assuming that Eq. (7)
applies, 40 meV corresponds to ¢ = 0.1 pym. Below 40 K, the sharp change in

slope indicates that thermal activation is no longer important.

Therial activation during the onset of switching also agrees qualitatively
with the consistent decrease in switching onset temperatures that coincides with
inereasing crystal quality. In general, one would expect that smaller ultrastrong
pinning centers would be necessary to induce switching in higher quality
crystals, since the effect of weak impurities is smaller in these crystals,
Therefore, higher quality crystals should have lower switching onset
temperatures. This correlation is indeed observed in our experiments and in the
experiments of other groups. Switching-like behavior occurs at very low
temperatures in extremely high quality NbSez crystals. Coleman® has reported
striking zero-differential resistance anomalies s;_a.t 1.1 K in NbSeq ’crystals that
have threshold fields of ~1mV/em at 48 K. Switching occurs.at the next

lowest temperatures {~30 K) in the moderate quality NbSez used in the present
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Fig. 3-17) Fit of the onset of switching in NbSejz to an activated temperature
behavior. The solid line is Eq. 3.12, with parameters given in the
text.
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experiments {Er ~ 30 mV/em at 48 K). Switching occurs at the highest
temperatures {~50 K} in Fey;NbSe;, which even in nonswitching crystals has

threshold fields of at least 100 mV/cm at 48 K.
c. Lattice defects

The occurrence of switching in nominally pure NbSeg, as well as Fe,NbSeg,
suggests that strong pinning centers may result not only from strong impurities,
but also lattice defects. Gross lattice defects — such as grain boundaries or
twinning — are probably unimportant. Grain boundaries and twinning occur
infrequently in NbSe; crystals,®® at levels of less than once in 100 pm?; such
levels are too low to explain the nonuniform pinning that is observed in
temperature gradient experiments. On the other hand, smaller defects — such
as dislocation lines — could strongly pin a CDW at densities low enough to give
large variations in pinning. For example, a dislocation line density of 4 ym™3
with an average line length of 0.25 pm (corresponding to a dislocation density of
1 pm~2%) would lead to +50% pinning energy fluctuations between 1 gm?®
segments in NbSe;. Roughly order-of-magnitude pinning fluctuations would be
relatively common, and +50% variations would persist over distances of 100 um

(assuming a 1 um? crystal cross-section).

Little has been published about defect densities in NbSez. Satellite dark
field micrographs of some NbSes crystals show lattice dislocation densities of

roughly 1 gm™?

, while other crystals are apparently defect free.3® The
conventional method of sample growth of NbSe; and Fe,INbSez should lead to

vacancy densities of about 10 ppm, and vacancies are known to precipitate

dislocations. The observed ‘“‘aging’’ effect of switching crystals may be due to
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physical or chemical changes around dislocation sites. Etches of H,S0y4
preferentiail:;r attack dislocation sites in niobium, and they may preferentially
attack dislocations in NbSez. This might explain why H,50,; would restore
switching in aged batches, but not induce switching in originally nonswitching
crystals, as observed. It would be highly desirable to examine the strong

pinning centers in switching crystals by TEM.

IV, Summary

This chapter has reported th: dc characteristics of switching crystals of
NbSe;. Most of the detailed experimental results have been summarized at the
beginning of Sec. III. Besides the abrupt depinning and hysteresis observed in

de I-V curves, the characteristics of switching crystals include:

1) Discontinuities in CDW current, which imply the existence of phase-

slip centers.

2)  Sublevels within hysteresis loops, which suggest avalanche-type

depinning among phase-slip centers; and

3)  Changes in subthreshold resistivity, which indicate large polarization

of the CDW phase before the onset of abrupt depinning.
The origin of these three effects — phase slippage, avalanche depinning, and
CDW polarization — is explained by strong, rnon-uniform pinning of a CDW
within a switching crystal. The existence of strong, non-uniform pinning is
demonstrated in independent experiments, such as cutting and cleaving NbSes

erystals.
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In order.to explain the origin of abrupt depinning and hysteresis, the
analysis section of this chapter examined a variety of models. The experimental
results are most consistent with a phase-slip interpretation of switching that is
based on fluctuations of the CDW amplitude. In essence, the pinning of a CDW
depends on the elasticity of the CDW phase, and amplitude fluctuations can
cause the elasticity to become unstable. If the elasticity becomes unstable, then
abrupt depinning occurs because the forces which impede CDW motion

effectively collapse.

Finally, a distinction is drawn between abrupt depinning, which can occur in
the presence of isolated strong impurities, and current discontinuities, which
require the presence of much larger pinning centers. These so-called ultrastrong
pinning centers are presumed to be phase inclusions {in the case of iron-doped
NbSe3) or lattice defects (in the case of undoped NbSez). The characteristic

size of an ultrastrong pinning center in NbSejz is estimated to be about 0.1 um.
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CHAPTER 4: AC CHARACTERISTICS

The dynamics of switeching CDWs are explored further in this chapter, by
studying the response of both pinned and sliding CDWs to small ac eiectric
fields. Results show that when switching CDWs are pinned, their dynamics are
equivalent to the dynamics of nonswitching CDWs; but when switching CDW
are depinned, their dynamics are quite different. Analysis of the results
suggests that the dichotomy between pinned and sliding CDW dynamies is
consistent with a phase-slip interpretation of switching. Thus the results and
analysis emphasize that switching represents a unique regime of CDW motion,
in which amplitude dynamics are as important as phase dynamics to a

deseription of CDW sliding.
I Methods and Results

Measurements of ac conductivity were performed on single crystals of NbSeg
or iron-doped NbSes.2 Chapter 3 deseribes the preparation and characteristics
of the erystals used iﬁ these experiments. Only results on NbSez are reported
here, because res‘ults on iron-doped NbSez are essentially identical. The ac
conduetivity of a sample was measured in either the presence or absence of a dc

bias field. A voltage of the form
V= Vg + Vo cos wt (4.1)

was applied to the sample and the current response I, of the sample was
detected synchronously using a phase-sensitive amplifier. At low frequencies
10Hz < w/27x < 5MHz, an HP 4192 impedance analyzer was used to make

two- and four-probe measurements of the sample response.r At higher
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frequencies, 4 MHz < w /27 < 500 MHz, an HP 8754A network analyzer was
used to m;ke two-probe measurements. The ac test signal was 1.0 or
2.5 mV rms, for high and low frequencies, respectively; whereas threshold
voltages for the onset of CDW sliding were 3 to 30 mV in a typical sample, at
high and low temperatures, respectively. The de bias voltage varied between

zero and several times the sample threshold voltage.

Measurements were made at temperatures below 59 K, in the lower CDW
state of NbSez. In principle, the response of a crystal consists of contributions
from’the upper (T, = 144 K) and lower CDW states of NbSes, as well as from
uncondensed electrons. However, at the frequencies and voltages applied in
these experiments, the upper CDW state of NbSes does not contribute to the
total electronic current. Furthermore, the conductivity due to uncondensed
electrons {measured at temperatures above 144 K) has no frequency dispersion.

Therefore the ac conductivity of the lower CDW state is defined as

TJCDW = Iac/va.c - T4, (4'2)

where o, is the low-field de conductivity of the crystal (due to uncondensed

electrons).

The experimental set-up permitted measurements of de I-V curves and
narrowband noise spectra, in addition to measurements of ac conductivity. In
order to make a connection with the results of Chapter 3, Figure 1 shows the

(current-controlled) I-V characteristics of a switching crystal at high and low
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Fig.4-1) Current-controlled I-V curves for a switching crystal of NbSez, at
temperatures above (39 K) and below (24 K} the onset of switching.
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temperatures. At the higher temperature, 39 K, the response of the crystal is
indistinguishable from the response of a nonswitching erystal. The I-V curve
becomes smoothly nonlinear for bias currents exceeding 24 uA {(corresponding to
a threshold ﬁeld of Ep = 41 mV/em), and narrowband noise spectra show that
the departure from ohmicity is due to uniform depinning of the CDW
throughout the‘ crystal. But at the lower temperature, 24 K, the [-V curve is
broken at two eritical biases, Ip; = 206 pA and Iy = 242 pA (corresponding to
critical fields of E¢; = 328 mV/em and Egp = 348 mV/cm, respectively). The
first break is produced by a region of steep negative differential resistance,3
whereas the second break is marked by a sharp, hysteretic switch. The
existence of two critical flelds indicates that the CDW does not depin uniformly.
Instead, the CDW forms two current domains and each domain- depins
separately, Narrowband noise spectra confirmed the presence of two
incommensurable noise fundamentals, and hence the existence of two
independent current (iomains. The drastic change in the dc characteristics of
this crystal between high and low temperatures is typical for switching crystals,

but does not occur in nonswitching erystals.

In contrast to de¢ conductivity, the ac conductivity of a switching crystal
does not change qualitatively between high and low temperature, as long as the
CDW remains pinned. Figure 2 shows the pinned, Vg, = 0 conductivity of the
same crystal at 47 and 24 K. At 47 K, the in-phase component of conductivity
(Re ocpw, open circles) is zero at low frequencies and increases monotonically

with increasing frequency. The out-of-phase component (Im ocpw, open
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triangles) is small but nonzero at low frequencies; increases until moderately
high frequenéies; and then decreases for frequencies past 200 MHz. A crossover
frequency,’ we /2 = 60 MHz, defines the frequency above which Re ocpw
exceeds Im oepw. The general shape of oepw is described by the response of an
overdamped harmonic oscillator. In particular, Im ocpw remains positive even

at frequencies exceeding the crossover frequency by an order of magnitude.

Some relatively minor changes are apparent in the conductivity at 24 K
(filled symbols). The crossover frequency has increased from 60 to 500 MHz,
and the conductivity at the crossover frequency has increased from 2.25 to
5.25 mS. Also, the shape of ocpw has changed slightly. The slopes of Re and
Im ocpw are flatter at low frequency and steeper near the crossover frequency.
However, similar changes in the shape of ogpw(w), and in the magnitudes of w,
and ocpw(w,), are observed in nonswitching CDWs.> The pinned conductivities
of switching and nonswitching CDWs are generally indi.stinguishable, whether at

high or low temperatures.

Many of the similarities in the ac response of switching and nonswitching
CDWs disappear when the CDWSs begin to slide. Figure 3 shows the low-
temperature conductivity of the crystal in Figs. 1 and 2 at three dc biases: a
subthreshold bias, 186 uA, just below Igy; and two sliding biases, 210 gA and
243 uA, just above I and Iy resp_ectively. The subthreshold conductivity is
identical to the conductivity in Fig. 2, but the sliding responses deviate

substantially.
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Fig. 4-3.a) The in-phase component of ac conductivity, at 24 K, for the
erystal from Figure 4-1. The data are taken at three dc biases:
just below the first break in the I-V curve of Fig. 4-1, just above
the first break, and just above the second break. The lines are
guides for the eye.
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At high frequencies, differences between the pinned and sliding CDW
responses are the least pronounced. In Fig. 3, the sliding response of the CDW
asymptotically approaches the pinned response at frequencies above 200 MHz.
The real component of conductivity approaches the pinned data from above,
while the imaginary component approaches from below. As the de¢ bias
increases, from 210 to 243 uA, convergence recedes to higher frequencies.
Similar behavior is observed in the high frequency behavior of nonswitching -
CDWs.% As discussed in Sec. II, the high-frequency convergence of pinned and
sliding responses, both in switching and nonswitching CDWs, can be attributed

to the effect of internal deformations of the CDW phase.!®

At intermediate frequencies, the sliding conductivities in Fig. 3 are marked
by a series of sharp interference features that occur when the ac frequency
matches a narrowband noise fundamental or one of its leading harmonics. With
a current bias of 210 pA, interference effects oceur at 27, 54, and 81 MHz due to
the narrowband noise associated with the first current domain that depins at
206 pA. With a current bias of 243 uA, the interference features that_ are
prominent at 46, 92, and 138 MHz are again due to the first domain. In
addivion, a small feature occurs at 26 MHz due to the second current domain.
(The narrowband noise signal of the second current domain was much smaller
than the signal of the first, which presumably explains why the interference
effect produced by the second domain is so weak.) Interference effects also
occur in nonswitching crystals,” although only one series of peaks is usually

observed.
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Differences between the pinned and sliding CDW responses are largest, both
quantitativel‘y‘ and qualitatively, at frequencies below the narrowband noise
frequency. For example, Re ocpw in the pinned data is less than 0.03 o4
between 4 and 27 MHz, while Re ocpw in the 210 yA data begins at 0.60 oy and
then decreases by over 60 percent. Similarly, Im ocpw in the pined data begins
at zero and increases to 0.10 oy, while Im ocpw in the sliding data begins at
—0.15 oy and decreases to —0.20 g before slightly increasing again. At least
for Re ocpw, the difference between pinned and sliding conductivities at the
lowest frequencies can be explained by the -V curve in Fig.1. The de¢
differential conductance of a CDW is the w = O limit of ac conductivity. In
Fig. 1, the conductance of the CDW at 210 uA is 0.67 og, a value which is close
to the observed value of Re oepw at 4 MHz. But the other aspects of Fig. 3 —
the large dispersion in Re ocpw and the inductive behavior of Im ocpw over a
decade in frequency -— are quite striking and are without parallel in the

conductivity of nonswitching CDWs.

In nonswitching CDWs, the sliding conductivity remains equal to w =0
limit, Re ocpw = dI/dV — 0y and Im ogpw = 0, until just below the
narrowband noise frequency.® Inductive features are sometimes seen in
nonswitching CDWs over narrow frequency ranges where the ac frequency
matches the narrowband noise frequency, but the features in Fig. 3 are much
larger. To underscore the size of inductive features in switching crystals,
Figure 4 shows the conductivity of a second NbSe; crystal, measured at

frequencies from 10 Hz to the narrowband noise frequency of 1 MHz. Both Re
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Fig. 4-4) The low-frequency, complex conductivity of a second switching
erystal of NbSez, taken at a dc bias where the narrowband noise
frequency is about 1 MHz., The lines are guides for the eye.
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and Im ogpw are reduced below their w = 0 limits over very broad frequency
ranges, 3 decades in frequency from 1 kHz to 1 MHz. These large, broad
reductions in Re and Im ocpw are characteristic features in the conductivities

of all the switching crystals that were examined. These features shall be refered

to as inductive anomalies,

The effect of inductive anomalies can be displayed in an alternative fashion
by fixing the ac frequency and sweeping the de¢ bias. Figure 5 shows the
conductivity at 4 and 50 MHz for the crystal of Figs. 1-3. Two separate
depinnings of the CDW, one by each current domain, are evident in the data for
Re and Im ocpw. Each depinning causes an abrupt increase in Re ogpw and an
abrupt decrease in Im ocpw. In addition, both Re and Im o¢opw decrease as the
narrowband noise frequency (of the first current domain) approaches the
frequency of the ac signal. This effect is observable only in the 50 MHz data,
since narrowband noise frequencies in this crystal are always well above 4 MHz
because of switching. A striking feature of Fig. 5a is that the 4 MHz data is
larger than the 50 MHz data when the CDW is depinned. The 50 MHz data
exceed the 4 MHz data only when the CDW is pinned or when the current bias
is much greater than 300 pA. In a nonswitching crystal, a conductivity
measured at 50 MHz always exceeds a conductivity measured at 4 MHz, because
the conductivity of a nonswitching CDW is a monotonically increasing function
of ac frequency and dc bias. The inversion of conductivities in a switching
CDW is produced by the unusual dispersion of inductive anomalies, in which

CDW conductivity decreases with increasing frequency.
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A final observation concerns the temperature dependence of inductive
anomalies. Although inductive anomalies have been observed only in crystals
that display switching, inductive anomalies have been observed at temperatures
well above the onset of switching. For example, switching and hysteresis in one
crystal were observed starting at temperatures below 30 K, but inductive
anomalies were observed at temperatures as high as 42 K. Inductive anomalies
are not unusual in this respect. Other phenomena connected with switching,

1

such as a bistable low-field resistance' or a period-doubled response to ac

signals,? 10

also are observed above the onset of switching. In fact, all three
phenomena are closely related by their dependence on a polarized CDW phase,

as shall be explained in the next section.
II. Analysis

CDW dynamics may be analyzed in terms of the classical, rigid-phase model
of Griiner, Zawadowski, and Chaikin.!! The model is relatively simple, possesses
an intuitive physical interpretation, and qualitatively reproduces many aspects
of the ac conduectivity of nonswitching CDWs. These advantages make the

rigid-phase model a useful starting point for a discussion of the ac conductivity

of switching CDWs.

The rigid-phase model treats the CDW amplitude as fixed and the CDW

phase as uniform throughout a CDW conductor. The equation of motion is

6 1 dé | oan_ e
=t T + wiF(g) = m*EQ, (4.3)

where ¢ is the CDW phase; m” is the effective CDW mass; @ is the CDW

wavevector; and 7 is a phenomenoclogical time-constant describing dissipation.
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The frequency wy parametrizes the strength of CDW pinning, and the function
F(¢) is a dimensionless pinning force. The pinning force is a periodic function
of the CDW phase, and is usually approximated by its first Fourier component,

F(¢) = sing. Equation 3 may be rewritten in a dimensionless form,
86+ ¢ + F(¢) = eq. + ega cos{lt, (4.4)

where superscript dots represent differentiation with respect to time, which is

measured in units of (wg7)™!

. The frequency of the ac field is normalized to the
corresponding unit of frequency, Q = w/{wé7), and the dec and ac field strengths
are normalized to the threshold field: eq, = F4./E7 and e,, = E,, /Ep, where

Er=m wi/eQ.

The remaining coefficient in Eq. 4 is the inertial parameter, § = (wr)?. The
inertiair parameter is basically the time-constant with which the CDW velocity
approaches equilibrium. When § is zero or small, the CDW velocity is a
deterministic function of the electric field and CDW phase, ¢ = e — F(¢). In
this case, CDW dynamics are referred to as overdamped. When 3 is large, the
CDW velocity lags behind the difference of the field and pinning forces, and
CDW dynamics are called underdamped. In nonswitching crystals of NbSeg, the
i_nertial parameter is negligibly small and CDW dynamics are overdamped.!?
Typical numbers are 7= 2.35(18'12 sec and wp = 16 GHz, which yield an
inertial parameter of § = 1.4X1073%. But in switching crystals, the magnitude
{or even the relevance) of the inertial term is ambiguous. On one hand, Eq. 4
predicts switching and hysteresis!®!® when @ > 1, and analysis of the chaotic
response in switching crystals leads to values of # that are as large as 2.3

(Ref. 10). On the other hand, large values of 3 are grossly inconsistent with



189

estimates of wy and r obtained from de I-V characteristics.? In the analysis that
follows, the ac conductivity of switching CDWs shall be compared to the ac
conductivity of the under- and over-damped rigid-phase equations. Comparison
shall show that switching CDWs appear overdamped when pinned, but
underdamped when sliding. It is physically implausible, however, to interpret
the results in terms of phase inertia. Instead, the analysis shall argue that

phase slippage can mimic the effect of a motion-dependent inertia.
A. Pinned response

For ac signals of small amplitude, the pinned conductivity of Eq. 4 is
equivalent to the response of a harmonic oscillator with a linear restoring force.
When the applied bias is zero, the in-phase and out-of-phase components of

conductivity are given respectively by

nelr 0?
Re U(ﬂ) = m* (1—,602)2 + 02

ne’r 01— 580%)
o) = 2 s

(4.5)

Figure 6 shows these components as functions of the ac frequency. The curves
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ig. 4-6)  The zero-bias ac conductivity of the classical, rigid-phase model of

CDW dynamics, Eq. 4.5.
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in Fig. 6 define three characteristic frequencies:

Q.= (V1+48 #1)/28 . (4.8)

The quantity g is the normalized pinning frequency wg/(wgr). The quantities
{1, are the frequencies at which Im ¢ = + Re 6. For overdamped CDWs, (2.
reduces to (w%f), which is called the crossover freduency, and 1, reduces to the

damping frequency 71,

The frequencies {}_ and {3, demarcate regimes of
CDW response. For frequencies between 0 and Q., CDW conductivity is

mainly capacitive; between (1. and €., mainly dissipative; and between {1,

and oo, mainly inductive.

As shown in Fig. 6, the inertial parameter may be determined directly from a
measurement of ac conductivity, as long as measurement frequencies extend into
the indu-ctive regime of CDW conductivity. Measurements in the p.resent
experiments, such as in Fig. 2, were restricted to the capacitive regime of CDW
response, However, the inertial parameter still may be determined, or at least
boun'ded, by its effect on the shape of CDW conductivity. As the inertial
parameter increasés, the CDW conductivity flattens out at low frequencies and
rises more steeply at frequencies approaching the crossover frequency (1. This
effect is shown in Fig. 7, where Egs. 5 have been plotted for two values of the
inertial parameter. The other parameters in Eqgs. 5 have been adjusted so that
0. and o(fl_) respectively match the crossover frequency and conductivity of

the 24 K data in Fig. 2, which are superimposed on the theoretical curves,



o(fl)/o(f)
(@]
o
;

LOG (/8 )

Fig. 4-7)  The effect of the inertial parameter on the low-frequency, pinned
conductivity of the rigid-phase model, for two values of the inertial
parameter: 3 = 0 and # = 0.2. The other parameters in the rigid-
phase model are chosen so that the cross-over frequency (_ is
500 MHz and the conductivity at the cross-over frequency is
o(Q.) = 5.25 mS. The theoretical curves are superimposed on the
24 K data from Figure 4-2.



193

Although neither the # = 0 nor the # = 0.2 curves fit the data in detail, the
data are consistent with an over damped inertial parameter someﬁhere in the
range 0 < # < 0.2. Furthermore, as remarked earlier, the data are essentially
identical to data measured on nonswitching crystals in this temperature range.

Therefore switching CDWSs, when pinned, are dynamically overdamped.
B. Sliding response

When the CDW slides in Eq. 4, the de-induced narrowband noise frequency
(1 replaces the frequencies {1, as a characteristic frequency of CDW dynamics.
In the context of Eq. 4, the narrowband noise frequency is usually referred to as
the washboard frequency. It is equal to the reciprocal of the time-averaged
phase velocity in Eq. 4, (Iy = <<£5.>""1. For ac frequencies below or far above
the washboard frequency, the ac conductivity of a sliding CDW may be
caleculated perturbatively. At frequencies below the washboard frequency, the
main effect of an ac test signal is to produce a slow modulation of the de bias.
Therefore the ac conductivity is closely related to the dc differential

conductivity of the CDW:

: .
Re o()) = 257 £522 (1 — (a0}

) .
Im o) = — 25 d§f> (50) . (4.7)

The prefactor (ne®r/m Y d <q3)>/de is the slope of the (voltage-controlled) IV
curve. As a function of frequency, the real component of conductivity starts at
dI/dV and decreases quadratically with increasing frequency. The imaginary
component starts at zero and decreases linearly. The rate of decrease for both

Re and Im o is set by the inertial parameter. For overdamped CDWs, in which
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£ is small, reductions in Re and Im o are negligib!e.l‘f For underdamped CDWs,
in which {1 can approach 1, reductions in Re and Im o are appreciable and in

fact resemble the inductive anomalies that characterize the sliding conductivity

of switching CDWs.

At ac frequencies above the washboard frequency and its leading harmonics,
the role of the ac and de¢ signals in Eq. 4 is reversed. The dec signal now
produces a slow variation of the potential tested by the ac signal, and therefore
the CDW conductivity is given by

ner 10}

m’ ==

For overdamped CDWs the limit 1 << 0 << 87! is relevant. To order (1~ 2,

the CDW conduetivity reduces to

2
Re o{Q) = 25111 — -;—n-g}
m

Im o(f)) = 0. (4.8)

The sliding conductivity of an overdamped CDW is essentially constant and in-
phase with the test signal at high frequencies. For underdamped CDWs the

limit A0} >> 1 is relevant, and the CDW conductivity reduces to

Re o(?) = ”ﬂii’(m)f?
Im o(Q) = — ”:;’(m)-l . (4.9)

The sliding conductivity of an underdamped CDW quickly approaches zero at

high frequencies.

At ac frequencies that are comparable to the washboard frequency or its
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harmonics, an ac signal interacts nonlinearly with the sliding motion of a CDW,
In addition, ac-induced oscillations of the CDW are difficult to separate from
the de-induced narrowband noise. Rather than calculate ac conductivities in
this frequency range, an analog computer {Philipp-Gillette JA-100) was used
instead to simulate Eq. 4 and to measure conductivities’ directly. The simulated
measurements are identical to the experimental measurements in Sec. 1. A
small ac signal is applied to the analog and the analog response is measured
synchronously with a phase-sensitive detector. As with the experimental
measurements, the simulated measurements do not distinguish between ac and
de-induced oscillations of the CDW. The measurement procedure is equivalent

to defining conductivity in Eq. 4 as

m €ac

s 4
where ¢{{1) is the Fourier component of the CDW phase velocity at the applied

frequency.

Figures 8a and 8b show the results of analog simulations appropriate to
overdamped and underdamped d&nafnics, respectively. In Fig. 8a, the ﬁtting
parameters of Eq. 4 were chosen to be (w§r)/27 = 500 MHz and 8 = 0.005,
values which are consistent with the pinned ac conductivity in Fig. 7. In
Fig. 8b, the fitting parameters were chosen to be (wgr)/27r= 22 MHz and
B = 2.1, values which are suggested by Shapiro step and hysteresis experiments
on NbSez (Ref. 10). In both figures, the de bias was adjusted so that the

narrowband noise frequency was comparable to the noise frequencies in Fig. 3.
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The results in Fig. 8 agree with the results of Eqs. 7 - 9. At low frequencies,
Re o((1) decreases quadratically from dI/dV and Im o{Q) decreases linearly from
zero. The rate of decrease is set by J, so reductions in Re and Im o are
negligible in Fig. 8a, where 4 is small, and appreciable in Fig. 8b, where 8 is
large. (In Fig. 8a, the increase in Re o just before the washboard frequency is
due to mode-locking between the ac and washboard frequencies.!*) At high
frequencies, the behavior of o({1) depends on whether the CDW is under- or
over-damped. For the overdamped calculation, Re ¢ attains the high-fieid,
high-frequency limit of (ne?r/m "), while Im o is identically zero. For the
underdamped calculation, Re o rolls off as ™2, while Im o decreases as —{1™ 1.
At intermediate frequencies, both the under- and over-damped conductivities
display a series of large interference peaks where the test frequency matches the

washboard frequency or its harmonics.

The sliding ac conductivity of the rigid-phase model — whether
underdamped or overdamped - obviously does not agree with the experimental
data on switching CDWs. The model also does not agree with experimental

data on nonswitching CDWs.? Three discrepancies are notable:

1. In the rigid-phase model, Re ¢ is larger at low frequencies than at high
frequencies. In experiment, just the opposite behavior is observed: Re o is

smaller at low frequ;ncies than at high frequencies.

2. At high frequencies in the rigid-phase model, Im o is zero, but in

experiment, Im o approaches its pinned value.

3. Interference effects are much larger in the rigid-phase model than they are
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in experiment.

These discrepancies, however, can be traced to the model’s assumption of a
rigid CDW phase. Better resuits are obtained if the CDW phase is treated as
deformable.’® Fukuyama and Lee showed that a deformable CDW breaks up
into a series of phase-coherent domains.!® Within a domain, the CDW phase is
fairly rigid. The dynamics of an individual domain may be modeled by Eq. 4 if

an elastic coupling of the CDW phase to neighboring domains is included.'”

Application of an electric field to a deformable CDW not only produces
sliding motion of the CDW, but also internal motion of the CDW domains with
respect to one another. The internal modes of a deformable CDW have three
effects on its dynamics. First, the slope dI/dV of the de IV curve is reduced
below the high-field limit nt:21'/m4t (Ref. 18). Consequently, Re o becomes
smaller at low frequencies than at high frequencies. Second, internal modes
dominate the CDW response at high frequencies.!®> Therefore Im ¢ approaches
its high-frequency, pinned value even when a CDW is sliding. Third, internal
modes reduce the size of the narrowband noise signal.'® This in turn reduces the

interference features in o{Q1)} to a size which is consistent with experiment.

While improving agreement with the low-frequency limit of Re o, the high-
frequency limit of Im o, and the size of interference features, a deformable CDW
phase does not account for the inductive anomalies that are characteristic of
switching CDWs. Discounting the discrepancies caused by the rigid-phase
assumption, Egs. 5 and Fig. 8 show that inductive anomalies are indicative of a
CDW phase velocity that lags behind the api)lied ac signal. (The literature

contains no underdamped, deformable-phase calculations I ac conductivity,



200

therefore the experimental results cannot be compared with theoretical curves.)
However, it is.unlikely that the lag in CDW response is literally caused by phase
inertia, only that the lag can be modeled by inertia. Phase inertia is an
unappealing er;cpianation of the CDW response for several reasons. As Chapter 3
points out, the origin of inertia would be difficult to explain in switching
crystals. Furthermore, phase inertia would have to depend on CDW motion in a
peculiar manner. Because the CDW response is overdamped when pinned but
underdamped when sliding, a hypothetical inertia would have to appear
whenever a CDW started to slide. On the other hand, a velocity-dependent
inertia would be evident in the high-frequency response of a pinned CDW, since
the rms velocity of a CDW increases as the ac frequency increases. Because
there is no evidence for an underdamped pinned mode, a hypothetical' inertia
would have to depend on the sliding motion of a CDW without depending on
the CDW velocity. With such a complicated dependence on CDW motion,
phase inertia does not provide a natural explanation for the underdamped

response of switching CDWs.
C. Phase slippage

This section will argue that phase slippage can explain the ac characteristics
of switching CDWs, ‘To summarize the model presented in Chapter 3, switching
erystals are distinguished from nonswitching crystals by the presence of a small
member of strong {or *ultrastrong’) pinning sites. Strong-pinning sites, which
are present in addition to the weak impurities found in nonswitching crystals,
nucleate the phase-slip centers that enable a switching CDW to slide. Strong-

pinning sites produce large gradients in the CDW phase when an electric field is
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applied to a crystal. Polarization of the CDW phase leads to collapse of the
CDW amplitude as the electric field increases.® When the amplitude collapses,
the phase slips by a factor of 27 to relieve polarization. Then the amplitude
reforms; phase polarization reaccumulates; and the phase-slip cycle repeats as
the CDW amplitude collapses again. Each cycle of the phase-slip process

advances the CDW phase by a factor of 2.

Phase slippage causes switching when the polarization that accumulates at
strong-pinning centers is very large.>!% Large polarization of the CDW phase is
not relieved appreciably by a single phase-slip event, therefore the CDW
amplitude reforms only partially during the phase-slip cycle. The elasticity of
the phase depends on the CDW amplitude, and in turn the pinning of a CDW
depends on phase elasticity. As a result, CDW pinning is restored only partially
during each phase-slip cycle, and the effective collapse in pinning produces
switching. When a CDW is pinned, its amplitude does not fluctuate and phase
elasticity restrains motion of the CDW. When the CDW begins to slide, phase

elasticity is reduced and the CDW velocity jumps from zero to a large value,

The phase-slip model explains the w = 0 limit of ac conductivity, since it
accounts for the shape of the de dI/dV curve in switching crystals.! The phase-
slip model may be extrapolated to finite frequencies by considering separately
the cases of pinned and sliding CDWs. For the case of a pinned CDW, the
interactions that determine the ac response of a switching CDW are the same as
those for a nonswitching CDW. In a nonswitching CDW, phase domains
respond to an ac signal like a collection of overdamped oscillators coupled

together by the elasticity of the CDW phase. In a switching CDW, the only
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difference is the additional presence of strong-pinning sites. But the phase is
essentially fixed at strong-pinning sites, because pinning frequencies there are
comparable to the Peilerls gap frequency. Therefore strong-pinning interactions
do not contribute to the ac response of a CDW for frequencies below the far-
infrared., Furthermore, because of their small number, strong-pinning sites do
not appreciably reduce the oscillator strength of weak impurities. Therefore the
pinned conductivity of switching CDWs should be nearly identical to the

response of nonswitching CDWs.

For the case of a switching CDW, phase slippage produces a delayed motion
of the CDW phase that has no counterpart in nonswitching CDWs. In order for
the phase to advance in a switching CDW, the abrupt phase changes that occur
at phase-slip centers must diffuse from the centers into the bulk of neighboring
phase domains. The time required for a 27 change of phase to diffuse across a
domain is on the order of the phase relaxation time. In the overdamped rigid-
phase model, the relaxation time is given by (wg7)™!, or by 8 = 1 in normalized
units, When an ac signal is applied to a switching crystal, the phase diffusion
time produces a delay between advances of the CDW phase and the maximum
field of the ac cycle. Therefore the‘CDW velocity lags the ac signal with a
time-constant of # ~ 1. The lag has exactly the same effect that a phase inertia
would have, and produces inductive anomalies in the ac response of the crystal.

Because phase slippage occurs only when a CDW slides, inertia-like effects are

present only in the sliding, and not in the pinned, CDW state.

Significantly, switching and hysteresis are not required in the dc

characteristics of a crystal in order for inertial effects to be present in its ac
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response. Switching and hysteresis require special conditions of phase
polarization and impurity concentrations, but inertial effects require only phase
slippage. This explains why inductive anomalies are observed in the ac response

of a crystal at temperatures above the complete onset of switching.

Il Summary

This chapter has presented 'he results of ac conductivity measurements on
switching crystals of NbSez. At temperatures well above the onset of switching,
the ac response of switching and nonswitching crystals are equivalent. At
temperatures below the onset of switching, the ac response of switching and
nonswitching erystals are distinguishable only when the CDWs within the
crystals are sliding. | The sliding ac conductivity in switching crystals is marked
by inductive ancmalies, which are broad dips in Re and Im ocpw(w) at
frequencies below the narrowband noise frequency. The ac response of
switching crystals has been analvzed in terms of the rigid-phase model, which is
the simplest differential equation of CDW transport. Although the data are not
described in detail by this model, the model does show that switching CDWs are
overdamped when pinned and underdamped when sliding. It has been argued
that inertial effects in the sliding state do not arise from an actual phase inertia,
but rather from the same phase-slip mechanism that produces bistability and
hysteresis in de¢ I-V curves. Thus phase slippage provides a unified explanation

for both the ac and de characteristics of switching CDW transport.:
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CHAPTER 5: DYNAMICAL INSTABILITIES

This chapter describes dynamical instabilities associated with the motion of
switching CDWs. The term dynemical instability refers to complex, apparently
random motion by a CDW in response to simple, noise-free combinations of ac
and de electric fields. Two types of instability are observed.! The first type
occurs under the application of a de¢ current when a CDW is biased into a region
of negative differential resistance.? This type of instability is characterized by
an intermittent broadband noise that is much larger than the usual broadband
noise generated by CDW sliding. The second type of instability occurs under
the joint application of large dc and ac voltages, and is characterized by

period-doubling routes to chaos.’

Dynamical instabilities are Important for three reasons. First, they
experimentally distinguish switching from nonswitching crystals. None of the
instabilities described in this chapter are observed in nonswitching crystals.
Second, the instabilities provide insight into different aspects of switching
dynamics.  Negative-differential-resistance instabilities depend on the
interactions between the current domains of a ecrystal, whereas period-doubling
instabilities develop- from order-parameter dynamics within the domains.
Finally, the instabilities provide benchmarks for any proposed model of
switching. For example, very specific criteria must be met in order for period-
doubling to occur, and even if a model does display period-doubling, it must do

so for realistic values of its parameters.
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The approach of this chépter is different from that of preceeding chapters.
Preceeding chapters minimized the complexity of CDW dynamics by either
time-averaging (through dc measurements) or linearizing (through small-signal
measurements) the CDW response. As a result, the chapters extracted
quantitative measures of switching dynamics, such as the dependence of
threshold fields or cross-over frequencies on temperature. In contrast, the
present chapter intentionally maximizes the complexity of CDW dynamiecs.
CDWs are driven into regimes of extremely nonlinear response where their
temporal behavior is characterized by frequency spectra. Consequently, results
are often qualitative, such as broad descriptions of régimes where periqd-
doubling is observed. Results on negative-differential resistance are reported
first, in Sec. I, and results on period-doubling are described next, in Seec. II.

Section III concludes the chapter with a summary.

I Negative Differential Resistance

A. Fzperimental Results

Negative differential resistance occurs in current-driven crystals at
temperatures just above the appearance of complete switching. For example,
negative differential resistance occurs in the temperature range 30-32 K for the
NbSez crystal of Fig. 3.1a, whereas it occurs in the range 46-48 K for the
Fe,NbSez crystal of Fig. 3.1b. Because negative differential resistance in
switching crystals is a single-valued function of current and a double-valued
function of voltage, it is classified as s-type. The terminology refers to the s-like

shape of the -V curve when plotted with voltage along the horizontal axis.
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Figure 1 shows the threshold region of an NbSez crystal at 42 K. The
threshold current Iy for CDW depinning is identified with an arrow. In a
well-defined region somewhat above Iy, an increase in the current bias [ results
in a smooth decrease in the sample voltage V. The differential resistance dV/dl
is negative in this region, except for a small ‘“‘step’, over which the differential
resistance is close to zero. Power spectra of the CDW response were monitored
simultaneously with the de¢ -V characteristics. For currents exceeding Iy,
narrowhband noise and broadband noise are observed in the spectra. Just before
the NDR region, however, a sudden onset of high-level broadband noise occurs,
illustrated in Fig. 2. The power distribution of the noise follows a power law in

frequency, f~ %, with an exponent a = 1.2 between 0.5 and 20 MHz.

The noise in Fig. 2 is notable for two reasons, First, the amplitude of the
noise completely dominates the usual conduction noise associated with CDW
siiding, The power level of the noise at 1 MHz is about four orders of
magnitude larger than the conventional broadband noise and about two orders
of magnitude larger than the narrowband noise that are observed before the
start of the NDR region. Second, the temporal behavior of the noise is
extremely intermittent, as shown in Fig. 3. Plots a) through f) in Fig. 3
represent power spectra between O and 25 kHz taken sequentially one second
apart in real time. All experimental conditions for the plots are identical. The
large, intermittant structure in the plots appears spontaneously with a
frequency between 0.1 and several hertz, and with a duration of about 0.1
seconds. The structure occurs predominately on the dV/dl = 0 step of the

NDR region. Intermittent structure is also observed at frequencies between 0.5
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and 20 MHz, but is not apparent in Fig. 2 because the spectrum was averaged

over a duration of several seconds.

The f~? noise is closely related to the presence of negative differential
resistance. As mentioned above, the onset of the noise corresponds to the
beginning of the NDR region. Although the noise persists even after the NDR
region, the frequency spectrum of the noise becomes distorted and no longer
follows a power law distribution. The temperature dependence of the f7 % noise
also closely parallels the temperature dependence of the NDR region. At
temperatures above 42 K, the NDR region in Fig. 1 becomes progressively
broader, and above 45 K only a slight decrease in the positive differential
resistance is observed for current biases above Ir. At temperatures below 42 K,
the NDR region narrows and moves closer to Ip, and below 35 K, the NDR
region sharpens into an abrupt switch. Correspondingly, the /™% noise is not

observed for temperatures either above 45 K or below 35 K.
B. Analysis

Negative differential resistance is expected in any model of CDW dynamics
in which the CDW conductivity ocpw increases rapidly as the local electric field
exceeds the threshold field for CDW depinning. In this context, ‘“‘rapidly”
means in comparison to the normal conductivity oy of the non-CDW electrons
that also contribute to electrical conductivity. Negative differential resistance
can arise in both switching and nonswitching models of CDW dynamics. For
example, in the overdamped model of Gruner, Zawadowski, and Chaikin, the
voltage-driven I-V curve is nonswitching. However, under current-driven

boundary conditions, Monceau ef al. show that this model produces an s-
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shaped -V (furve.‘* As a second example, the voltage-driven phase-slip model of
Chap. 6 displays switching for appropriate values of certain paraméters. In
terms of switching, a noncritical parameter in the model is k¥, which may assume
the value 0. ‘\Vhen Kk = 0, the procedure of Monceau et al. may be applied to
show that the current-driven I-V curve displays a region of negative differential
resistance. Thgs the presence of negative differential resistance, by itself, can
not differentiate between phase-depinning and phase-slip mechanisms of CDW

motion.

The presence of intermittency and f7° noise is less ambiguous. No phase-
depinning mecﬁanisms exist for intermittency or /™% noise, but a phase-slippage
mechanism, based on the formation of current domains, provides a possible
expianation for both phenomena.!? The model treats a crystal as an array of
current domains. Each domain can be in one of two states: either active, with
CDW phase sliding within the domain, or dormant, with CDW phase pinned.
In the negative differential resistance regime, the crystal contains a mixture of
active and dormant domains. As the current bias through the crystal increases,
more domains become active, until eventually all the domains achieve the active

state at the end of the negative differential resistance region.

An important aséumption of the model is that for a given current bias, there
are a number of nearly equivalent domain configurations that have almost the
same energy. The degeneracy of the configurations makes the system unstable
against external perturbations, such asl temperature or resistance fluctuations,
which force the system to hop among several accessible states. Indeed, a system

with several competing domain configurations may be intrinsically unstable, so
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that it spontaneously fluctuates between accessible states. Whether intrinsic or
extrinsic, configurational hopping can produce both 1/f noise and intermittency.
Ben-Jacob et al.® show that even a system hopping between just two states can
possess power spectra very similar to Figs. 2 and 3. The assumption of nearly
degenerate domains appears well-justified, based on the discussion of avalanche
depinning in Chap. 3. That discussion showed that strong pinning centers
effectively create latent current domains within a crystal. The estimated size of
the domains is small compared to typical crystal sizes, so it is plausible that for
any given current bias there are several equivalent domain configurations. Thus
the domain model appears to offer a viable explanation of intermittency and 1/f

noise.

Period-Doubling Routes to Chaos

A. Experimental Resulis
1. Mode-locking and period-doubling

Period-doubling is a phenomenon that is observed in certain nonlinear
dynamical systems when they are driven by large, periodic forces. In a typical
period-doubling sequence, a driven system is observed to respond periodically to
an external force as long as the force is small. When the amplitude of the force
is small, the period of the system response exactly matches the period of the
force. As the amplitude of the force increases, however, the period of the
system response increases in step-like increments. The response period first
increases to twice the drive period; then to four times the drive period; then to

eight times; and so on. Eventually the response period becomes infinite and the
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system appears to regct stoichastically to the external force. However, the
apparent stoichasticity of the system is not true randomness, since the system
remains governed by a deterministic equation of motion. The response of the
system is known as deterministic chaos, or just simply chaos, to distinguish it

from truly probabilistic dynamics.

Period-doubling routes to chaos are observed in CDW transport, but only in
switching crystals and only under conditions of mode-locking.® Mode-locking
occurs when large ac and de fields are applied to a CDW, and refers to a
synchronization of the CDW narrowband noise frequency to the frequency of
the ac field. In the absence of an ac signal, the frequency of the narrowband
noise is determined by the dc bias., When the dc bias increases, for example,
the noise frequency also increases. But when an ac signal is applied, the
narrowband noise frequency can lock onto the ac frequency or one of its
harmonies over a limited range of de¢ bias. When this happens, the noise

frequency becomes independent of the de bias.

One signature of mode-locking is the apl;earance of Shapiro steps in the -V
characteristic of an NbSez crystal (see Chap. 2). Shapiro steps are illustrated in
Fig. 4, which shows a series of I-V curves measured across a switching crystal.
The curves are parametrized by the amplitude of a 15 MHz radio-frequency (rf)
signal applied to the crystal. When the rf amplitude is zero, a large switch
marks the omnset of (hysteretic) CDW sliding. When the rf amplitude is
increased, sharp steps appear in the I-V curves. The slope of the steps is equal
to the low-field differential resistance of ﬁhe crystal, which indicates that the

time-averaged phase velocity of the CDW is constant on each step.® A
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measurement of the narrowband noise spectrum shows that this is caused by
the noise frequency locking onto the oscillations of the 15 MHz signal. The n
Shapiro step in the I-V curve represents synchronization of the noise frequency

with the n ' harmonic of the rf signal.

Shapiro steps are also observed in the I-V characteristics of nonswitching
erystals, as mentioned in Chap. 2. However, Shapiro steps in a switching

crystal, such as those of Fig. 4, are remarkable in three respects:

1. The steps are very broad. Near threshold, the steps are so wide that they
completely fill up the I-V curve. This indicates that the CDW is always

locked to one or another harmonic of the rf signal.

2. The steps are very sharp. Each step resembles a small switch, because the
CDW makes abrupt transitions from one locked step to the next. This

indicates that unlocked CDW motion is energetically unfavorable.

3. The steps are hysteretic. Once locked to a harmonic of the rf signal, the
CDW tends to remain locked, and this produces hysteresis.

These observations suggest that mode-locking is particularly stable in switching

CDWs. Paradoxically, stability in mode-locking leads to a dynamical instability

in the temporal response of a CDW.

Figure 5 shows one measure of the temporal response. The figure displays
oscilloscope traces of the current through an NbSej crystal plotted against the
rf voltage applied across the crystal. The current has two components, the
CDW current and the normal current (from uncondensed electrons). The

normal current is always in-phase with the rf signal, but the response of the
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Oscilloscope traces of current (measured across a series resistor)
versus rf voltage for a switching NbSe; crystal. (a) Measured near’
the beginning of a Shapiro step: V,;. = — 23.35mV and
V= 3.5mV. (b)Measured near the middle of a Shapiro step:
Vie = — 2330 mV and V,y = 3.2 mV. The rf frequency is 1.2 MHz
for both traces.
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CDW current depends on the de bias. At the beginning of a Shapiro step, CDW
motion is simply periodic, and a trace of total current versus voltage forms a
single, closed loop. Away from the beginning of a Shapiro step, however, CDW
motion is more complex and current-voltage traces form multiple, intersecting
loops. Figure 5a shows a trace at a dc¢ bias slightly beyond the beginning of a
Shapiro step. The CDW current has a periodicity of twice the rf periodicity,
and therefore two intersecting loops appear in the trace. The average CDW
phase velocity remains locked to the rf frequency, but the instantaneous
velocity alternates between two distinct states in order to maintain that
average. Closer to the middle of a Shapiro step, CDW behavior is more
complex, as shown in Fig. 5b. A broad smear of intersecting loops is present,
indicating that the instantaneous velocity jumps between a large or infinite
number of states in order for the average velocity to remain mode-locked.

Figure 6a shows a second, more quantitative measure of the temporal
response.’ The figure displays the harmonic content of the current in a
switching crystal for fixed values of the rf amplitude and frequency. Power
spectra (i)-(iv) correspond to four de biases ranging from the beginning to the
middle of a Shapiro step. As the dec bias increases, the harmonic content of the
CDW response increases. At the beginning of a Shapiro step, spectrum (i), the
CDW response is simply periodic and the spectrum contains only harmonics of
the rf drive frequency f. (Harmonics that are an integer multiple of the drive

frequency are produced by the nonlinearity of the I-V curves.) With a slight

increase in bias, spectrum (ii), the CDW response bifurcates, and the spectrum
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spectra of the crystal responmse: (i) period-one, (ii) period-two,
(iii) period-four, and (iv) chaos. (b) Correspondence between the
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the rf-induced Shapiro steps of the de I-V characteristic.
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contains subharmonic components at multiples of f/2. The bifurcated spectrum
corresponds ﬁto a current-voltage trace similar to Fig. 5a. With a further
increase in bias, spectrum (iii), the CDW response bifurcates again, and
additional subharmonic components appear at multiples of f/4. Finally, at the
middle of the Shapiro step, the CDW response contains a continuous
distribution of components, spectrum (iv), which corresponds to the apparently

stoichastic trace of Fig. 5b.

Figure 6b shows the detailed correspondence between dc bias and CDW
respoﬁse, plotted schematically against the rf-induced Shapiro steps in the de I-
V characteristic. In the figure, responses corresponding to spectra (i)-(iv) are
labelled period-one, period-two, period-four, and chaos, respectively. Starting at
the beginning of a Shapiro-step, the CDW response bifurcates through period-
one, period-two, and period-four until finally reaching the chaotic state near the
middle of the step. The chaotic state persists until the end of the step, where a
further increase in dc bias produces a jump to the next Shapiro step and a
return to simple periodicity. The period-doubling sequence is periodic in de
bias, repeating over many Shapiro step cycles until disappearing at very large

electric fields.

The chaotic response in spectrum (iv) is distinguished from other types of
CDW conduction noise by both its frequency distribution and its magnitude.
Its frequency distribution is neither discrete, as with narrowband noise, nor
monotonically decaying, as with conventional broadband noise or negative
difi:erentiai resistance noise. At frequencies above 10 MHz, the integrated power

in spectrum (iv) is hundreds of times larger than the power observed at
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comparable frequencies in narrowband, broadband, or negative differential
resistance noise. The chaotic and bifurcated spectra of Fig. 6 represent a

qualitatively new phenomenon in CDW transport.

The observation of chaos and period-doubling has important implications for
the dynamies of switching CDWs. The implications are discussed in the analysis
section, but for now the complex dynamics of Fig. 6 can be thought of as
frustration in the CDW response.” The rf signal tends to lock the CDW phase
velocity to the rf frequency, while the dc bias tends to pull t}-le velocity away,
The CDW response is a compromise between conflicting constraints: the average
phase velocity remains locked to the rf frequency, while the instantaneous
velocity becomes unlocked. The frustrated response of switching CDWs requires
unusually stable mode-locking, because in nonswitching CDWs mode-locking is
broken before frustration occurs. The analysis section will show that both
period-doubling and strong mode-locking ean occur if switching CDWs are
effectively underdamped. Thus, the broad Shapiro steps of Fig. 4 and the
period-doubling response of Figs. 5 and 6 have a common dynamical origin in

transport behavior of switching CDWs.
2. Conditions for mode-locking instabilities

Period-doubling bifurcations, chaos, and other mode-locking instabilities
(described in the next section) are observed over large regions of the parameter
space defined by temperature, dc bias, rf frequency, and rf amplitude.! Period-
doubling bifurcations are the most ubiquitous instabilities. They are observed
at temperatures from 15 to 40 K; at dc bia;ses from 509% to 120% of the

threshold field; and at rf frequencies from 0.5 to 50 MHz. Other instabilities,
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including chaos, are restricted to lower temperatures and narrower bias and

frequency ranges.

This secti.on will describe the parameter regime in which mode-locking
instabilities are observed. Because the regime is part of a four-dimensional
space, it is difficult to visualize in its entirety. A useful approach is to sketch
two- or three-dimemnsional slices through the regime. For example, at fixed
temperature, the regime is a convoluted function of de bias, rf frequency, and rf
amplitude, Figure 7 depicts the regime at 36 K by showing its intersection with
planes of constant rf frequency and rf amplitude. In the figure, both de bias
and rf amplitﬁde are normalized to the threshold field of the sample:
tgc = Ije /It and iy = Ly/Ir. The parameter planes themselves are shown in
more detail in Fig. 8 and 9. (The parameter regimes sketrhed out in these
figures are somewhat sample dependent. The crystal used for Figs.7-9 is
different from the crystals used for Fig. 5, Figs. 4 and 6, and Figs. 10-14,

respectively.)

Figure 8 shows the fixed-frequency (35 MHz) plane. For small values of the
rf amplitude, a single period-doubling bifurcation is observed over a small range
in dc¢ bias just above threshold. As the rf amplitude increases, the
period-doubling threshold decreases while the period-doubling range increases.
When the rf amplitude is about 70% of Iy, period doubling is observed at de
biases between 80% and 100% of Ip. At this point, Fig. 9 shows the
corresponding behavior in the ﬁxed~axﬁp11tude plane. Period-doubling oceurs
for frequencies between 5 and 100 MHz. As the rf frequency increases from 5 to

45 MHz, the de threshold increases and the dc range expands. At 45 MHz, the
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de range is at a maximum, extending from 80% to 105% of Ip. >From 45 to
100 MHz, the dec range shrinks while the dc threshold remains roughly constant.
For this sample at this temperature, the CDW response is only period-two in

the period-doubling regime; no period-four or chaotic response is observed.

Period-doubling may also be mapped out as a function of rf amplitude and
frequency. Figure 10 shows a projection of the period-doubling region, for a
different sample, onto the rf amplitude-frequency plane. The projection was
achieved by fixing the rf amplitude and frequency, and sweeping the dc¢ bias
from below threshold to above threshold. The most nonlinear behavior
observed during the sweep was defined as the projection of the sweep onto the
plane. The degree of nonliﬁearity is ordered in an ascending scale of period-one,
period-two, period-four, and chaos, For example, in the region denoted
period-four, both period-one and period-two behavior are observed, in addition
to the period-four behavior that is indicated. Note that period-four behavior
only occurs at relatively low frequencies, between 5 and 20 MHz, and at
moderate rf amplitudes, between 50% and 130% of Vp. Period-two behavior

occurs over a much wider range, from 5 to 70 MHz and from 4% to 150% of V.

In contrast to the high-temperature response displayed in Figs. 7-10, the
low-temperature CDW response is much more complex. Figure 11 shows the
CDW response at 19 K for the crystal of Fig. 10. Chaos and two new types of
CDW response are now observed. The response labelled “‘virtual Hopf” is a
precursor to périod»doubling behavior, and the response labelled “period-two
plus noise” is a variant of period-two behavior (see below). Figure 11 shows

that as the temperature is lowered from 37 to 19 K, the period-doubling regime



227

| T

NbSez T=37K

1-5""’ ) ///

period 2...

Frequency (MHz)

Fig. 5-10) A projection of the period-doubling regime at 37 K onto the rf

amplitude-frequency plane.




1.5

1.0

Vet Ve

0.5

Fig. 5-11)

NbSe3 /// P
T=19K IVi;tuaI Hopf
L 4
"/
period 2
\ 2 ///
\ /// -
\ f'\\ period 2 + noise
*\/ \ | /
\ /\\ period 4 //
Y \ 7 /
g g
\  \chaos L7 e
VO
/ // // // //
7
4 7 // // /
/ // , //
/ 7 s
/ 7 s
/

20 40

Frequency (MH2z)

A projection of the period-doubling regime at 19 K onto the rf
amplitude-frequency plane.




229

of CDW response both shrinks and becomes more fully developed. Excluding
the virtual Hopf regime, period-doubling at 18 K occurs only for frequencies
between 5 and 30 MHz, and for amplitudes between 9% and 150% of V.
Within in this region, however, a fully chaotic response is usually observed.

Incomplete period-doubling cascades are observed only at low rf amplitudes.
3. Nowsy Precursors

Besides period-doubling and chaos, a number of other mode-locking
instabilities are observad in the rf response of switching CDWs. Unlike period-
doubling and chaos, these instabilities are difficult to categorize. The
phenomena that they most closely resemble are noisy precursor instabilities® A
noisy precursor is a nearly divergent response to external noise by a dynamical
system that is close to becoming unstable. For example, when a system driven
at a frequency fnear a period-doubling bifurcation, a noisy precursor appears in
the response spectrum of the system as a broad bump centered at /2. When
the system actually undergoes the period-doubling bifurcation, the period-two
precursor sharpens into a narrow peak. Period-two precursors are
representative of a more general class of instabilities known as wvirtual Hopf

transitions.

Figure 12 shows the CDW response that is identified as a virtual Hopf
transition. The power spectra in the figure are parametrized by dc bias, which
increases from top to bottom. At the lowest bias, Vy, = 57.8 mV, the CDW is
mode-locked on a harmonic Shapiro step. The spectrum is featureless, except
for peaks at the rf drive frequency, f= 20 MHz, and its harmonics. As the de

bias increases, broad bumps appear discontinuously in the spectrum,
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Ve = 63.9 mV. The lower-frequency bump is caused by the narrowband noise
signal, and the higher-frequency bump ris its mixing signal with the rf frequency.
The appearance of the bumps signals the end of mode-locking. This kind of a
response is often cailed quasi-periodic in the literature, which is a misnomer,

because the narrowband noise signal is incommensurable with the rf frequency.

As the de¢ bias increases further, the bumps move symmetrically towards half
the drive frequency, f/2 = 10 MHz. The bumps sharpen into narrow peaks at
//3 and 2f/3, which signals subharmonic locking at V, = 66.8 mV.
Subharmonic locking occurs again at Vy, = 74.9 mV, when the bumps abruptly
coalesce into a single sharp peak at f/2. For a finite range of bias, the power
spectrum does not change, but it eventually breaks discontinuously into three
peaks, Vy, = 76,7 mV, The lowest-frequency bump corresponds to the mixing
signal, the highest-frequency bump corresponds to the narrowband noise signal,
anc} the sharp intermediate peak at f /2 is identified as a period-two precursor.
With a continuing increase in dc bias, the period-two precursor gradually fades

as the narrowband noise and mixing signals move symmetrically away from

10 MHz.

The period-two precursor in Fig. 12 is superficially similar to a simple mixing
response between the two bumps that surround it, but several features mark it
as special. First, the precursor is comparable in magnitude to the narrowband
noise and mixing signals. If the precursor were a simple mixing response, it
would be much smaller in amplitude. Second, the precursor signal is much
narrower than either the narrowband noise or the mixing signal. If the

precursor were a mixing response, its shape would be a convolution of the two
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bumps and therefore its width would be much larger. Finally, the precursor
signal appears discontinuously as a function of de bias. If the precursor signal
at 76.7 mV were a mixing signal, then an equally large and well-defined peak

should be present in the specirum at 69.2 mV. No such peak is evident.

The size, sharpness, and discontinuous appearance of the precursor signal
strongly suggest that it represents a latent instability in the CDW response.
This conclusion is supported by the precursor’s evolution with decreasing rf
ampii.tude. As the rf amplitude is lowered, the precursor signal is observed over
a larger and larger range of dc bias. In contrast, the narrowband noise and
mixing signals are observed over a diminishing range. Eventually the spectra in
Fig. 12 cross over into an unmistakable period-doubling sequence. As the de¢
bias is increased, the CDW response changes discontinuously from the
featureless spectrum of the top trace, to the bifurcated spectrum of the fifth
trace, and then back to a featureless spectrum like the first trace. The
intervening spectra of Fig. 12 are completely absent. If the rf amplitude is

lowered further, a period-doubling route to chaos develops (see Fig. 11).

Figure 13 shows what may be another type of noisy precursor instability, the
CDW response identified as period-two plus noise. The power spectra in this
figure are again parametrized by dc bias, but for this sequence the de¢ bias
increases from bottom to top. The sequence begins in the middle of a harmonic
Shapiro step, Vy. = 1387mV, where the CDW response is period-two. The
period-two response gradually disappears into periocd-one mode-locking on the

next Shapiro step, Vy. = 142.7 mV. With a slight increase in bias, to

Vi, = 142.9 mV, a sharp peak appears discontinuously at f/2. The f/2 peak
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is 23 dB off the noise floor and flanked by large, symmetric structure near f /2,
/ /6, and 5f /6. As the bias increases further, the f /2 peak grows smoothly; the
flanking structure becomes more prominent; and new peaks appear new 2f /6
and 4f/6. Then the flanking structure abruptly disappears, leaving a
conventional period-two response. The spectra from V. = 1429 mV to

150.5 mV represent the period-two-plus-noise phenomenon.

Figure 14 shows what may be a third and final type of noisy precursor
instability., Figure 14a shows a power spectrum with a sharp peak at
f/2=5MHz and broad peaks spaced symmetrically at intervals of f/8.
Figure 14b shows a power spectrum with broad peaks at intervals of f /6. The

spectra are suggestive of period-eight and period-six precursors, respectively.
B. Analysis

The most significant feature of period-doubling routes to chaos is their
universality.’ Period-doubling routes are observed in a wide variety of

10 put they always display characteristic features that are

phenomena,
independent of the system in which they are observed. The universality of

these features is a reflection of the common dynamics underlaying period-

doubling systems.

The dynamics of period-doubling systems is usually discussed in terms of
return maps. Return maps are constructed from periodic samplings of a
system’s dynamical history and are an alternate way of deseribing the dynamics
of a system driven by a periodic force. Dynamics is usually specified by a

differential equation that describes how a system will evolve with time. But for
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a system with a single (effective} degree of freedom, just a sampling of the
system’s history is sufficient to determine the system’s periodicity. If =z
represents the dynamical variable of a system, construction of a return map

begins by recording values of z at intervals of the reciprocal drive frequency.

th

The value of z at the m'™ interval is denoted z,,. The return map for the

system is a function G which assigns a value to z,,,; based on the value of z,,:

Tme1 = G(2nm) . (5.1)

As an example, a damped pendulum or a resistivity shunted Josephson junction
obeys an equation of motion that is identical in form to the classical, rigid-phase

model of Griner, Zawadowski, and Chaikin:

B+ ¢+ F(¢) = eq + ezccos0lt (5.2)

(see Eq. 4.4). For small values of 4, the return map of these systems is the so-

called circle map,?

¢m+1 = ¢y + 2mv + ﬁSiﬂqu ’ (’5'3)

where v is a function of ey, and eg4,.

Period-doubling is observed in systems with return maps of the form
G(z)= \g(z), (5.4)

where X is a (positive) parameter and g(z) is a mildly restricted function.” The
most important restrictions on g(z) are sketched in Fig. 15: ¢(z) must go to zero
at z = 0 and at large z, and ¢(z) must possess a single central maximum. With
only these constraints, the period-doubling behavior of G(z) is completely

determined.? For small values of X, G(z) displays period-one behavior. As X
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Fig. 5-15}  The generic form of a return map that exhibits period-doubling.
After ref. 9. :
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increases, G(z) undergoes successive period-doubling bifurcations at \ = A,,
Ai,... and eventually achieves the chaotic state at A = A, . Beyond A, G(x)
may display windows of period-three or other odd-period behavior. The

asymptotic spacing of the bifurcation thresholds A,, is determined by a

constant:

Amsr — A
im — M o5 (5.5)
messo Ames — Amy1

The asymptotic size of the system’s subharmonic Fourier components A,, is

determined by a second constant:

lim ApfAne = . (5.6)

m+ o0

The constants o and 6 are universal; they depend on only the functional form of
g{x) near its maximum. When ¢g{z) has a quadratic maximum — as would be
expected for a physical system — the universal values of a and & are

2.5029078750957... and 4.6692016091029..., respectively.

The constants o and § completely specify the behavior of a period-doubling
system. Because the constants are universal, an analysis of a system’s period-
doubling behavior can determine only the functional form of its return map
near the return map’s maximum. Because the return functions of physical
systems are expected to have quadratic maxima, this means that «ll physical
systems undergoing pertod-doubling are dynamically equivalent. The dynamical
equivalence of period-doubling systems is a double-edged sword in the analysis
of CDW dynamics. On one hand, anﬁnalysis of period-doubling in switching

crystals can not determine a specific equation of motion for CDW dynamics. On
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the other hand, an analysis can provide insights into the form of the equation.

The most basic insight provided by period-doubling is that, in the period-
doubling regime, switching CDWs are governed by an equation of motion that
has a single (effective) degree of freedom. This statement does not rule out
equations with many degrees of freedom as models for CDW dynamics. But it
does imply that any many-degree-of-freedom model must undergo a form of
self-organization during mode-locking. Self-organization has been proposed for
CDW dynamics in other contexts: e.g. “fluctuation freeze-out’” (Ref. 12) or
‘“‘phase-homogenization” (Ref. 6) during the mode-locking of nonswitching
CDWs. However, the evidence for self-organization has been ambiguous. Some
researchers claim that fluctuations are not frozen out during mode-locking, but
rather masked by changes in differential resistance.!® Period-doubling rebuts
this argument, at least for switching CDWs. Period-doubling offers
unambiguous evidence for the collapse of CDW dynamics onto a single degree of

freedom.

Period-doubling also implies that mode-locked CDWs are dynamically
underdamped. This conclusion follows from a comparison with the circle map,
Eq. 5.3. The circle map is a valid return map for many systems besides
pendulums and Josephson junctions; it is a generic return map for any {one-
dimensional} system with competing intrinsic and extrinsic frequencies. The
intrinsic frequency in the circle map is the rate at which ¢, changes; its analogy
in CDWs is the narrowband noise frequency. The extrinsic frequency in the
circle map is the rate at which the map is iterated; its analogy in CDWs is the

ac drive frequency. The extrinsic frequency does not appear in Kq. 5.3, except
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implicitly as the inverse unit of time. The circle map contains two parameters,
v and £. The parameter v is roughly equivalent to a dec electric field. In the
absence of mode-locking, v determines the ratio of the intrinsic and extrinsic
frequencies. The parameter 7 is equivalent to the inertial coefficient in the

Griiner-Zawadowski-Chaikin model, as noted above.

The circle map displays both mode-locking and period-doubling.!*~1® When
8 > 0, the map possesses two harmonic “‘Shapiro steps’’, centered at v = 0 and
v = 1, with mode-locking indices n = 0 and n = 1, respectively. As long as
8 < 1, the map also possesses subharmonic Shapiro steps at every rational value
of v between 0 and 1. The barmonic and subharmonic steps form a descending
hierarchy, just as in CDWs. The harmonic steps n = 0 and n = 1 are tﬁe
widest; the subharmonic step n = 1/2 is the next widest; the steps n = 1/3
and n == 2 /3 are the third widest; and so on. The step widths depend on 8 and
increase as 3 increases; see Fig. 16. The value # = 1 represents a critical value

for mode-locking, beyond which subharmonic steps begin to overlap.

The value 3 = 1 also represents a critical point for the stability of periodic
solutions. Below # = 1, no chaotic solutions exist. Above 7 = 1, two routes to
chaos are observed. The first route is a quasiperiodic transition to chaos, a
route which has not been observed in switching CDWs., The second route is the
period-doubling cascade, which occurs inside mlode~locked Shapiro steps. As a
function of 3, period-doubling bifurcations are observed first in smaller and
then in larger Shapiro steps. The harmonic Shapiro steps, for example, period-
doubling cascades are present only for # > 2. As a function of v, period-

doubling bifurcations occur as solutions move from a Shapiro step edge toward
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Fig. 5-16) The width of harmonic (n=10,1} and subharmonic
(n=1/3,1/2,2/3, ---)stepsin the circle map. After ref. 14.
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the Shapiro step center.

A comparison between CDW and circle-map dynamics is strictly valid only
inside mode-locked Shapiro steps, where the presence of period-doubling
indicates that the dynamics of both systems reduce to one-parameter return
maps. For the circle map, the explicit form of the map may be derived at the

center of a harmonic step:

D1 = B 9(®,) . (5.7)

Here € is an invertable function of ¢, the function ¢ satisfies the constraints of
Eq. 5.4, and the coefficient F acts as a bifurcation parameter. As 7 increases,
solutions move upward in Fig. 16 along the lines v =0 or v= 1. When §

crosses 2, the solutions undergo period-doubling bifurcations.

A similar sequence may be obtained experimentally for switching CDWs, By
adjusting dc bias, a CDW may be held at the center of a harmonic Shapiro step
as temperature is changed. {An adjustment of de bias is required to compensate
the temperature dependence of the threshold field and the crossover frequency.}
At temperatures above the switching regime (>42 K), the CDW response is
period-one. At temperatures within the switching regime, the CDW response
displays period-doubling bifurcations provided that the rf frequency and
amplitude were fixed at appropriate values. Thus, a switching CDW possesses a
return map of the form (5.7), where the bifurcation parameter 3 is a function of
temperature. The physical significance of 7 is suggested by a comparison with
the rigid-phase equation, where it acts as an inertial coefficient, To the extent

that the CDW response can be modelled by a second-order differential equation,
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the above analysis implies that acceleration terms (second-order time
derivatives) are significant compared to damping terms (first-order time

derivatives). In this sense, CDW dynamics are underdamped.

A direct comparison of CDW dynamics and the rigid-phase model also points
to underdamped dynamics.® In the rigid-phase model, hysteresis ﬁnd switching
in the dc I-V curve are determined solely by the inertial coefficient. A
hysteresis parameter may be defined for the rigid-phase mode]l by
H = (e.; — e.9)/e.1, where e.; and e.o are the respective de thresholds for
CDW depinning and repinning. Figure 17 shows the calculated dependence of
Hon @ = f*. From the figure, the inertial coefficient may be determined for a
real crystal, such as in Fig. 4, by measuring H in the de¢ I-V curve under zero rf
bias. In the top trace of Fig. 4, H is 0.24, which implies an underdamped
inertial coefficient of 7 = 2.3. The close agreement of 7 > 2 in the circle map
and 4 = 2.3 in the rigid-phase equation is probably fortuitous, because the
threshold value of § necessary for period-doubling depends on details of the
return function ¢(z). For example, a model is derived in the next chapter whose
small-signal response is given by the rigid-phase and circle map equations. In
this model, however, period-doubling bifurcations begin for values of the inertial
coefficient as small as 0.3. (See Fig. 6.8; the inertial coefficient in the figure is

the parameter k.)

Divergent wvalues of the inertial parameter are a reminder that period-
doubling can not be used to deduce a specific equation of motion for CDW
dynamics, only the general form of such an equation. The validii: of a specific

equation must be decided by other criteria, such as whether the mo i produces
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HYSTERESIS H

Fig. 5-17)  Hysteresis in the rigid-phase model, Eq. 5.2, as a function of
Q = g*.
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period-doubling for reasonable values of its parameters. The rigid-phase model
does not. The inertial parameter in the mode! depends on a pinning frequency

w, and a damping constant 7:
B = (w,n)* . (5.7)

(See Eq. 4.3 or 2.55.) The parameters w, and r may be separately calculated
once the crossover frequency w%'r is known. The crossover frequency may be

determined from the variation of the first Shapiro step height 6V, with rf bias:
V1 = Ver | Ji(Vesr/ Verwe) | - (5.8)

(See Eq. 2.58.) Here J(z} is the first-order Bessel function which attains its
maximum at z = 1.84. The maximum value of 6§V, in Fig. 5.4 is found to occur
at V,; = 35 mV when w,/2r = 15 MHz. From these values, the crossover
frequency is determined to be w%r/?w = 22 MHz. The corresponding values of
pinning frequency and damping constant are calculated to be w,/2m = 15 MHz
and 77! = 61 MHz. These values are orders of maghitude smaller than values
obtained from ac conductivity. Hence, the rigid-phase model is an inconsistent
model of switching, even though it predicts the correct period-doubling

behavior.

I, Summary

This chapter has discussed nonlinear instabilities which distinguish switching
from nonswitching CDW transport. Negative-differential-resistance instabilities
are characterized by intermittent, large amplitude noise that is close to 1/f in
its spectral distribution. The instabilities are observed over a narrow

temperature range, typically a few degrees, and can be ex|lnined by metastable
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hopping of C_DW current between two or more current configurations. Period-
doubling instabilities occur over a broader temperature range, 15-40 K, énd can
be explained by an effective inertial parameter in the CDW equation of motion.
Period-doubl%ﬁg instabilities indicate that CDW dynamics collapses onto a single

degree of freedom when mode-locking occurs.

Negative-differential-resistance and period-doubling instabilities are observed
in different frequency ranges. Negative-differential-resistance instabilities are
largest at frequencies below 1 MHz, while period-doubling instabilities occur at
frequencies between 1 and 100 MHz. The different frequency ranges reflect
different physicé,l origins for the phenomena. The time scale of negative-
differential resistance instabilities is set by the delay required to establish a new
CDW current path within a crystal. Pulsed experiments by Z~tt] and Griiner!’
show that delays can range from 1 to 100 usecs. The time scale of period-
doubling instabilities is set by CDW dynamics at a single phase-slip center.
Sliding CDW dynamies occur at a rate equal to the narrowband noise frequency.
Narrowband noise frequencies typicaliy start above 1 MHz in switching erystals,
and can in principle achieve frequencies above 1 GHz at very high electric fields.
But at frequencies above 100 MHz, the results of Chap. 4 show that internal
phase deformations become important in CDW dynamics. When internal
deformations are important, CDW dynamics can not collapse onto a single
dynamical variable, which precludes period-doubling routes to chaos. Thus the
frequency ranges of both period-doubling and negative-differential-resistance

instabilities are consistent with time scales established independently in other

experiments. At frequencies below 1 MHz, a crossover from single to multiple
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domain dynamics can be observed in so-called ac switching noise, a phenomenon

which is described in ref. 1.
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CHAPTER 6: PHASE-SLIP MODEL OF SWITCHING

This chapter develops and then analyzes a phenomenological model of CDW
dynamics that describes the motion of both the CDW phase and amplitude.
Specifically, a Hamiltonian is introduced in which the CDW amplitude is
reduced by large amounts of phase polarization and in which the CDW phase
elasticity is in turn diminished Ly the reduction in CDW amplitude. At strong
pinning centers, these two processes reinforce one another and lead to transient
collapse of the CDW order-parameter. From the Hamiltonian, a set of coupled
equations is derived for the CDW amplitude and phase, and a subset of these
equations is studied numerically under combined dc and ac electric fields. (The
numerical calculatiéns were performed by M. Inul.) The subset of equations
predicts not only ~witching and hysteresis, but also period-doubling, chaos, and
an inductive sliding ac conductivity. Thus this chapter has two main results.
First, a set of equations is derived that model the dynamics of strongly pinned
CDWs; and second, a self-consistent explanation is provided for the unusual

dynamics associated with switching CDWs.

The chapter is organized into three sections. In Section I, the so-called
phase-slip equations are derived from a generalization of the Fukuyama-Lee
Hamiltonian.®~® In Section II, the response of the phase-slip equations to
external electric fields is analyzed from Inui's numerical integration of the
equations.! In Section I, the chapter concludes by comparing fesuits of the

equations to experiments on switching CDWs.
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I Phase-Slip Model

A.  Hamuitonian and equations of motion

The order-parameter of a CDW may be written as ue '® where u specifies the
amplitude and ¢ the phase of the lattice distortion associated with a CDW. For
small distortions of a CDW from equilibrium, Lee, Rice and Anderson have
shown? that the CDW amplitude and phase define approximate normal modes

whose respective frequencies {1, and {2_ are given by

03 =wd+ o2k
02 =c2k2%.

Here £ is the distortion wavevector, measured from the Fermi wavevector kg; A
is the dimensionless electron-phonon coupling constant; and @ is the 2kp
wavevector with wg the 2kp phonon frequency. The phason velocity ¢ is given
by (B2k%/m*)* where m °, the effective CDW mass, depends on the CDW
amplitude as well as the normal electronic mass. In the amplitude dispersion
relation, the first term dominates the second, except at large wavevectors.
Therefore the wax}evector dependence of {1, can be neglected for the rest of this

discussion.

Fukuyama has shown® that, in order to treat phason dynamics, the phase
mode may be regarded as an elastic continuum. For strongly pinned CDWs, the
Fukuyama Hamiltonian must be generalized to account for the dynamics of the

amplitude mode. An appropriate Hamiltonian is

[ dz{pul(de/dt? + u(du/dt)? + Yiul(dg/da)? + phwd(u—1,)"}
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where p is the ionic mass density and u, is the equilibrium value of the CDW
amplitude. Young’s modulus for the phase mode is given by Y= puc? and Y,
denotes its equilibrium wvalue. (Henceforth the subseript on Yy will be
dropped.) In the Hamiltonian, the {small) electronic contribution to m " has

been neglected.

The CDW phase and amplitude coordinates are mixed by large distortions of
the CDW order-parameter, because they are not exact normal modes of CD‘N'
motion. A coupling term must be introduced in order to produce mixing of the
amplitude and phase modes; a particularly simple coupling is obtained by

requiring that the phase-mode elasticity depend upon the CDW amplitude:
Yul(de/dz)* — Yu?(do /dx)* .

Besides being simple, this coupling possesses a feature which is critical to later
results: as the CDW amplitude goes to zero, the elasticity of the phase mode
vanishes. The discussion below will show that this feature, which must be
found in any amplitude-phase coupling term, leads to the phenomena
characteristic of switeching CDW conduction. A generalized Fuku‘yama

Hamiltonian is thus given by®

Hy= [ do{u?u( 220 + Y(EEP + u(S5R + pwdle—u Py . (1)

The standard Fukuyama-Lee-Rice terms will be used to describe the

interaction of CDWs with applied electric fields and with lattice defects:®™°
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Hﬁeld = #de{Peffn ¢ EQ{'/Q}

‘ (6.2)
Hyip = — [ dz{¥ V; p 6(z— R;)cos(Qz + ¢)}
j

where n is the electronic density; E is the applied electric field; p is the
electronic amplitude of the CDW; p,¢ is an effective_, normalized CDW density;
and summation is over all pinning sites R;, whose respective pinning strengths
are denoted by V;. Both p and p,; depend on the CDW amplitude u, so both

act as dynamical variables in Eq. 2.

CDW phase dynamics are well-known to be overdamped.!® CDW amplitude
dynamics will be assumed to be overdamped also so that both the CDW phase

and amplitude obey relaxational equations of motion:®

46 _p oH
dt ? 56 653)
d . u §H '
(2 )= -T, .
dt " u, é(i-)
%®

0

Here I'y and'T, are damping parameters for the phase and amplitude modes,

and H is the combined Hamiltonian density of Egs. 1 and 2.

Several approximations simplify Egs. 3 to a more tractable form. First, the
equations may be converted into a discretized form by neglecting variations of
the CDW order-parameter on lengih scales shorter than the average defect

spacing. The discretized Hamiltonians will be taken to be
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Pir1— @
H,= g{ejmmuj(————————-—”e‘ LR+ einwdu—u,)t},
J ]
Hf:'eld = ng;p;ffng E ¢]/Q y (6.4)
7

Hyin = =530, V<05 (QR; + 8,)
J

where time derivatives have been dropped from H, because of the assumption of

relaxational dynamics. Here the length £; is the distance R;,; — R; between

sites, the length E} is the average distance —;—(Ej-i"t?j_l), and the length £ is the

CDW amplitude coherence length. The dynamical variables ¢;, uj, p; and pfff
denote respective values of ¢, u, p and p,; at the j“‘ pinning site. The
concentration np of defect sites is related to the average defect spacing by
nb’l mfj. Typically, the amplitude coherence length is much shorter than the

average defect spacing: £ << ?j.

Egs. 3 are further simplified if the CDW coupling to defects and applied
electric fields is independent of the CDW amplitude. Amplitude independence
is valid when pinning centers are either very weak {p;V;much weaker than the
phase energy npudY) or very strong (p;V; much larger than the condensation
energy E,ul\w%uog). At weak centers, the CDW amplitude remains very close to
its equilibrium value because the CDW phase depins before sufficient
polarization accumulates to suppress the CDW amplitude. At very strong
centers, the opposite limit applies: the CDW phase never depins, at least not
until the CDW amplitude has collapsed or has nearly collapsed. Except for
these transient, singular moments when u;=0, the large value of V; at a strong

pinning center completely dominates any variations in g; or p;?ff. {The transient
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moments when ;=0 will be dealt with in the next section.) Thus at both very
weak and very strong impurity sites, the amplitude dependences of Hiippq and

H,;, are unimportant. Egs. 3 may be rewritten as

46 _ _p 8H

dt %66
(6.3")

44 8H,

dt YA

where A is the normalized amplitude (u /u,). The resulting equations of motion

aré
{ﬁj= £;-I"¢p¢fanE' -~ LepVsin(QR; + 6;)

¢ lj+1 + A,

14

J

mzrq,YuEaj{A,-H
Aj=—2T Emdwdul(A;~1)

- Ty Yu] {ejﬁjﬂ(fjigﬁ)z + gj—lAj—l(w(bj_ Piz1 )}

where p.r and p are now regarded as constants.
B. Phase slippage

Egs. 5 are valid only for A;>0. The equilibrium value of A; is given by

Y (61— ;)"

(6;=¢;-1)"
o A A
Eudw j

{ea) = 1 — L
Aj 5 fj~1

At a strong pinning center, the phase distortions |¢;.; — ¢;| can become so
large that A{*9<0. Vanishing or negative values of Al drive the CDW
order-parameter ¥ = ue‘? toward collapse. Depending on various relaxation

rates, ¥ may or may not collapse completely, but the effect on the strongly



255

pinned phase is identical. In the case of near collapse, H,;, becomes so reduced
that the accumulated phase pofarizétion forces the phase to move in the
direction of E. Because V; is large at a strong pinning site, the accumulated
phase polarization is also quite large and the phase velocity tends to be high
when A;~0. The phase therefore abruptly advances by about 27, whereupon
the phase polarization is relieved, the amplitude A; regenerates; and the phase

again becomes stuck at the strong impurity site.

In the case of complete collapse, the CDW phase becomes indeterminate at
the strong pinning site. It may therefore ‘‘slip’’ so that phase polarization is
again relieved and the CDW amplitude regenerates. This process is known as
phase slippage in superconductors and superfluids.!®?® Because of phase
pinning, the detalls of phase slippage are slightly different in charge-density
waves. If the CDW order-parameter is viewed as a variable in the complex
pl_ane, then the first~order differential equations of 6.3 and 6.5 require that ¢
change by exactly +m (modulo 27) when 1 crosses zero; the sign and modulus of
the phase change are chosen so that Ale?) becomes equal to its smallest possible
positive value. F‘“ollowing a +m phase change at a strong pinning center, the
potential energy of the CDW is at its maximum value. Because V; is very large
at strong pinning centers, a += phase-flip is followed by a quick advance of the

CDW phase through an additional factor of 7.

Thus for either complete or near complete collapse of the CDW order-
parameter, the CDW phase abruptly advances by 27 (modulo 27) at a strong
pinning site. Since the discusison will deal with CDW dynamics on relatively
V il

long time-scales, both processes will be called ‘‘phase-slips” and will be
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approximated both by instantaneous 27 (modulo 27) hops of the CDW phase,
The complete equations of motion are therefore Eqgs. 5 augmented by the

condition that ¢ changes by +2r (modulo 27) whenever A collapses.
C. Reduced phase-slip equations

It will now be shown how Egs. 5 can produce switching and hysteresis. It is
convenient to consider a {one-dimensional) crystal of NV Wéak pinning centers
and impose periodic boundary conditions, so that the crystal may be thought of
as closed loop. Each weak impurity is assumed to be of strength
V,<<npYu?/p. Fukuyama and Lee' have shown that when N is large
enough, the crystal breaks into a series of phase domains whose average length

is given by
L= (nme)™*3np!
where 7 is a constant of order unity, np is the (weak) pinning center

concentration, and ¢ is the Fukuyama-Lee pinning parameter:

Vb
€= ==

1502 YnD )

Since the CDW phase within a domain is nearly rigid, the number of dynamical
variables is reduced from N (one for the phase at each pinning site) to N/npL,

(one for the phase within each domain).

If the average phase within a weakly pinned domain is 6, then the effective
pinning within the domain is approximately f’cos(gb—»q_ﬁ), where
Vo~ pr(nDLo)i/Q. If a single, very strong pinning center is added to the

domain, then presumably the pinning center has three main effects. First, the
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entire domain will become strongly pinned, because the average phase within
the domain can not depin until the CDW amplitude at the strong pinning
center has collapsed. Second, the average phase within the strongly-pinned
domain will shift to the phase ¢, that is preferred at the strong pinning center.
Finally, since the amplitude relaxation rate I'y is generally much faster than the
phase relaxation rate Iy, the strongly-pinned domain may respond faster than a

weakly pinned domain to applied forces.

Now suppose that a single strong pinning center is ad(‘ied to the model
crystal, say at site 7 = M, and that the total number N of weak pinning centers
is small enough so that just two domains are present in the crystal: a strongly-
pinned domain centered at y = M and a weakly-pinned domain in the rest of the
crystal. The phase of the strongly-pinned domain will be denoted by ¢, and the
phase of the weakly-pinned domain by ¢. The only other dynamical variable in
the problem is the CDW amplitude A at the strong pinning center. The phase-

slip equations of Egs. 5 are greatly simplified:

1 .

a, ¢= e—sing—al(¢=—¢,) (6.6a)
1 ; 1 o— ¢,
h= = Ha-p-(E5Rpy (5.6b)

_ o if A>0
o= (6.6¢)
¢.+27 if A<O.
The phase change in ¢, is chosen to minimize |@¢—¢,|. Here e represents the

external electric field applied to the crystal. The electric field is normalized to

the characteristic field of the weakly pinned domain:
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e=FE/E,,
where
Ep = Q_’!?/neLo )

CDW current in these equations is proportional to <}S, so de¢ current is

proportional to <<;5> where <...> indicates time averaging.

The reduced phase-slip equations are a generalization of the Griiner-
Zawadowski-Chaikin model.® The equaticns were previously written down by
Hall et al.'” without derivation. From the present derivation, the phase-slip

parameters {1,, «, £, and # can be related to microscopic quantities:

Q,=TyV
a=2Yul/VL,
k= T4V /20 Epdwdu,

g = (45;4)\1»%1;0130/}’1;3)1/2 :

The first two parameters, (1, and «, are common to classical models of CDW

1]

phase dynamies. The frequency (1, is the so-called ‘‘crossover frequency”
observed in ac conductivity experiments on CDWs.?! This frequency is the
characteristic relaxation rate of a weakly-pinned domain. For the lower CDW
state of NbSej, 1, ;zs about 100 MHz. The parameter a represents the phase
elasticity of a CDW, normalized to the weak impurity pinning potential. The
value of o depends on the lengthscale over which one considers CDW dynamics.
On the Fukuyama-Lee-Rice lengthscale, weak impurity pinning just dominates

CDW phase elasticity, so a conventional value of « is 0.2. The remaining two

parameters, & and §, are new to this model of strongly-pinned CDW dynamics.
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The parameter & represents the relaxation time of the strongly-pinned domain.
The parameter € represents the amount of phase polarization necessary to cause
amplitude coliapse. No conventional choices exist for & and 8, which will be
treated as adjustable parameters in order to fit experimental data. Appropriate

values of # and k are discussed in Section II1.

To show that Egs. 6 can exhibit hysteresis and switching, consider the limit
that af >>1 and Q,/k>>1. This limit corresponds to an extremely
polarizable phase and an extremely fast amplitude relaxation rate. In Egs. 6,
the weak-pinning term becomes negligible and the CDW amplitude follows the
CDW phase polarization without any lag. The CDW equation of motion

simplifies to

0% e—a(d—6,){1~[(¢—,)/8"}
‘Isa if |¢_¢a I <49
b, —
¢,+27 otherwise .
The elasticity term a{¢—¢,){1—[(¢—0,)/6]*} is shown in Fig. 1. As e increases

from zero, the CDW does not begin to slide until ¢ exceeds the maximum value

of the potential. This maximum sets an upper threshold field given by

2
£y s
2T 8 /T

alf . (6.9)

After the CDW begins to slide, phase slippage keeps (¢—¢,) in the range
[§—2m, 6]. In this range, the maximum value of the elasticity potential sets a

lower threshold field given by
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Fig. 8-1) The phase elasticity aA{é — ¢p) as a function of phase polarization
(¢ — ¢p). The figure applies to the limit that Qg /& >> 1, in which
the CDW amplitude becomes a simple function of phase
polarization.
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o2 it 0< (3+ /)
T (6.10)
049(1———257-‘—)[1_,(1_ _2_91)2] otherwise .

Once e exceeds ¢, the CDW continues to slide as long as e continues to exceed
es1- Therefore when e;; < €42, the CDW stops sliding at a electric field which is
lower than the field at which it began sliding; i.e. the motion of the CDW
becomes hysteretic. Equation 10 defines a critical polarizability 8= (3+./3 )7
which determines the onset of hysteresis: if § > g, then e;; < e;p and CDW

current is a bistéble function of the applied electric field.

In Eqs. 8, hysteresis is caused by an abrupt collapse in the elasticity
potential once the CDW begins sliding. This ccllapse also causes switching.
Just above the upper threshold field, the minimum instantaneous CDW wvelocity

is €4, — €41, 50 the time-averaged dec CDW current is larger than this:

<¢> = €po ™ €41 .

€= €404
When § > g, dc CDW current jumps from zero to a finite value as e exceeds
€ro.

Even away from the limit af >> 1 and 0, /k >> 1, switching and hysteresis
oceur in Egs. 8 when § becomes sufficiently large. As af becomes comparable to

1, the upper and lower threshold fields are given by
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= may [sino+ als— o)) (1~ ((6=6,)/01)]
' (6.11)

en= x| [sins+ alo=6,)(1-[(6-6,)/97)]

As 1}, /k becomes comparable to 1, e;, shifts to lower values and the critical

polarizability decreases from (34+./3)7. In the limit that k — oo, both e;; and

By go to zero.
D. Inertial effects

In order to gain insight into the dynamics of the phase-slip equations, it is
useful to compare the equations to a phase-only mode!l of switching. Switching
behavior has been =analyzed in terms of the rigid-phase model of Griiner,
Zawadowski, and Chaikin.'*~1® The rigid-phase model ignores the existence of
phase domains and treats the CDW phase as uniform throughout a crystal.®

The dimensionless equation of motion is
Boé+ob=ce—F(3), (6.12)

where the periodic function F(¢) represents a pinning force; 7 is a so-called
inertial parameter; and time is measured in units of (p)”!. When § is small,
the phase velocity is a deterministic function of the electric field e and the
pinning force F. In this case, the dynamics of Eq. 12 are overdamped and the
equation does not lead to switching. When § > 1, however, the dynamics of
6.12 are underdamped and the equation leads to both switching and

hysteresis. %

Except for the inertial term ,82;5, the rigid-phase equation is very similar to

Eq. 6a of the reduced phase-slip equations. In fact, the equations become
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identical when & = 0 and § = 27, because then the elasticity term aA(¢—¢g) in
Eqg. 6a is a deterministic, periodic function of the phase ¢. But even when
# > 0 and ¢ # 27, the phase-slip and rigid-phase equations are still dynamically
equivalent, at least in the following sense: for small ac signals, the ac response of
the phase-slip equations maps onto the response of the rigid-phase equation, as

long as the inertial parameter # is assumed to be motion-dependent.

The response of either the phase-slip or rigid-phase equations is conveniently
measured in terms of ac conduetivity. For an electric field of the form

€= €4, + €, exp(i€lt), ac conductivity may be defined as

() = 6()/eer ,

where aﬁ(ﬂ) is the Fourler component of phase-velocity at the applied ac
frequency. When the CDW in the reduced phase-slip equations is pinned, the

CDW phase has an equilibrium value ¢, that is determined by the de bias:
0= ege — sin gy — al, (dey—d0) .

Here the equilibrium wvalue of the CDW amplitude is given by
Agg=1— (dyy—¢o/6)*. To first order in x, linearization of the phase-slip

equations gives

, ) i(Q/0.)
o(1) = 1+ 2ar{1—4,,)] 14 2.(Q]/QC)

(6.13)

where ' = Q1 + 2ax(1—A,,)] and Q, = [cos é,, + a(3A,,—2)]. Except for a
change in the unit of time (of order ax << 1), the rigid-phase model yields an
identical  expression = for o{1) U B=0 and F{é)=sin ¢+

o p—dg)[1— (6= o /6)*] in Eq. 12. Therefore the phase-slip equations have a
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pinned response that is overdamped.

When the CDW in the phase-slip equations is sliding, the elasticity term
alA(¢p— @q) is essentially periodic in phase as long as the ac field is not large. In
the limit that 6 >> 4r and o« >> (47)7!, the pinning term sin ¢ may be

dropped from the phase-slip equations, which then reduce to

9.6 = eqe + eacemt “2‘1A[¢T¢0} (6.6)
A=[1~(6—0do/0)] — kA 6.6b

[ %(é b0/ 111‘](¢—m¢o) <0 ( ’)
o — ¢ 4- 2 otherwise . : (6.6¢")

Phase polarization in 6a’ is bounded by (6—2r) < ¢ — @9 < 6, and therefore
the elasticity term may be approximated by afA if terms of order 2w /8 are
neglected. Phase acceleration is then given by ;15= z'Qeace"m maﬁ.fix, and

substitution of this expression into Eq. 6a’ yields
KO+ b = eg, + ege™ — Fo(3), (6.14)

where F,(¢) = a(¢—do) [1 — (6—d0/0)?] and e, = e, (1+if2). Thus the
sliding response of the phase-slip equations is determined by an effective inertial

parameter equal to k.

The constraints on « and # that lead to Eq. 14 are not unreasonable, since
values of o = 0.2 and 6 == 107 are consistent with experiments (see below}.
Because appropriate values of x fall in the range 0.5 to 1.0, the phase-siip
equations are dynamically overdamped when pinned, but underdamped when
sliding. Therefore the equations should exhibit a strong nonlinear response
above threshold. For example, if the constraint on e, is ignored, then Eq. 14

predicts that the sliding phase-slip equations should exhibit period-doubling
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bifurcations, chaos, and broad inductive features in ac conductivity.!®!® The
next section will discuss numerical calculations which show explicitly that these

phenomena do indeed occur.

II. Numerical Analysis

A. Method

Analytical solutions to Egs. 6 are difficult to obtain except in a few limiting
cases. Therefore, the equations must be integrated numerically., Numerical
integration of the equations is relatively easy if only de electric fields are used to
probe the CDW response, and is particularly easy if the relaxation time & is set
to zero. Figure 2 shows IV curves that result from integration of Egs. 8. (The
curves were calculated by Hall.'') As expected from the discussion of the
previous section, the I-V curve for § = 2x displays nonswitching behavior and is
equivalent to an I-V curve obtained from the overdamped limit of the Griner-
Zawadowski-Chaikin model. The I-V curve for § = 5.5 displays both switching
and hysteresis, because in this case the polarization parameter is larger than the

eritical value 0p.

The most interesting regime of Egs. 2.6 is for nonzero values of the
relaxation time & and the ac field e,,. Numerical integration in this regime is
highly nontrivial, because there are four competing time scales which determine
the dynamics of the CDW response: the phase relaxation time 5!, the
amplitude relaxation time x, the period of the ac signal 27 /Q, and finally the
so-called washboard period 27r/<é5> that is set by the time-averaged velocity

of the CDW. When both ac and de¢ fields are present, it becomes convenient to
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Fig. 6-2) Nonswitching (§=27) and switching (§=5.57) I-V characteristics of
the reduced phase-slip equations when « = §. Calculation by Hall,
ref. 17.
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rescale the wunit of time in FEgs.6. Writing the external field as
e = €4, + €4 cos (2, a new time variable can be defined by 7==Q{ The reduced

phase-slip equations become

wm(,ér = ¢4, + €z.cosT—sing—aA{d—,)

et == L{a-p—( Loy (6.15)

o if A>0
¢o—
¢,+2r otherwise

where w,; =0 /1,. Primes indicate differentiation with respect to 7. If no ac

field is present, w.,; may be set to 1.

Eqgs. 15 were solved by M. Inui using a very accurate integration scheme.! As
long as a phase-slip did not occur, the equations were numerically integrated to
find ¢(r) and A(7). To account for phase-slips, Inui halted integration whenever
A became nonpositive. Inui then calculated the time that A crossed zero,
allowed ¢, to slip by +27, and then restarted integration from the zero-crossing
time. As Fourier transforms and Poincare se:tions of Eqs. 15 were very sensitive
to systematic errors generated by the computer code, Inui was careful to
eliminate this effect from his soclutions. In intervals where A >0, Egs. 15 were
integfated using a double precision (about 14 significant digits), fifth-order
Runge-Kutta method. Variable step sizes were used in the integration, but
absolute local errors were kept smaller than 4 X 1078, The zero-crossing time of
A was estimated Ey fitting a seventh-order polynomial to A(r) and using
Newton's method to find the polynomial’s zero. Thre corresponding phase ¢ was

evaluated at the zero-crossing time by a similar fitting procedure. To avoid
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systematic errors and singularity problems, it was necessary to use 30 significant
digits in evaluating the polynomial coefficients. After the pinned phase was
slipped, integration was restarted with a small initial step size of 27X107° in

order to minimize the effect of the code interruption.

To check the stability of his integration scheme, Inui added a small amount
of Gaussian noise (standard deviation 27X 10™°) to displacements in A and ¢.
The only observable effect was an increase in the background noise level of the
Fourie_ar transforms; the general nature of the solutions (e.g. period 1, pericd 2,
etc.) did not change. To check the accuracy of his solutions, Inui employed an
alternate integration scheme: a variable order (one through twelve) Adams
method, with absolute local errors less than 8X107!°, and twelfth-degree
polynomial fits. Inui found no significant difference in results between the
integration methods. These checks showed that the integration method was

stable and that any systematic errors were negligible.

Apart from the issue of numerical accuracy, solutions to Egs. 15 depend on
the choice of initial conditions. In his study, Inui always used “sliding”
conditions: the CDW was started from the state A=0 and ¢—¢,=6§ at r=0.
He then allowed the system to relax over many periods of the CDW motion.
Before computing any quantities of interest, Inui checked the stability of
solutions to a further increase in the number of relaxstion periods.
Experimentally, the initiaiization procedure corresponds to biasing a CDW far

above threshold, and then reducing the bias to the desired electric field.
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B. Parameter values

The phase-slip equations of 6.15 contain seven free parameters: four CDW
parameters (o, &, f, and ¢,) and three external field parameters (eq,, €,,, and
Wegt). A complete study of CDW dynamies in this seven-dimensional parameter
space would be tedious and prohibitively time-consur;ﬁng. In his calculations,
Inui fixed o, 0,¢, and w, and varied only k, ey, and e,,. As discussed
previously, an appropriate choice for « is 0.2. The value of the strongly-pinned
phase ¢, is expected to have a trivial effect on CDW dynamics, so it was set to
$,=0 (modulo 27). The polarizability § was chosen so that hysteresis in the
theoretical I-V curves is close to the amount of hysteresis observed

expérimentaﬂy. The relative magnitude of hysteresis is about equal to

(ecamen)/en 21— 20— 2y (1 2y

Inui used &= 5X2r since this value of § gives {e;9—es1)/€s0 ~ 0.25, which is
typical of experiment!® (see Fig. 5-4). Finally, Inui chose w,;= 1, which

corresponds to an experimental frequency of about 100 MHz.

To estimate appropriate ranges for k, ¢4, and e,,., Inui considered typical I-V
curves obtained from Egs. 15. Figure 3 shows traces of <¢ > uvs ¢4 when
e.. = 0 and «k varies from 0.5 to 1.0. As expected, the IV curves exhibit both
switching and hysteresis. Where the I-V curves are bistable, dashed and solid
lines respectively indicate CDW current under monotonically increasing and
decreasing bias. Lower and upper threshold fields are indicated in the top
figure, as well as the magnitudes 6; and &; of the lower and upper current

switches.
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follow, the other phase-slip parameters are fixed at o= 0.2, § = 10,

¢g =0, and w,, = 1.0.) Calculation by Inui, ref. 1.
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As mentioned above, the parameter x represents the relaxation time of a
strongly-pinned domain. Since a strongly-pinned domain should respond at
least as quickly as a weakly-pinned domair, one expects k1. Fig. 3 shows that
switching and hysteresis do not depend strongly on & for k£,20.5. The main
difference between the traces in Fig. 3 is the size §; of the lower current switch
and the position €;, of the lower current threshold. As x decreases, §; decreases
and ey slightly increases. In the limit that k-0, §; vanishes completely and
there is only an \/e“-»'é}_l— cusp at the lower threshold. In experimental .V
curves, there is always a finite current jump at the lower threshold, so Inui

considered only nonvanishing values of « in the range 0.2 to 1.0.

Under the application of an ac electric field, the I-V curves of Fig. 3 display
a series of plateaus or “Shapiro steps’.’?> On the nth Shapiro step, CDW
velocity is mode-locked to the nth harmonic of the external frequency:
<cfb>-—~= Nwey. Inui limited ey, to the range that corresponds to the fourth
Shapiro step. Since the width of a Shapiro step depends on the amplitude of
the applied ac field, Inui chose e,, to be in the range e;0 <e,. <2€s0. It turns
out that this is tehe most interesting range of ac amplitude. With this choice,
e4. lies in the range 4.0 to 5.5. Figure 4 summarizes the parameter ranges used

by Inuil.
C. Chaos and period-doubling

The response of the phase-slip equations tc combined ac and dec fields is
qualitatively different depending on whether the ac field is large (e,, > 1) or

small (e, <<'1). With small ac fields, the CDW phase-velocity is not entrained
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by the external frequency. Two independent frequencies characterize the

phase-velocity, which may be written as a double Fourler series:

cg(t)mwNEAgcos(EwNH-Xg) ' (6.18)
b0

(o n)
+ T Bpcos(mwey,t+ X,,) .

11w (3

Here wy is the so-called washboard frequency and is equal to the time-averaged
phase-velocity < ¢ >. When .. is small, wy is essentially determined only by
the dc electric field. Except at special values of e4,, the external ac frequency is
incommensurable with the washboard frequency, so the CDW phase-velocity is a

quasi-periodic function of time.

With large ac fields, the CDW phase-velocity mode-locks to the external
frequency over wide ranges of dc¢ bias.?®* When the CDW is mode-locked, the

CDW washboard frequency is a rational fraction of the external frequency,
W= <¢ >= (p/Q)we;ct >

and the CDW phase-velocity may be written as

é(8) = wy ozo] Cpeos(nwyt /P 4+ X,) .

nw=0

Here P is an integer index characterizing the fundamental periodicity of CDW
motion with respect to the external frequency. When P=1, CDW motion is

described as period-one; when P = 2, as period-two; and so on.

This section examines the effect of large ac fields on the phase-slip equations
of 6.15. To begin with, the amplitude relaxation time is fixed to a moderate

value: k=0.5. (The effect of & is investigated later in this section.) The
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applied ac and dec bias is then varied over the vertical parameter plane shown in
Fig. 4. Solutions to 6.15 are characterized by their mode-locking index
(p/q)= <& >/w.: and their periodicity index P. Fig. 5 summarizes the type
of solutions found in the ey, — e,, plane. Typically, solutions are periodic and
mode-locked to harmonic (p/¢ = integer) Shapiro steps. The symbol (n,P) is
used to represent these solutions, where the integer n is <¢]>/Wezg. Other
solutions in the region are chaotic but still harmonically mode-io?ked, and these
solutions are represented by (n, €). The remaining solutions in parameter plane
correspond to quasi-periodic motion or subharmonic (p/g = integer) Shapiro
steps. For simplicity, these solutions are denoted by (Q/S) and represented by

blank areas in Fig. 4.

In a typical experiment on CDWs, the amplitude of the ac field is fixed and
the dc bias is swept through a range of values. To facilitate comparison with
experiment, Fig.5 is discussed in terms of dc sweeps. For instance, the
horizontal line in Fig. 5 corresponds to a dc sweep in which the ac amplitude is
fixed at 4.5, (This line also corresponds to the intersection of the horizontal and
vertical parameter planes in Fig. 4.) As ey increases along this line, solutions
move from the third Shapiro sltep, through the fourth Shapiro step and an

unlocked region, and finally onto the fifth Shapiro step:
(3:1)— (4, P21)—(Q/5)— (5,1).
Fig. 6 shows the details of this de sweep. The dashed line in the figure

represents the entrainment ratio <¢'>/wezt. Over most of the figure, solutions

are mode-locked to a harmonic step. For example, the third Shapiro step
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extends from ey, = 4.0 to 4.3; the fourth Shapiro step from 4.3 to 5.3, and the

fifth step from 5.4 to 5.5. Harmonic mode-locking breaks down only between

e4. = 5.3 and 5.4.

The solid line in Fig. 6 represents the periodicity index P. (Inui adopted a
convention of assigning P=0 to solutions where periodic behavior is not
observed, including both chaotic and quasi-periodic soiufiens.) Even though
solutions are usually mode-locked in Fig. 6, the periodicities of the solutions are
often not 1. In fact, the most important feature of Fig. 6 is the region of locked
but aperiodic solutions that occurs on the fourth Shapiro step. Between

eq. = 4.3 and 4.53, solutions follow a period-doubling cascade to chaos:
(4,1)— (4,2)— (4,4)— - -+ — (4, ().

Between g4, = 4.0 and 5.3, solutions return to simple periodicity via a-period-

halving cascade:

(4, C)=— -+~ = (4,4)—(4,2)— (4,1) .

Although the figure only rescolves periodicities of up to P = 8, solutions with
periodicities of up to P = 32 were confirmed by Fourier transforms. Figs. 7a-c
show a few of these transforms, for P=1, 2, and 32 at eg = 4.45, 4.5, and
4.5258 respectively. Note that the noise level in these transforms is smaller than
~ 10~%. In contrast, solutions are chaotic for e;, between 4.53 and 4.6. Fig. 7d
shows the Fourier transform of a typical chaotic solution, at ey, = 4.53. The
noise level is roughly 1072, six orders of magnftude larger than the noise level of
periodic solutions. Because of this large increase in noise, chaotic solutions.a.re

clearly  distinguished  from periodic  or  quasi-periodic  solutions.
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Fig. 6-7)  Fourier transforms for selected solutions from Fig. 6-6. The vertical

scale represents the amplitude of the transformed phase velocity,

r{w)=|¢|. Although all of the selected solutions are mode-locked
to the fourth Shapiro step, the solutions are part of a period-
doubling cascade to chaos: (&) period 1 (ey4, = 4.45); (b) period 2
(eqc = 4.5); {c) period 32 {e4. = 4.5258); and (d) chaos {ey. = 4.53).
The horizontal scale has been expanded in the lower figures in order
to show the details of these transforms. Calculation by Inui, ref. 1.
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Having considered a particular dc sweep in detail, the discussion returns to
Fig. 5 to discuss the general behavior of solutions at other values of e,,. As the
ac amplitude decreases below 4.5, Fig. 5 shows that the chaotic region shrinks
on the fourth Shapiro step. Below e,, = 4.2, only period-one and period-two
solutions exist on the fourth step. Also as e, decreases, the unlocked regions
between steps become larger. Below ¢,, = 4.0, for example, an unlocked region
develops between the third and fourth Shgpiro steps. As would be expected,‘
Fig. 5 suggests that only period-one and quasi-periodic solutions exist for small

(< 3) values of ¢,,.

As e, increases above 4.5, chaotic solutions remain present until e,, exceeds
about 6. However, period-doubling and chaotic sclutions begin to be unstable
against mode-dephasing above e, 3"——- 4.6. Thus in the range 4.8 < e, < 6.0, the
fourth Shapiro step is split by a region of quasi-periodic and subharmonic

solutions. For instance, a typical dc sweep at e, = 5.0 produces a sequence like
(8, 1) = (4,1)— (Q/S)— (4,C) = + -+ = (4,1} — (5, 1) .

Due to the system's strong tendency to mode-lock, subharmonic Shapiro steps
occupy much of the region marked (Q/S) in the sequence. In fact, for e,. > 5.6,
the system begins to relock to the n = 3 Shapiro step when it isn’t locked to the

n = 4 step.

Two new types of solutions appear at large values of e,.. The first type of
solution corresponds to P > 1 solutions on the n=>5 Shapiro step. For example,

when e,, = 5.6, a sweep of dc bias encounters two regimes of chaotic solutions:
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(3, 1) = (4,1) = (Q/8)—= (4, C)— «++ ~+ (4,1)

— (5,1}~ (5,2) = -+ — (5,C) .

The second type of solution corresponds to periodicities of the form P = pX2"
where p is a prime number. Although p can be as large as 19, the dominant
periodicity of this form is P=3. The disappearance of chaotic solutions at

esc = 6 coincides to the proliferation of P == 3 solutions beyond this point.

On a heuristic level, the disappearance of chaotic solutions at either large or
small values of e, is reasonable. In Egs. 15, three ingredients are apparently
required for chaos. The most basic ingredient is a non-zero value of &, as will be
discussed shortly. The next ingredient is that the system is close to the center
of a Shapiro step. The last ingredient is that e,. and ey, are of comparable
magnitude. This last ingredient is required because chaotic motion in some
sense represents a f{rustrated response of the system, when neither e,, nor ey,
dominates the CDW equation of motion. When the system is near the center of
a Shapiro step, this frustration is not easily relieved by changing the system’s
degree of mode-iocking. Thus chaotic solutions appear in Fig. 5 when e,, and
eq. are roughly comparable and near the center of a Shapiro step, at

€ge = €4, = 4.5 and 5.5.

The sensitivity of chaotic and P >1 solutions to changes in « is discussed
next, In the limit that £ — 0 the CDW amplitude becomes a deterministic

function of the CDW phase polarization:

6=do |
; .

&—*1—[
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In this limit, the phase space of Egs. 15 becomes two-dimensional. Therefore,
the equations are unable to support chaotic solutions. This conclusion agrees

with the observed absence of chaotic solutions in the overdamped rigid-phase

model,

The presence or absence of P >1 solutions is not obvious when & is small
but nonzero. Inui therefore investigated the nature of solutions found in the
€sc— £ plane shown in Fig. 4, where 02<x<1.0, 40< ¢, <55, and

e, = 4.5, Fig. 8 summarizes the solutions found in this plane.

The structure of solutions in Fig. 8 is much simpler than the structure in
Fig. 5. A series of entrainment tongues is clearly evident. The n=3, n=4,
and n=5 Shapiro steps form three tapered, vertical strips. As k decreases,
these tongues become narrow and the quasi-periodic regions between them
become wider. Conversely, as k increases, the tongues become wider and sub-
tongues develop within them. The first sub-tongue to form is the period-two
strip within the fourth Shapiro step; the next sub-tongue is a period-four strip
within the period-two tongue; and so on. When x = 0.5, the dc sweep of Fig. 6
shows that a chaotic sub-tongue is fully developed within the fourth Shapiro
step. Because the tongue structure is stable above x 2 0.4, Fig. 8 suggests that

the phase-slip equations of 6.15 are relatively insensitive to x for k > 0.4.
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Fig. 6-8)  Solutions in the e, — & plane of Fig. 6-4. The horizontal line marks
the intersection with the e;, — e¢,. plane of Fig. 6-5. Calculation by
Inui, ref. 1. :
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D.  AC conductivity

This section examines the response of the phase-slip equations to small ac
fields. The effect of small ac fields is best measured by ac conductivity, which

is defined as

o(weat) = ¢(ext)/euc (6.17)

When the CDW is sliding, a complication to computing o{w.,;) is that a de
field causes the CDW phase-velocity to oscillate at the washboard frequency,
even in the absence of an ac field. This phenomenon is known as “‘narrow-band
noise”.>?% In Eq. 18, for example, the CDW phase-velocity has a Fourier
component wy A, at the washboard frequency wpy. The amplitude of this
component is about 1. Hence if a small ac field is applied with a frequency that

matches the CDW washboard frequency, the definition of o(w,,;) diverges in the

limit that e,, — O:

1

eac

|o(wez = wn}| ~

The definition of o{weyt) similarly diverges at the second, third, and higher
harmonics of wy. Although o{w,;;) could be redefined to eliminate these
divergences, the definition in 6.17 corresponds to how ac conduectivity is actually
measured in experiment. Therefore Eq. 17 will be used to define o{w,,), even in

the sliding regime of the phase-slip equations.

The sliding ac conductivity of the phase-slip equations is displayed in Fig. 9
for two values of the ac test signal. For the calculations in this figure, Inui fixed

amplitude relaxation rate at £ = 0.5 and kept the other phase-slip parameters
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at @ = 0.2 and § = 10 r. The dc bias was fixed at ey, = 2.8, about 104% of

the lower threshold field €.

Fig. 9a shows o(w,,;) when the ac test signal is 1% of' the lower threshold
fleld. Sharp resonances are present in Reo and Im o at the washboard
frequency and its harmonics. Near the washboard frequency, wy = 1.13, the
main effect of the test signal is to fix the phase of the narrow-band noise
relative to the test-frequency. Thus the magnitude of o{w,,) is constant near
wy and roughly equal to 1/e4.. At frequencies below -wy, the in-phase
component of o{w,,;) is equal to the slope d <<;5>/ded,_. of the I-V curve, while
the out-of-phase component of o{w,,:) is zero. At high frequencies, Im o goes to
zero when w,;; is not close to a harmonic of the washboard frequency. Although

not apparent in Fig. (8a), Re o goes to 1 at high frequencies.

Fig. 9b shows o(w,;) when the ac test signal has increased to 5% of e,.
New subharmonic resonances are present at (2/3) wy and (3/2) wy, and the
harmonic resonances at 2wpy, 3wy and 4wy are now much larger. More
importantly, the fundamental resonance at w,, = wy is no longer sharp. The
real and imaginary components of o{w,;) display broad regions in which
conductivity decreases with.increasiug frequency. Furthermore, Im o is negative
over a wide frequency range, from wg; = 0.6 to w,; = 1.2. An inductive
response (l.e. Im ¢ < Q) over such a wide frequency range is unusual in an
overdamped model of CDW dynamics. Inductive behavior is observed in
overdamped classical models,®” as well as the quantum tunneling model,® but

only over narrow frequency ranges. The widths of inductive dips in these
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models are typically 10% or less of wy, regardless of the test signal magnitude.

In Fig. 9b, the width of the inductive region is over 50% of wy.

III. Comparison of Theory and Ezperiment

This section examines the agreement between predictions of the phase-slip
equations and experimental results on switching crystals. The best quantitative
agreement between theory and experiment is obtained for singly applied ac or
de fields. For example, the -V characteristic of Fig. 3a matches the NbSe; -V
curve in Fig. 5-4 quite closely. In both I-V curves, the differential conductance
dI/dV is constant past the upper threshold field; the hysteresis loop extends
over a bias range which is about 25% as large as the threshold field; and the
ratio of upper to lower current switches is about four to one. This agreement is
trivial, of course, since it is built into the phase-slip equations. In both the
phase-slip model and real crystals, switching is (arguably) caused by an effective
collapse of the CDW pinning potential. This collapse produces a constant
dI/dV past threshold. And the phase-slip parameters «, 4, and & allow the IV
characteristic of the phase-slip equations to be adjusted arbitrarily. Since the
phase-slip equations can therefore fit any single-switch -V characteristic of
NbSej, the shape of de I-V curves is not a critical test of the phase-slip model.
(Some [-V characteristics-of NbSez display more than one switch, a point which

will be discussed shortly.)

A nontrivial point of agreement, however, is the relative size of switching
versus nonswitching threshold fields. A comparison of threshold fields is

difficult to make experimentally, because of large sample-to-sample variations
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even among nonswitching crystals. In NbSe;, comparison can be made
indirectly by studying the temperature dependences of threshold fields.! In the
lower CDW state of nominally pure crystals, switching is never observed at
48 K, but is usually observed (if it is cbserved at all) when the crystal
temperature is jowered to 30 K. In nonswitching crystals, threshold fields
typically increase by a factor of three as the temperature is lowered from 48 to
30 K. In coatrast, threshold fields in switching crystals typically increase by a
factor of ten over this temperature range. The onset of switching is therefore
experimentally associated with an additional threefold increase in threshold
field. (Some experiments on cleaved crystals also point to a ratio of 3:1 between

switching and nonswitching thresholds.'*)

In the phase-slip model, switching is caused by the coupling of a weakly
pinned domain to a strongly pinned domain. When this coupling is absent, the
nonswitching threshold field is 1. But if this coupling is present, and if the
phase-slip parameters are chosen to reproduce experimental IV characteristics,
then the switching threshold field is about 3. Thus threshold fields in the
phase-slip model are three times larger for switching than for nonswitching
CDWs. This agreement with experiment is significant, because other models
require threshold fields that are up to a thousand times larger for switching

than for nonswitching CDWs.

The pinned ac conductivity of the phase-slip model also agrees quite closely
with experiment. In NbSes, the pinned ac conductivity of either switching or
nonswitching crystals is described reasonably well by the frequency dependence

of Egs. 6.13. Furthermore, the crossover frequencies in switching and
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nonswitching crystals are equal to within the uncertainty of sample-to-sample
fluctuations. In the phase-slip model, Egs. 6.13 apply to both switching and
nonswitching CDWs, and crossover frequencies are shifted by only ~20%
because of switching.

For jointly applied ac and de¢ fields, nonlinear instabilities are a
dfstinguishing feature of switching in both theory and e:;periment. In NbSej;
crystals, period-doubling and chaos are observed. only in switching crystals.!® In
Ithe phase-slip model, period-doubling .and chaos occur‘only when 8 > 65 and
x>0; i.e. only when the phase-sli.p. equations pred;act switching. Theory and
experiment also agree on other qualitative aspects of chaotic dynamics. For
instance, nonlinear instabilities are associated with period-doubling routes to
chaos, rather than quasi-periodic routes; chaotic states remain mode-locked to
"Shapiro steps; and period-doubling routes to chaos occur on each Shapiro step
when the dc bias is comparable to the ac field. In addition, the external field
parameters required for chaotic motion are comparable iz theory and
experiment. In NbSes,, period-d’ou‘bli'ng. bifurcations or chaos have been
observed at ac frequencies between 0.5 and 50 MHz, and for ac fields between
509 and 100%% of the threshold field.!s In this paper, chaos oceurs at an ac
frequency comparable to 100 MHz and for ac fields between 100% and 200% of

the threshold field.

Both switching NbSes crystals and the phase-slip equations exhibit a strong
tendency to mode-lock to external ac signals. At temperatures where switching
is prominently developed in NbSe;, Shapiro steps are much broader (as a

function of dc bias) than they are at higher temperatures.'® In the switching
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regime, the regions of de bias between harmonic Shapiro steps are so narrow
that quasi-periodic or subharmonically locked CDW motion ¢an not be resolved.
Furthermore, strong mode-locking in NbSe; is closely correlated with chaotic
dynamics. As the temperature of an NbSe; crystal is raised above the switching
regime, Shapiro steps become narrower and nonlinear instabilities gradually
disappear. Similar mode-locking characteristics-are displayed by the phase-slip
equations. In the parameter regime where switching occurs (6 > 6g), Shapiro
steps are much broader than in the overdamped Griner-Zawadowski-Chaikin
model, which is the nonswitching limit of the phase-slip equations. In the
switching regime of the phase-slip equations, no unlocked regions are observed
between some Shapiro steps; for example, between thé third and the fourth
steps in Fig. 8. And finally, strong mode-locking appears to be a prerequisite for

nonlinear instabilities in the phase-slip equations, as was discussed in Sec, II.

The last point of agreement between theory and experiment is the inductive
behavior observed in sliding ac conductivity measurements. Two characteristics
distinguish the sliding ac conductivity of switching crystals from that of
nonswitching crystals.!® For frequencies below the washboard frequency, Im
o(w) is negative, and both Im o{w) and Re o{w) decrease with increasing
frequency. The same behavior is displayed by the phase-slip equations in
Fig. 9b. In addition, the qualitative difference in o{w) between Figs. 9a and 9b
suggests that inductive behavior is due to a nonlinear interaction of the phase-
slip equations with the applied ac test signaf. Indeed, additional calculations
have shown that broad inductive clips in o{(w) are caused by‘_mode-locking

between the external frequency and the CDW washboard frequency.?®
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Preliminary experiments on NbSe; suggest that inductive behavior in switching

crystals is also dependent on the ac test signal,?®

In some important aspects, h-owever, the behavior of the reduced phase-slip
equations differs significantly from that of NbSe; switching crystals. There are
several discrepancies in sliding ac conductivity, for example. In experiment,!S
unlike the reduced equations, the in-phase component of o{w) is never negative;
the low frequency limit of Re o{w) is less than the high frequency limit; the out-
of-phase component of o(w) Jdoes not go to zero at high frequencies; and the
inductive dip inlIm o{w) occurs over a frequency range much wider than 0.5 WA
There is also qualitative disagreement over the features of nonlinear instabilities.
Deterministic noise iﬁ the phase-slip model is much larger than the chaos
observed experimentally.!® Complete period-doubling casca.:s have not been
observed in NbSes, and period halving cascades, whether complete or
incomplete, are totally absent.!® Small regions of period-fhree or period-five
response may be present in some crystals, but these regions occupy a much
smaller amount of parameter space than shown in Fig. 5.!® Even in de¢ response,
the reduced phase-slip equations differ from experiment, because some NbSes
crystals display multiple, rather than just single, switches in their -V

characteristics. !4

Many of these discrepancies, however, can be traced to the neglect of
internal CDW degrees-of-freedom. The reduced phase-slip equations treat the
weakly pinned regions of a CDW as rigid. Experiments on nonswitching CDWs
show that this is a crude approximation. A better approximation is to treat

~weakly pinned regions as internally deformable. Inclusion of internal CDW
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modes has several important effects on CDW dynamics.?” First, narrow-band
noise is suppressed. The relative amplitude of narrow-band noise decreases as
1/V/N where N is the number of internal CDW modes. Second, the de
conductivity near threshold changes from a (.EI—‘EET)V2 to a (F—~Er)” behavior,
where v > 1. As a result, the differential conductivity dI/dV remains finite and
less than the high-field, high-frequency limit. Third, the high-frequency ac
conductivity becomes dominated by internal CDW modes. Consequently, th;:‘
sliding ac conductivity approaches the pinned ac conductivity at frequencies

larger than the washboard frequency.

The complete phase-slip equations, Egs. 8.5, should give much closer
agreement with experiment than the reduced equations. In the complete
equations, the weakly pinned regions of a CDW are deformable. The sliding ac
conductivity of the complete equations will be improved, therefore, over that of
the reduced equations. The out-of-phase component of o{w) will be nonzero at
high frequencies, since it will approach its pinned value. The in-phase
component of o{w) will be smaller at low frequencies than high frequencies; since
dI/dV is reduced by internal CDW modes. Finally, Re o{w) will remain positive
at all frequencies, at least for reasonable values of the ac test signal. Negative
values of Re o{w) oc-cur because the narrow-band noise signal is larger than the
in-phase CDW response. In real experiments, narrow-band noise is typiecally a
hundred or thousand times smaller than V,.(dI/dV), where V,, is the amplitude
of the applied ac field. (The current V,.(dI/dV) represents a lower bound on
the in-phase CDW response.) If narrow-band noise is comparably small in the

complete phase-slip equations, Re o{w) will not be negative.
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The complete phase-slip equations should also yield more realistic levels of
deterministic noise. Bifurcations and chaos in the phase-slip model are due to
the dynamical instability of phase elasticity. In the complete phase-slip
equations, however, the majority of phase-phase coupling terms will not be
driven into the regime of unstable elasticity. By a simple counting argument,
the relative amplitude of deterministic noise should decrease as the fraction of

unstable coupling terms decreases.

An interesting question is whether, in the complete phase-slip equations,
period-doubling cascades will be truncated, period-halving cascades will be
eliminated, and period-three responses will be suppressed. The introduction of
random noise into deterministic dynamical systems is known to produce these
effects. And real CDW systems are known to exhibit broad-band noise that is
induced by CDW transport.?® If the introduction of internal CDW modes were
known to cause broad-band noise, then one might speculate that this broad-
band noise could indeed truncate bifurcation cascades. Unfortunately, internal
CDW modes alone do not lead to broad-uband noise.*® However, deformable
CDW models are only marginally stable against the development of broad-band
noise.?® The presence of some highly nonlinear phase-phase coupling terms
could induce broad-band noise, which would in turn truncate bifurcation
cascades, If this scenario is correct, then the complete phase-slip equations
would not only provide more realistic levels of chaos, but also they would

provide an explanation of the origin of broad-band noise.

As a final observation, the complete phase-slip equations provide an obvious

mechanism for multiple switching by a CDW.* Instability of the phase-mode
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elasticity can occur independently at each strong pinning site within a crystal,
and hence each strong pinning site can produce a switch. In real crystals,
apparently single switches in an I-V characteristic are often the result of an
avalanche of switches at multiple strong pinning sites. A distribution of strong
pinning centers, along with an associated distribution”of phase-slip parameters,

could also explain the wide frequency range of the inductive dip in Im ofw).
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CHAPTER 7: CONCLUSION
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CHAPTER 7: CONCLUSION

The most important results of this thesis are experimental and theoretical
demonstrations that switching is an intrinsic regime of CDW transport.
Experimentally, narrowband noise spectra (Fig. 3.7} show that switching marks
the abrupt onset of CDW conduction. Nonperturbative four-probe
measurements (Fig. 3.8) prove that switching occurs in the bulk of a erystal and
that switching is independent of the measureménts used to observe CDW
conduction. Scannipg electron microscopy (Figs. 3.4 and 3.10) shows that
switching is not associated with external crystal defects. On the contrary,
cutting and cleaving experiments (Figs. 3.3 and 3.5), as well as threshold field
studies (Figs. 3.2 and 38.17}, indicate that switching arises from strong pinning at
localized internal defects. Theoretically, general arguments show that switching
should arise whenever weak pinning effects are negligible and strong pinning
centers are sparsely distributed within a crystal. Thus, both theory and
experiment point to 'strong pinning as the origin of switching. In this sense,
switching is as fundamental as nonswitching transport to CDW dynamics.
Switching transp‘ort occurs in the presence of strong, nonuniform pinning,

whereas nonswitching transport occurs for uniform pinning, whether strong or

weak.
Switching transport is characterized by four types of phenomena:

1. CDW current discontinuities; e.g. maultiple switches within an IV
~ characteristic (Fig. 3.6); formation of current domains within a crystal (Fig. 3.8);
and several fundamental ‘frequencies within a narrowband noise spectrum

{Fig. 3.7). Current discontinuities imply the existence of phase-slip centers
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(Fig. 3.9}, at which the CDW amplitude periodically collapses and reforms.

2. CDW polarization; e.g. low-field resistance states (Fig. 3.15); convex or step-
like dV/dI curves (Figs. 3.i3 and 3.14); and abrupt depinning and hysteresis.
Polarization effects result from the application of large electric fields to strongly

pinned CDWs,

3. Avalanche depinning; e.g. sublevels within hysteresis loops (Fig. 3.12) and
negative differential resistance instabilities (Figs. 5.2 and 5.3). Avalanche
depinning is caused by the interaction of strong pinninghcenters within a
crystal, in which phase slippage at one center triggers phase slippage at

neighboring centers.

4. Pseudo-inertia; e.g. the small- and large-signal response of switching CDWs
to ac electric fields. In response to small ac electric fields, switching CDWs
appear to be overdamped when pizned (Figs. 4.2 and 4.7), but underdamped
when sliding (Figs. 4.3 - 4.5). In response to large ac signals, switching CDWs
display unusually stable mode-locking (Fig. 5.4), which leads to period-doubling
instabilities (Figs. 5.5 and 5.8), noisy precursor phenomena (Figs. 5.12 - 5.14),

and the collapse of CDW dynamics onto a single effective degree of freedom.

Nonswitching transport is characterized by none of these phenomena, and
therefore switching represents a qualitative‘ly different regime of CDW
dynamics. The differences between switching and nonswitching transport have
been addressed on an ad hoc basis by various phase-only models: the
polarization model of Janossy and Kriza,l the avalanche model of Joos and

Murray,” the inertial model of Hall et al® and the current noise model of
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Wonneberger.? The current noise model is fundamentally inconsistent with the
experimental results, and none of the other models provide a general framework
that describes all aspects of switching. The most serious shortcoming of the

models is their neglect of current discontinuities.

The thesis has proposed a new model of switching which is based on phase
slippage. The model starts with the observation that CDW pinning depends on
the elasticity of the CDW phase. During phase slippage, the elasticity of the
phase can become unstable in the presence of strong, nonuniform pinning. If
the elasticity becomes unstable, then abrupt depinning occurs because the
pinning forces which impede CDW motion effectively collapse. The thesis has
argued in general terms why phase slippage is consistent with the experimental
results, Table 1 summarizes the arguments very briefly. Current
discontinuities arise naturally in the mode! from phase slippage at strong and
ultrastrong pinning centers. Polarization effects are produced by the amplitude
dependence of the phase elasticity. Avalanche effects result from size and
spatial distributions of strong pinning centers within a crystal. And pseudo-
inertial effects occur because of the finite response times of strongly pinned
domains. Thus, phase slippage provides a framework that describes the four

general types of switching phenomena.

The thesis has also proposed a set of partial differential equations to describe
the dynamics of switching CDWs. The equations are derived from a
Hamiltonian which is based on the dispersion relations of Lee, Rice, and
Anderson.® Under certain conditions, the equations reduce to a simpler set of

coupled first-order differential equations. The first-order equations were
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EXPERIMENT THEORY
Current Phase-slippage
discontinuities

Polarization

Amplitude-dependent

effects phase elasticity
Avalanche Multiple
effects phase-slip centers

Pseudo-inertial
effects

Response time of a
strongly pinned domain

Origin of switching phenomena within the phase-slip model.
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analyzed in collaboration with Masahiko Inui, and were shown to display
dynamics that is qualitatively, and sometime quantitatively, similar to real
CDWs. Chapter 6 contains a detailed analysis of the generally satisfactory

agreement between theory and experiment.

In conclusion, switching is a fascinating and apparently rather general
feature of CDW dynamics. It is the first transport phenomenon in which
amplitude dynamics is as important as phase dynamics to a description of CDW
motion., The thesis has demonstrated the important relationship between phase
polarization, strong pinning, and pﬁase slippage in the switching process. Many
of the ideas expressed here for NbSe; and Fe,NbSe; should be applicable to
other sliding CDW systems, for example Kq30MoOgz, TaS;, and (NbSe4)s a3l
Experiments on these compounds, analogous to the experiments reported here,

will be important for a complete understanding of CDW switching.



Al.

A3.

A4,

300

APPENDICES
Perturbation Calculation of CDW Formation .covevees veeveriieeissieeeneen 301
Peierls Distortions in a Kronig-Penney Crystal .v.cocvveevnnennn. e 314
Nonperturbative Measurements .iuriiciieiineeeneeecveresiinrereererieneeseennns 330

PublIcation LIS .uviiiiieeriirenseineereeeriseteenescnsrarsrersresssresossennsesenssenssassennssens 337



301

APPENDIX A1: PERTURBATION CALCULATION OF
CDW FORMATION

This appendix provides the details of a perturbation calculation of CDW

formation using single-electron wavefunctions and classical lattice dynamics.

I General Distortions of a Lattice

Consider an undistorted, one-dimensional crystal in which single-electron
energies FE,{k) are determined by Bloch function solutions X£°)(z) of the
Hamiltonian H, = p?/2m + V,(z). The crystal potential V,(z) may be written

as a sum of individual lattice site potentials:

Vo(z) = Yv(z—z), (A1.1)
J
where z; = ja, with a the crystal lattice constant. The summation is over

lattice sites of the crystal.

A distortion of the crystal lattice perturbs the crystal potential experienced
by the Bloch electrons. A general {aperiodic) distortion may be specified by
enumerating the set {u;} of displacements at each of the IV lattice sites within
the crystal. The new potential due to the displacements is V,{z) + V,(z),

where to first-order in the uy,

Vi) = — Eu}'%v(x«—mj). | (A1.2)
J .

A general set {u,;} of displacements may be decomposed into Fourier

components (normal modes):
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u; = Yuge ' ~ (AL3)
i

so that the perturbation may be written as

Vi(z) = — PIPILIT '.qz"-i-v(x—-xj) . (A1.4)
77 '

For a general wavevector &, the lowest order change in energy is

| Vi(k k3 {u}) |2
o E (k) — E,(k))

E\(k) — Eo(k) = (AL.5)

provided that Eo(k’) = FE,(k) for any nonvanishing value of the matrix element

Vl(k,kf;{uj}). The matrix element is given by

Vilk k' {u}) = [dax(2)Xe(2)Vi(z) . (AL.6)

The Bloch funections 3;re assumed to be normalized over the entire crystal. By
decomposing V{z) according to Eq. 4, the matrix element may be written as a
sum of integrals over the individual lattice potentials dv/dz. Using the Bloch
condition and the periodicity of dv/dz, each integral may be translated back to
the origin. The translated integrals are independent of the index j, but
multiplied by factors of e (k= &'+ 153, 50 that summation over 7 gives zero unless
the wavevector k' is equal to k£ 4+ ¢ modulo a reciprocal lattice vector g. The

matrix element reduces to

Vilkk'5{u}) = 065 k- t'+,G1(k 0)g (AL7)
q
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where &; p_ 4’4 is a Kronecker delta and

Gilka) = — [ de%ys (2)Rele) v () (A1)

In Eq. 8, the tildes over the Bloch functions indicate that the functions are
normalized to unity over one unit cell; the integrand in Eq. 8 is nonnegligible

only over a unit cell or so.

Using Egs. 4 - 8, the perturbation potential may be converted to an operator

in k-space:

Vi(z) «> S 6g;k_k’+qqu1(k,q)|k ><]C| . (A1.9)

kk . g
the normal-mode amplitudes u, may be expressed in terms of phonon creation
and annihiiation operators, and the matrix element |k}><k| may be written
as the many-body operator aj ,a;. The perturbation V,(z) reduces to the
electron-phonon interaction term of the Frohlich Hamiltonian, Eq. 2.2, where

the coefficients g(k,¢) and G,(k,¢) are related by:

g(k,q) = Gk, q)(B/2Muwy)* . (A1.10)

II. Mean-Field Approzimation

Egs. 5, 7 and 8 are as far as one can go for a general set {u;} of distortions.
A mean-field calculation of the Pelerls distortion specifies a special set of {u;}

that correspond to a sinuscidal modulation of the lattice:
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uj = UQB :'Qr,- + u_Qe“’.Qx" . (Al.ll)

Because the displacément u; must be real, u,g and u_.g are complex
conjugates and may be written as ug = uexp(+i¢). The choice of the phase ¢
is generally arbitrary, although not if the distortion is commensurate with the
lattice. In considering static distortions, ¢ may be set to zero. The mean-field

matrix elements {A1.7) become

Vl(k,k' ,Q) =y E 6g,k—k'+qG1(st) . (Al.lQ)

g *Q
For bands less than half-filled, umklapp processes do not occur in one-
dimension, so the lattice vector ¢ may be set to zero. Henceforth, the discussion

shall consider only bands that are less than half-filled.

The matrix element Vl(k,kl;Q) is generally nonzero when £ = k + Q. The
second-order response in Eq. 5 becomes first-order whenever F,(k+@) is about
equal to E,(k); in this case, the energy shifts E, (k) — E,(k) must be calculated
using degenerave perturbation theory. The simplest degenerate calculations
correspond to incommensurate distortions, in which either E,(k+ Q) or
E,(k— Q) is close to E,(k). For definiteness, the case E,(k+ Q) = E,(k) shall
be considered; results for the case E,(k— @)= E,(k) are obtained by

substituting - ¢ for + Q. A linear combination,

Xf) = A X[ + Axf9g, (AL13)

must be found such that {H,+ Vl)Xﬁl) = El(lc)Xp). This differential equation

leads to two coupled equations for the mixing coefficients A; and Aq:
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[Eo(k) — Ey(B)A; + ATk, + Q)4 = 0 (Al.14a)

A(k";" Q)AI 4 [EO(IC+ Q) - El(k)]Ag = O, (A1.14b)

where A(k, + Q) = V,(kk+Q;Q). The new energies E,(k) are given by

-

E\(K) = SIE(k+Q) + Bk)] +

SUE(E+Q) = B, (6 + 4] A +Q)1* . (AL13)

The plus sign applies for |k| > Q/2; the minus sign for |k < @/2. When
the energy splitting between E (k) and E,(k+ Q) is large, Eq. 15 reduces to

Eq. 5 if the large denominator terms in that equation are neglected.

Commensurate distortions are handled in a similar fashion to
incommensurate distortions, except that a larger linear combination of Bloch
functions must be used to determine the perturbed wavefunction Xii)(z). For a
commensurate distortion of order M!, the energy E,,(!c+MIQ) is equal to E,(k),
lol

r

X = % A mola) (AL10)

m o ()
This leads to a matrix equation which may be approximated by Eq. 15, provided

that ¢ = 0. For nonzero values of ¢, the energy per state is increased by

HA|2/E(ke)) 1A | /W}ﬁ’!""2 [cos(M'¢) — 1] where Wis the bandwidth.

For both commensurate and incommensurate distortions, Eq. 15 shows that
the unperturbed band E,(k) splits into two bands, Ej” (k) and Ei (k). States in

the lower band, E| (k), have lower energies after the distortion than before.
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States with wavevectors close to k = — Q/2 undergo the largest energy shifts:

Ef(—-Q/2)= Ea(~ Q/2) +|A(-Q/2, + Q)] . (AL.17)

The gap parameter is A, g = A(~Q/2, +Q) and its modulus is denoted
A= {A,qg|. In a nearly free electron approximation, A(k, + Q) is the Fourier
component of Vi(z) and is equal to A4 g. Outside of the nearly free electron
approximation, A(k, + @) is assumed to be largely independent of & and well
approximated by A4,g. (For the case E,(k—Q)= E,(k), note that
Al+Q/2, —Q)= A'(— Q/2, +Q) so that A(k, —Q) is approximated by

A_g=4{q)

For @ = 2kp, the electronic gap opens at the Fermi surface and at zero
temperature the total energy of the occupied states is lowered. The energy of
the occupied states may be calculated by integrating E| (k) from kg to + kp.
The electronic energy actually consists of two components: ng), the
unperturbed electronic energy; and E,_jgc., the perturbation due to the

lattice distortion:

N + kg
EP) = [ dk D(k) E,(k) (A1.18)
- kg
+kp
Eel-—latt:‘ce - f dk D(k){El— (k) - Ea(k)} : (Al'lg)

"k.F'

Here D(k} is the density of states in phase space; in one dimension D(k) is a
constant, Na/7, and may be taken outside the integrals. Since the electronic

energies are changed appreciably only near the Fermi surface, unperturbed
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energies in the integrand of Eq. 19 may be linearized about the Fermi energy:

Ey(k) = Ep + Fup(| k| —kg) (A1.20)

where Avp = dEp/dk. With this linearization, the integrand of Eq. 17 reduces

to

Ey — Eolk) = — {[BPvR(1k] — kp)® + A2]* — Rop(kp— | k])} . (AL.21)

The electron-lattice interaction term becomes

Ep
Ee!—!attice - - n(O)fde{(52+A2)V” - 6} s (AI.QQ)
o

where n(0) is the Fermi level density of states. The upper bound Ep of the
integral is the energy range over which the linearization (A1.20) is valid. The

electron-lattice interaction energy may be integrated to give

E ot
~ ol—{lottice = é21né (Al.23)

¥

where single subscript tildes indicate normalized variables: =~ el=isttice =

E,i_tattice /|27 (0)Egl, and A = A /[2Ep). Figure 2.2 shows a graph of E,j_ jzuce.

The lattice may be treated as a classical, linear array of ionic masses M that
are tied together by springs of spring constant C. The classical, unperturbed

energy of the lattice is
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[att:ce Ep?/?m + mCE( uJ—1)2 : (A1'24)

For a static distortion, the momenta p; = 0. Because of the mean-field

approximation, the elastic energy of the lattice may be summed directly:

Eisttice = NngkFuQu...Q == NngkFuz y (A1.25)

where wyg, is the unperturbed frequency of the 2k normal mode:
Mw, = 4Csin®kp (A1.26)

The total crystal energy is given by crystal energy is given by Eq. 2.14 and the

equilibrium value of A, by 2.18,

III. Charge-Density Wave Induced By A Peierls Distortion

The electronic charge density in the distorted state is

M(z) = v x}(z)]?. (A1.27)
k

Neglecting niceties of normalization, the distorted wavefunctions are given by

Egs. 13 and 14:

k<0 xfP(z)= xf)Nz) +

k>0 xfz)= x[(z)

The + Q Fourier component of p(l)(x) is found in the usual way:
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1 1), —iQr
pro= —— [ dx Ve {A1.29
Na ztal )
The integral over the entire crystal may be written as the sum of N unit-cell
integrais. Exploiting the Bloch condition, only cross-terms in p{}‘)(z) survive

summation. These remaining terms are multiplied by factors of the form

* .
[ dz Xjp olz)Xe(z)e T107 (A1.30)
um'lt
cel

which may be set to 1. (In the nearly rree electron approximation, these factors

are exactly 1.) The + @ Fourier component reduces to

- 1
prg = mEe!—iatﬁce (A1.31)
o %_ A
a G2 +e

The ~ @ Fourier component is similar except that — @ replaces + Q, and

vice versa,

The distorted electronic charge density is a superposition of a background

density p{z) and a density wave pepw{z):

peow(T) = py e P + p_ge (A1.32)

= — peos(Qz+§,)

The CDW amplitude may be rewritten in a form that clarifies the significance of
the electron-phonon coupling constant, Eq. 2.20. Since the density of states at

the Fermi level is about n(0) = nNa/Ep, the ratio of the normalized CDW gap
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to the normalized amplitude is about equal to the electron-phonon coupling

constant: (A, /Er) = Np,/n).

The orientation ¢, of the density wave is determined by

Gig= Gi(—Q/2,Q); see Eq. 2.23. In the nearly free electron approximation,

1 0z qU
Goo=— L [ dge-iz B
+0Q - ;{;g ze I (A1.33)

Igtegrating by parts and assuming that v(z) is symmetric about z = 0 gives

Gig= — i(Q/a) [dx v(z)cos(Qz) . | (A1.34)

As long as v(z) falls off monotonically as |z| increases, the integral in Eq. 34
has the opposite sign as v(z). Thus the phase §, is —7/2 for v > 0 and +7/2
for v < 0. (This statement about £, is actually more general than the nearly
free electron approximation, but a less restrictive proof is too far afield from the

purposes of this paper.)

IV. Lindhard Response Function

Derivation of the Lindhard function is closely related to the derivation of the
induced charge-density wave. Consider the electronic response of a crystal

acted upon by a static, external perturbation V,,:

-~

Vert(z) = Venele ey e—iqz) . (A1.35)

An electronic state of wavevector £ is mixed by V,,; with states of wavevectors
k +q. A state's response to V,, is the difference between its probability density

in the presence and absence of V,;. Summing the response of all occupied
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electronic states and thermally averaging the result gives the total electronic

response 8p. The response §p may be calculated by nondegenerate perturbation

theory:

bp = — X(QwT;“o)cht 3 (A1-36)

where X is given by Eq. 2.25,

The response function X is related to the electron-lattice interaction energy.
From Eq. 19, the electron-lattice interaction energy may be generalized to

nonzero temperatures:

Eovtattice = [ dk D(k) [ (R} E (k) — E,(£)} . (A1.37)

The integration in equation extends over all of k-space, but is effectively cut off
by f° for states far beyond the Fermi surface. At temperatures above the
Peierls temperature, f° smears the Fermi surface sufficiently that the first-order
effect of a Pelerls distortion on electronic energies may be neglected and the
energy difference [E (k) — E,(k)] may be approximated by second-order
perturbation theory:

| Vy(kk'59,)]
E (k) — Eo(k')

Eoi lattice = fdk D(k) fa(k) 2 (Al-38)
k

The matrix element V;(k,k’;q) is nonzero only for k' = k +¢q. The coupling

constant G(k,¢) may be approximated by G = |G {—kp,2kr)|. The electron-

lattice energy reduces to
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fo(k)G2ut + Jo(E)G % ?

Bet-temter = [ 48 D (’C){Eo(k) e A = Eo(/c-w)} (A139)

= — quQX(q,T;uo = ().

Eq. 39 is also valid for Q = 2kr at temperatures below the Pelerls
temperature if u is allowed to assume nonzero values. This has already been

implicitly demonstrated for the case of T = 0. Rewriting Eq. 31 gives

Eo—tattice = NalA_gpyg . (A1.40)

The response dp is equal to Nap, g and the perturbation energy A, o may be

identified with V,,, so that

Eoitattice = (G4 gu-g)—2qG_qu4g) (Al.41)
= — G2u?z(Q,T = O;u,) .

The response function X is also closely related to the normal mode
vibrational frequencies of a crystal. Given a 2kr normal mode excitation, the

total crystal energy may be written as

2+qQP-qQ

Extg == Eg;’) - :eru_Qu.,.Q + N v + NMw%u.,. Qu-gq  (Al.42)

where pg is the momentum associated with the +2kp normal mode. Hamilton's

equations of motion give

NMiig = {NMwd — G*X}ug . (A1.43)

Above the Peierls temperature, the frequency of the 2kr normal mode is
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reduced by the electron-lattice interaction:

(A1.44)

In fact, above the Peierls temperature, the frequency of any normal mode g is
given by Q? = wg' — [G*X(q,T;0)/NM), where wy is the frequency of the mode
in the absence of electrons. Below the Peierls transition, the ¢ normal mode
frequency must be zero as ¢ approaches 2kr from below. Eq. 4 gives a condition

on X(g = 2kp, T < Tpju = O):

Xm el (A1.45)

The linearization of Eq. A1.17, applied to the definition of X, leads to the self-

consistency condition on A,, Eq. 2.30.
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APPENDIX A2: PEIERLS DISTORTIONS
IN A KRONIG-PENNEY CRYSTAL

This appendix calculates the magnitude of a Peierls distortion for a simple
example, bhé Kronig-Penney model., The calculation demonstrates how a
reduction in symmetry reduces the groundstate energy of a metal. For a
Kronig-Penney crystal, the reduction in groundstate energy may be calculated
without resort to perturbation theory. This ‘‘exact” calculation is presented
first in Sec.I. The calculation is repeated in Sec.Il, this time using the
perturbation results from App. Al. In Sec.III, the Kronig-Penney model is
reviewed briefiy' for reference. In the last section, Sec. IV, the Kronig-Penney

equation is derived for a dimerized lattice.

I “FEzract’ Caleulation

The Kronig-Penney model is a standard model of how electrons interact with
the ions of a crystal, E;.ﬂd is discussed in most textbooks. Basically, the model
consists of a linear chain of ions, rigidly spaced with lattice constant aq,
interacting with some electrons confined to the lattice. The interaction of an
electron with an ion is highly idea}iied: the electron-ion potential is simplified to
a Dirac delta function. The total potential Vy(z) experienced by an electron is
the sum of the ionic delta functions at all the lattice sites in the erystal,
Eq. A2.21. In the limiting case of a strong electron-ion interaction, solutions
may be obtained for electronic Bloch functions X [9)(z) and energies Eq(k) which
are parameterized by the wavevector k of an electron, Egs. A2.28 - 31. The

strength of the electron-ion interaction is parameterized by an energy V, so the
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strength of a single ionic delta function is equal to eV. In the following
calculation, only the repulsive case ¥ > 0 will be considered, but the attractive
case V < 0 is handled in a similar manner, mainly by substituting hyperbolic

for trigonometric functions.

Left undiscussed by textbooks is the instability of a Kronig-Penney crystal
whose lattice is not absolutely rigid. An absolutely rigid lattice is unphysical
because real crystals are deformable. In a simple model of real lattice,
neighboring ions are spaced apart by springs. Regardless of the stiffness of the
springs, the lattice of a Kronig-Penney crystal with a half-filled band always
dimerizes so that the ionic spacing is modulated with a periodicity of twice the
lattice constant a. The distortion occurs because a dimerized crystal has a

lower total energy than an undistorted crystal.

To compute the energy difference between the uniform and dimerized states
of a crystal, first consider the energy difference for a single electronic state of
wavevector k. The energy Eq(k) of an electron in an undistorted crystal is given
by Eq. 28; the energy E;(k) in a dimerized crystal by Eq.41. In these
equations, lengths are expressed in units of a, wavevectors in units of (1 /a), and
energies in units of (A2 /2ma?), where m is the electron mass. For example, the
normalized strength of the ionic delta functions is v = (2ma?V/A%). If the

distorted lattice is dimerized by an amournt v around each lattice site, then the

change in energy for a single electronic state is

Ef(k) = Eo(k) = +vp{|cos®(k) + (vu)?]® — cos(k)} . (A2.1)

Here vp = 47° /v is the Fermi velocity dE(kp)/dk. The plus sign in Eq. 1
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applies for |k| > kp and the minus sign for |k| < kp. The new energy
spectrum is split by a gap that occurs at the Fermi wavevector. The magnitude
of the energy gap is 2A = 2vvpu. States below the gap are lowered in energy,

whereas states above the gap are raised in energy.

At zero temperatures, only states below the Fermi surface are occupied, so
the electronic energy of a Kronig-Penny crystal with a half-filled band is
reduced by a distortion of its lattice. Integrating the energy difference A2.1
over all occupied states gives the change in total electronic energy due to

electrons interacting with a dimerized lattice:

+ kg

Eef-—latﬁce = f dk D(k){Elm (k) - EO(k)} : (A22)

—kp

Here D(k) is the density of electronic states in k-space; in one dimension, D (k) is
independent of k and may be taken outside the integral. The remaining

summation reduces to an elliptic integral:

Eo—tattice = — 2UFD(]€){ 1+ (vu)2 E

7———————1 ~ 1}. (A2.3)
1+ (vu)? ]

The function E(r) is the complete elliptic integral of the second kind. E(z) is
2 1 with equality only for z = 0, so the electron-lattice interaction energy is
always reduced when the dilation u is nonzero. Just as importantly, E,;_ jasce 1S
slightly subquadratic in u for small values of u. The slope of |E,/_ a0 | 0D 2
logarithmic plot is asymptotic to (but .always slightly less than) 2 as u
approaches zero. This subquadratic behavior means that E,_ e will

eventually be larger than any quadratie function at sufficiently small values of
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In contrast to FEei-igttices the lattice strain energy Eju,,, is a quadratic
function of the distortion amplitude u. If Cis the effective spring constant for
elastic deformations of the lattice, then the increase in lattice energy due to

dimerization is -

1 .
Eisttice = ENC(Q'“)Q . (AQA)

For small distortions, the magnitude of E,_jui, will exceed Ej ... Since

Ei<iattice is negative, the net energy of a Kronig-Penney crystal is reduced by

small dimerizations of its lattice,

The optimal amount of dimerization may be found by minimizing the

combined lattice and interaction energy:

d
0= W{Eiattice + Ecl—lattice} (A2-5)
2
Dk
=2u{2NC-— :}F” (k) - ! ]}
1+ (vu)? 1+ (vu)?

Here K(z) is the complete elliptic integral of the first kind. For small

distortions u, the elliptic integral may be expanded as

K

7_1 =3 A28
1+(vu)2] " ( | /

The minimization condition A2.5 becomes
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0= 2u {2NC — vpv D (k)n -iim} (A2.7)
. vy
There are two solutions to Eq. 7. The first, v = 0, corresponds to an unstable,
uniform lattice. The solution for a stable, dimerized lattice is given by

= %exp {—- ﬁ%} (A2.8)

The corresponding gap in the electronic spectrum is

INC
280 = 2W exp]— —2C__L A2.9
0 exp{ v;.-vQD(k)} (42.9)

where W = 4vp is the electronic bandwidth of an undistorted crystal. The gap
24y and the distortion amplitude v are proportional to one another, so either

parameter equally well describes the degree of lattice dimerization.

The amount of dimerization depends exponentially on the ratio of lattice
stiffness to electron-ion interaction strengih. As would be expected, the
distortion u is suppressed by a very stiff effective spring constant between the
lattice ions, i.e. large values of C. The dependence on the ionic potential
strength v is more complicated. A very small electron-ion interaction, i.e. a
small value of v, leads to a small distortion since the electrons are nearly free
and therefore largely unaffected by the lattice. The opposite extreme, a large
value of v, also leads to a small distortion because of the pre-exponential factor,
the Kronig-Penney bandwidth. A large repulsive ionic potential forces all

electronic wavefunctions to have nodes close to the crystal’s lattice sites, which
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leads to a narrow bandwidth. The gap in the electronic spectrum can be no
larger than the electronic bandwidth, so the gap, and hence the degree of

dimerization, is reduced by a very large electron-ion potential.

Many of the Kronig-Penney results just derived apply to real crystals. In
particular, the electron-lattice interaction energy is a subquadratic function of
the lattice distortion amplitude u. In the absence of electron-electron
interactions, the electron-lattice interaction will cau’se a Peierls distortion of the
crystal. Also, the subquadratic behavior of the electron-lattice interaction is
generally given by function that is very close to the elliptic integral of Eq. 3. As
a result, the Kronig-Penney gap equation is a specific case of the general Pelerls
gap equation. And finally, the gap parameter A and the distortion parameter u
are always proportional; in the language of Landau phase transitions, they are

equivaient order parameters for a Peierls instability.

II. Perturbation Calculation

Using the perturbation theory outlined in the previous appendix, this section
will recalculate the dimerization of a Kronig-Penney crystal with a half-filled
band. Not surprisingly, the results agree with those obtained in Sec.I. The
point of this section is twofold. First, to evaluate some of the most important
equations of the perturbation theory using a concrete model, and second, to

illustrate the validity of the approximation made by the perturbation theory.

Unfortunately, a Kronig-Penney crystal with a half-filled band is 2 somewhat
pathological example. Because the crystal’s band is half-filled, the 42k normal

mode of the lattice is identically equal to the —2kp normal mode. This identity



320

leads to double-counting if all of the perturbation equations are applied literally.
Also, becaus;*: of the ionic delta functions, spatial cier‘svatives of the electronic
Bloch functions are discontinuous. These discontinuities can give additional
factor-of-two errors. If these two socurces of “two’’ error are avoided, however,
application of the perturbation theory to a Kronig-Penney ecrystal is

straightforward.

Eq. Al.11, an expansion of a Peierls distortion in normal modes, is the first
and most basic equation to be molified by the identity of the +2kp and —2kp

normal modes. This equation becomes

u; = uge Qs (A2.10)

where u; is real because e 0 = +1. This change in u; ripples down through

several other equations. The matrix element V;(lc,kl;Q) becomes

Vilkk'5Q) = uby s k's gG1(k Q) . (A2.11)

The lattice vector ¢ must be included because k¥ + Q and k — Q are the same
wavevector, differing only by ¢. The next major change is in Ej .., which

becomes

i
Elttice = E-NMw%'UQ . (A2.12)

Expressed in terms of wg, the lattice strain energy appears to be halved.

Because of this change in Ej .., the equation for the gap parameter becomes
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%} (A2.13)

A = 2Egexp{—
Bep{_ n(0)G?

The dimensionless electron-phonon coupling constant A appears to be doubled:

0 2
— o MOG" (A2.14)

2NMwiy,

The coupling constant G needs to be evaluated in order to compare Eqs. 13
and ¢ for the gap parameter Ag. Equation A1.8 for G{— kp, 2kr) may be used

without modification:

L d _
Gy =— [dz X+kFX...kF-E;{vc5(z)} : (A2.15)

The evaluation of the integral requires the standard definition of the derivative

of a delta function (which is integration by parts):

d o~ -~
Gy =+ v (X4 1p(2)X - 4p(2)]zmo - (A2.16)
Here the discontinuity in the Bloch function derivatives becomes important.

Schrodinger’s equation requires that the spatial derivative of a Bloch function

be discontinuous at z = O:

X {0+ €) — X, (0—€) = "Z"X"(O) . (A2.17)

For large values of v, the spatial derivative of a Bloch function changes sign at
z = 0. The average magnitude of the spatial derivative is therefore (v/2a)X;(0).

Using the average magnitude of spatial derivatives in the equation for G gives:



322

G| = — vpve' /2 (A2.18)

The medulus G of G is vpv; the phase & of G is — /2, as predicted for a

repulsive potential.

Combining Egs. 13 and 18 gives

NMw§y,

2Ay = 4Fgexpy{— ———————
0 BT e D (k)

(A2.19)

The density of states is n{0) = 2D(k)/vp. Using Mwd = 4C, the gap

parameter finally reduces to

2NC
289 = 4Fgexp{— ————1. A2.20

0 B p{ vFng(k)} ( )
This agrees with Eq. 9 if Eg is taken to be half the bandwidth W. The
important feature of Egs. 9 and 20, however, is the exponential factor, which is

correctly given by perturbation theory without any adjustment.

The subquadratic behavior of E,_j.. in both the ‘‘exact” and
perturbation calculations leads to the gap equation A2.20. In turn, the
subquadratic behavior of E,i_ e 18 caused by a “resonance' condition which
the perturbation calculat'ion exploits explicitly:_for some range Eg of energies
about the Fermi surface, states of wavevector k are roughly degenerate in energy
with states of wavevector k #2kp. Chapter 2 generalizes this resonance

condition so that it may be applied to three-dimensional crystals at nonzero

temperatures.
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IIl. Review of the Rigid Kronig-Penney Model

The Kronig-Penney model consists of a periodic array of Dirac delta

functions. The crystal potential Vy(z) experienced by an electron is the sum of

the ionie potentials at each lattice site:

Volz) = 3 aVéz—ja) , (A2.21)
J

where ¢ is the lattice constant, and V'is the strength of a single ionic potential. _
The potential strength V may be either positive or negative. Positive values of
V lead to solutions which resemble nearly free electron states, whereas negative
values lead to tightly bound solutions. For definiteness, V will be assumed to be

positive in the following discussion.
Solutions to Schrodinger’s equation are written in the form

XO(z) = A e™0F 4 4 e %07 (A2.22)

where the energy of the wavefunction X% is Eg = — A%k$ /2m. Solutions of

Schrodinger’s equation satisfy Bloch's condition:

X[z +a) = e*x}(a), (A2.23)

where k is the wavevector of the state Xﬁo). Schrodinger’s equation leads to two

equations for mixing coefficients A; and A,:



where v = 2ma 2V /A%, These equations lead to a relationship between kg and

k, which is an implicit equation for electron energy EO as a funetion of

wavevector &

ink
cos{ka) = cos(kga) + é‘V ik

e (A2.25)
Equation 25 is a transcendental equation which may be solved graphically,
Fig. 1. The right-hand side is plotted as a function of k¢. Given a particular
value of k, a horizontal line is drawn starting at a vertical offset given by coska.
Intersections of the horizontal line with the plotted curve are allowed values of
kg for that value of k. Since coska is bounded by +1, only certain regions of the
curve lead to allowed values of ky. Gaps exist in a plot of Ey(k) vs. & which

separate the electronic energy spectrum into bands of allowed energy.

For the rest of this discussion, it will be convenient to measure lengths in
units of a, wavevectors in (1/a), and energy in (A®/2ma*). Eq. 25 may be

rewritten as

sin ko
ko

coé(k) = cos(kq) + *-;- vV (A2.26)

Energy is now lcg .
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\
\ KRONIG-PENNY FUNCTIONS
\ ——— DIMERIZED LATTICE
20 —-— UNDISTORTED LATTICE -

COS {ka)

kod
Fig. A2-1) Graphical solutions to the Kronig-Penney equations for an
undistorted lattice, Eq. A2.25, and a dimerized lattice, Eq. A2.39.
The solution for the dimerized lattice is shown in the limit of zero
distortion. For finite distortions, new energy gaps open up at the
locations indicated by the arrows.
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~When the ionic delta functions are very repulsive, v >> 1, nodes of the
electronic Bloch functions are close to the lattice sites. Approximate solutions

of kg are given by

ko= nmw— —2{—{1 + cos(k)} (A2.27)
=N T — — COs° [«Lk]
2
Here n = 1, 2, 3, + - - labels the energy band of ky. Only solutions in the first

energy band will be considered, where n = 1. To first order in (1/v), energy is

given by
Eo(k) = n® — vp{1 + cos(k)} . (A2.28)

= 72 — 2upcos? [%k] ,

where vp = (472 /v). The maximum energy of the first energy band is 7% and
occurs at the Brillouin zone edge, k = +x. The bandwidth is W = 4vp, with a
midband energy of Eo(r/2) = 7% — vp. For values of k close to the midband
value of k= m/2, Eq.28 may be approximated by Ey(k)= Ey(r/2) +
wr(|k| = 7/2).

Exact Bloch functions corresponding of Eq. 28 may be written as

X (z) = Aye ™0 4 By to~ tho? (A2.29)

where for normalization to one unit cell the coefficients A, and B, are given by



sin(kg) ™%
Ay = {1+B§—2Bk—-—£-—9~)—}

ko

1
in ={k—£k
sin (ko)

=
I

sin -;~(k+ ko)

IV, The Dimerized Kronig-Penney Model

Derivation of the dimerized Kronig-Penney equation follows the same path
as for the regular Kronig-Penney equation. The Kronig-Penney lattice is
allowed to dimerize an amount +u at each lattice site. Two types of regions are
created by the dimerization: regions I, contracted segments of length a — 2u;
and regions II, dilated segments of length ¢ + 2u. The wave function in these

regions is written as:

Region I:  Xg(z) = Aqe % + B e~ %07, (A2.32)

Region II:  X4(z) = Age %97 4+ Bye 07 (A2.33)

The Bioch condition and the Schrodinger equation lead to four coupled
equations for the coefficients 4; through B,. To simplify the appearance of the
equations, the dimensionless notation of the preceding section will be used.

Also, the following constants are defined: 6= 2u/e, 7= v/kg,

¢ = %ko(l—é), and ¢, = é—ko(S-i-é). In terms of these constants, the

equations are:
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(A2.34)
. . I
Continuity at 75(1“-5);
O_,_,J{le‘¢1 +Ble_l¢1 _—A2e‘¢l “Bge—t¢l ;
(A2.35)
S 1
Continuity at — jé-(j—-&);
0 == A}_C“’.QBI 4 B]'ellq!bt — A2g-2"ke iba — B2e'—-2ike""-¢’2 :
(A2.38)
. . 1
Derivatives at 75(1—-6};
0= A;(1—in)e™® = Bi{1+in)e ™™ — A,¢™ 4 Bye ™,
(A2.37)

Derivatives at — é—(]— 8):

0= A\(1+in)e ™" — Bi(1—in)e ™ — Aye~2*e ™ 4 p o2k "%

Solution of Eqgs. 34 - 37 gives a transcendental equation which may be written in

one of two equivalent forms:

1 sin(kg) 2 1 sinkgé ¥
2 kY == k ot — : .
cos“(k) {cos( o) + 5 Y P } + 5 ¥ P ; (A2.38)
sin(2kg) v I
cos(2k) = cos(2ky) + 20 ———— + {cos(2kyb) — cos(2ky)} (A2.39)
2kg 2k

These equations reduce to the usual Kronig-Penney equations in either of the

limits 6 — O (undistorted lattice) or § — 1 (doubled lattice).

Eq. 38 is the most generally useful form of the dimerized equation, because it

is In a convenient form for caleulating small perturbations from the undimerized
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lattice. Eq. 39 is sometimes useful, however, because it is in a form similar to
the rigid Kronig-Penney equation. Fig. 1 shows a graph of the right-hand side
of Eq. 39 superimposed on the rigid Kronig-Penney equatioﬁ, for the case § = 0.
The arrows mark the locations where Eq. 30 is tangent to the horizontal line
cosk = — 1. Any nonzero value of § causes the curve to become less than —1 at

these points and Pelerls gaps to form in the electronic spectrum.

Given a value of v >> 1, Eq. 38 may be solved for small amounts of

dimerization u such that {(v6) << 1. The first energy band is determined by
kg =7 — 27”{1 +leos?(k) + (vu)2]%} . (A2.40)

The plus sign applied for |k| larger than midband; the minus sign for |k|

smaller than midband. Corresponding energies are given by

Ef(k) = m* ~ vp{l +[cos®(k) + (vu)?]*} . (A2.41)
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APPENDIX A3: NONPERTURBATIVE MEASUREMENTS
OF LOCAL CONDUCTIVITIES

This appendix describes a four-probe sample holder that was designed and
built as a part of the thesis research. The sample holder facilitated conductivity
measurements across small, localized regions of an NbSes crystal. The need for
such a device is apparent in Chapter 3. There, localized conductivity
measurements revealed discontinuities in CDW current and thus provided direct
evidence of phase slippage. The design of the sample holder described in this
appendix was originally inspired by the work of Mihaly et all with much

simpler devices.

The lead geometry of the sample holder is shown in Figure 1. An NbSe;
crystal rests on top of a rectangular sapphire block that has a slightly convex
surface. Two gold wires, extending from the top and bottom of the photograph,
are attached to the crystal ends and the sapphire surface by small amounts of
silver paint. Two additional nichrome wires are suspended perpendicularly
across the NbSeg crystal. Attached to each nichrome wire is a fine Wollaston
wire that is barely visible in the photograph. The Wollaston and nichrome
wires form a bow-and-drawstring arrangement, with the Wollaston held taut by
the nichrome wire and resting lightly on the NbSes crystal. The gold wires
serve as current-injection leads, labelled “1"" and *4” in Fig. 3-8a. The
Wollaston wires serve as movable voltage probes, labelled 2" and 3", Probe 1
is at the top of the figure, and the femaining probes are labelled sequentially.

For scale, the sapphire block is 5 mm long; the gold and nichrome wires are
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Fig. A3-1) Detail of the sample and lead geometry used in nonperturbative

four-probe measurements. Magnification of 25 times. See text for
explanation.
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Fig. A3-2) Detail of the mechanism used to raise and lower voltage probes 2
and 3. Magnification of 9 times.
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Fig., A3-2
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25 pm in diameter; and the NbSe; crystal and the Wollaston wires are 2-3 um

in width.

Figure 2 shows the mechanism for réising and lowering the Wollaston probes.
At the center of the photograph is the sapphire block, and beneath the block is
a copper support platform, which is slightly out of focus. At the top of the
figure are two coaxial conductors whose inner conductors a‘re attached to lead 1
by gold wires. At the bottom of the photograph is a third coax, whose inner
conductor is attached to lead 4. On either side of the sapphire bloek is a coax
and a steel rod. Each steel rod has a protruding tip which is paired with the

inner conductor of a coax on the opposite side of the block.

Each coax-rod pair in Fig. 2 raises and lowers one nichrome wire, and hence
one Wollaston vo'*age probe. For example, probe 3 is controlled by the coax-rod
pair that is closest to the focal plane of the photograph. A nichrome wire is
lowered by winching it toward the sapphire block. One end of the nichrome
wire is soldered to the inner conductor of a coax, and the other end is tied to
the tip of a steel rod by a fine Kevlar filament. When the steel rod is turned,
the Kevlar filament is wound around the rod’s tip and the nichrome wire is
pulled down. When the Wollaston wire touches the NbSe;z crystal, a current
path is established through the wire and crystal, which signals that the voltage
probe is in electrical contact with the crystal. The voltage probe is raised by

releasing tension on the nichrome wire,

Figure 3 shows the mechanism for moving the coax-rod pairs along the
NbSe; crystal. At the top of the photograph is the copper platform that

supports the sapphire block, which is just visible at the platform center.
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Fig. A3-3) Top view of the complete sample holder, showing the mechanism

use to position voltage probes along a sample. The area detailed in
Figs. 1 and 2 is at the top.
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Fig. A3-4) Side view of the sample holder. The area detailed in Figs. 1 and 2
is covered by a white heater cap.
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Coaxial conductors and steel rods run back from the platform to an aluminum
and brass housing, inside of which are two stainless steel slides. Each slide is
attached to a coax-rod pair and controls its position by moving back and forth
within the housing. The slides are moved by the micrometers which are visible
at the bottom of the photograph. Inside the housing, the coaxial conductors are
attached by flexible cables to feedthroughs on the right side of the housing.
The steel winch rods exit the housing near the micrometers. Other

feedthroughs on the left side of the housing provide electrical leads for

thermometry at the copper support platform.

Figure 4 shows a three-dimensional view of the sample holder, which is
mounted on an aluminum base. The copper support platform is covered with a
white heater cap. The platform and cap are inserted into a custom-made
cryostat. In the cryostat, cold *He gas flows past the cap and cools the platform
to a base temperature of about 15 K. The aluminum housing remains ocutside
the cryostat and at a temperature at close to 273 K. Nozzles on the housing

allow nitrogen gas to flow through its interior, which prevents icing of the slides.

The sample holder in Figs. 1-4 is a third generation design. Previous designs
were considerably simpler, but did not permit accurate and repeatable
positioning of voltage leads sn sifu. The sample holder shown required about

300 hours of design, 300 hours of machining, and 100 hours of assembly.
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