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Abstract 

 

Electrical and Thermal Transport Measurements of Nano-structured Materials 

by 

Chih-Wei Chang 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Alex Zettl, Chair 

 

        This thesis discusses electrical and thermal transport measurements on C60, carbon 

nanotubes, and boron-nitride nanotubes.  Chapter 1 describes the anomalous resistivity 

behavior of Ag films on C60 crystals.  The correlation of the resistivity anomaly and the 

structural phase transition is established.  Chapter 2 gives an introduction to the physical 

properties and the synthesis methods of carbon and boron nitride nanotubes.  Chapter 3 

shows two different approaches on chemical functionalization of boron-nitride nanotubes.  

Chapter 4 gives the theoretical background of thermal conductivity, especially for nano-

structured materials.  A summary of theoretical and experimental works on the thermal 

conductivity of nanotubes is given.  Chapter 5 discusses the experimental results of 

thermal conductivity of nanotube mats.  An absolute value of the thermal conductivity of 

boron nitride nanotubes is bracketed and can be compared to the results of the following 

chapters on individual nanotubes.  Chapter 6 describes the experimental methods of 

measuring thermal conductivity of individual nanotubes.  Chapter 7 shows the 
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temperature dependent thermal conductivity and thermopower of individual nanotubes.  

Chapter 8 discusses the isotope effect and the diameter dependence of the thermal 

conductivity of nanotubes.  In chapter 9, it is shown that the thermal conductivity of 

nanotubes is robust against electron irradiation and structural deformation.  Importantly, 

the observation challenges current understandings on the thermal transport of nano-

structured materials.  In chapter 10, it is shown that it is possible to reversibly tune the 

thermal conductivity of a multiwalled nanotube by controllably sliding the outer-shells 

against inner cores.  Chapter 11 describes a thermal rectifier by engineering the mass 

distribution along a nanotube.  The observed non-zero thermal rectification effect 

provides strong evidence for solitons in nanotubes.  The soliton model also coherently 

explains many phenomena described in chapter 10 and chapter 12.  In chapter 12, it is 

shown that Fourier’s law is violated in nanotubes and the observed anomalous heat 

transport is consistent with the soliton model.  The significance of these discoveries can 

provide new thoughts for current thermal management problems.  Based on these results, 

it is proposed to utilize phonons as information carriers. 
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Chapter 1 Anomalous resistivity 

behaviors of Ag films on C60 

crystals 

1.1 Introduction to C60 crystals 

        C60, the most symmetric molecule known, was discovered by H. W. Kroto et al. [1].  

The original motivation for that study was to look for inter-galaxial molecules that are 

exclusively composed of carbon atoms.  In order to compare the optical absorption 

spectrum of such molecules, Kroto et al. prepared soot from laser-ablated graphite and 

observed several peaks in the mass-spectrum.  Later its structure was identified as being 

similar to the geodesic domes of the architect Buckminister Fuller.  Hence the C60 

molecules were called fullerenes.  However, intensive research of C60 was only possible 

after W. Krätschmer and D. Huffman discovered bulk arc-discharge synthesis and 

purification methods for C60 [2].  Subsequently, families of fullerenes were discovered 

using similar techniques, including C36, C70, C128, etc.  
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Figure  1-2 A C60 crystal of fcc structure
Figure  1-1 The structure of a C60 molecule 

 

        Figures 1-1 and 1-2 show the structures of C60 molecules and C60 crystals. C60 

crystals can be made by subliming C60 molecules in an Ar atmosphere.  At room 

temperature the C60 crystal is fcc with each C60 molecule in nearly free rotation.  Upon 

cooling through 261K the C60 molecules lose two rotational degrees of freedom and 

acquire strong orientational correlation with their neighbors, ratcheting around one of the 

four <111> axes.  This rotational ordering transition is also a first order fcc to sc 

structural transition [3]. At a surface, the effect of reduced symmetry lowers the 

corresponding transition to ~230K [4].  Cooling below 261K slows the ratcheting, 

stopping it entirely near 50K in the bulk sample.  However, because there are two nearly 

degenerate (~11.4 meV) orientations separated by a substantial (290 meV) potential 

barrier, the rotational ordering is incomplete even in the low temperature limit.  Below 

90K the occupation of the nearly degenerate states does not change, so this temperature is 

identified with the quenched disorder transition [5]. 
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        Alkali-doped solid C60 has been known to be superconducting with Tc = 19K~30K 

[6,7].  Due to charge transfer, it is possible to dope the surface of a C60 crystal by 

depositing thin metal films on it.  If the underlying C60 crystal becomes superconducting, 

it will create a short circuit to the whole system and result in a resistance drop.  In 

addition, a photoemission experiment paper that suggested an observation of 

superconductivity of a C60 monolayer on an Ag(111) surface directly motivated this work 

[8].  Amazingly, the photoemission experiment indicated a BCS-like gap at 250K, though 

this result is not confirmed by subsequent STM spectroscopy measurements [9].  

Furthermore, a series of papers by H. Schön et al. claiming discoveries of high Tc 

superconductivity in field-gated C60 crystals also motivated this work.  But it was later 

found that these discoveries were due to scientific misconduct of H. Schön [10].   

        In order to unravel the interaction between metal films and C60 crystals, and also to 

search for superconductivity in these systems, I have systematically measured the 

temperature dependent resistivity of different metal films with various thicknesses on C60 

crystals.           

1.2 Sample preparation 

        C60 crystals were grown by subliming powder from MER Corporation (99.5% purity) 

in a flowing Ar atmosphere.  The crystals so produced were several millimeters in size 

and had flat surfaces.  Metal films (Ag, Au, Cu, Pd, Pt) were dc-sputtered onto a crystal 

face to various thicknesses as determined by a 6 MHz quartz-crystal monitor.  Generally 

the deposition rate was controlled at 0.1nm/sec.  Silver paint contacts on the metal films 
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were used for four-probe quasi-dc electrical resistance measurements.  A helium gas-flow 

probe provided cooling from room temperature down to ~16K.  Both cooling and 

warming gave consistent results, but only warming data will be presented because of its 

superior temperature resolution. 

1.3 Results and discussions 

        Figure 1-3(a) shows a scanning electron microscope (SEM) image of a nominally 

10nm thick Ag film deposited on C60.  The film is not uniform, but is granular with an 

average feature size of ~10nm and has a morphology reminiscent of thin film percolation 

networks.  Electrical measurements at room temperature on this film indicate an average 

resistivity ρ ~ 6 μΩ-cm, ignoring the film inhomogeneity.  As expected, this value 

significantly exceeds the resistivity ρ ~1.6 μΩ-cm usually observed for high quality 

homogeneous Ag specimens. 

        Figure 1-3(b) shows the temperature dependent resistance R(T) of a 10 nm thick Ag 

film on C60, similar to the one pictured in Fig. 1-3(a).  Relative to the typical behavior of 

Ag films on benign substrates, several anomalies are present in Fig. 1-3(b).  First, instead 

of displaying linear temperature dependence, there is a slope change near 100K.  Second, 

as the sample warms through 240K, the resistance decreases, reaching a minimum value 

(0.17 Ω) even smaller than the residual resistance (~0.18 Ω).  Third, at 261K the 

resistance shows a very sharp jump upward with increasing temperature.  Fourth, for T > 

261K, although the R(T) curve becomes linear again, its slope is not the same as that 

between 100K~240K.  Control experiments with Ag films similarly deposited on mica or 
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glass substrates do not show any of these anomalies.  As I will discuss later in this 

chapter, the three anomalies of Fig. 1-3(b) at T = 100K, 240K, and 260K are associated 

with well-known structural phase transitions of the underlying C60 crystal. 

 

Figure  1-3 (a) Scanning electron micrograph of a 10 nm silver film on a C60 crystal.  Scale bar is 

100nm.  (b) Resistance vs. temperature for a similar film. 

       The measurements described above have been repeated as a function of sample 

thermal history, for different Ag film thicknesses, and for films composed of different 

metals.  Figure 1-4(a) and (b) show the R(T) curves of 5nm and 10 nm Ag film over 

multiple thermal cycles (only warming curves are shown for clarity).  The residual 

resistance increases monotonically with thermal cycling, and the anomalous behavior 

between 240K and 261K becomes more dramatic.  The resistance dip near 240K is not 

pronounced at first, but becomes effectively deeper, finally reaching a minimum value 
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even lower than the residual resistance.  The resistance jump at 261K also increases with 

thermal cycling, as well as the slope of R(T) between 100K~240K.  

 

Figure  1-4 Resistance behavior of the 5nm (a) 10 nm (b) Ag film on C60 with thermal cycling.  Only 

warming curves are shown for clarity. 
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Figure  1-5 Resistivity vs. temperature of Ag films with different thicknesses on C60 crystals (first 

thermal cycle). 

        Figure 1-5 shows the effect on the resistivity of systematically varying the thickness 

(t) of the Ag films between 5nm and 100nm.  All data sets in Fig. 1-4 are for different 

newly prepared samples, measured during their first thermal cycle (where the resistive 

anomalies are smallest).  The three-dimensional resistivity ρ has been calculated using 

the measured resistance R, the in-plane film/contact geometry, and the nominal film 

thickness as determined by the sputtering system crystal monitor.  No attempt has been 

made to correct for film granularity.  With the exception of the 20nm sample (which was 

prepared with a higher deposition rate that likely produced a less granular film), the 

resistivities ρ(T) generally increase with reduced thickness.  However, the slope dρ/dT 

between 100K~240K also increases notably with reduced thickness, in apparent violation 
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of Matthiessen’s rule.  The thickest film has a room temperature resistivity of 

approximately 1.6μΩ-cm, consistent with that expected for a uniform silver film in the 

bulk limit. 

        Figure 1-6 shows the R(T) data from the first thermal cycle of four thin metal films 

on C60 crystals, where the metals are Pd (20 nm), Cu, Pt, and Au (all 10 nm).  Although 

the R(T) curves differ markedly, the anomaly near 261K generally reproduces for each 

metal. For Pd and Pt films, the resistance dips are more evident than those of Au and Cu 

films.  The Pt R(T) curve shows apparently semiconducting behavior, possibly due to 

disconnected granular structures with thermally activated conductivity.  The overall 

results suggest that the anomalies are universal to different metallic films and a general 

mechanism must be considered for this metal-C60 interface effect. 

 

Figure  1-6 Resistance vs. temperature behavior for Au, Cu, Pd, and Pt films on C60 crystals. 
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1.4 Discussions 

        Crystalline C60 is a band insulator with room temperature resistivity in excess of 106 

Ω-cm, while silver is a good electrical conductor with a resistivity of 1.6 μΩ-cm at room 

temperature.  Due to this eleven order of magnitude difference, one would naively expect 

that the resistance measurement on the Ag-C60 system would only reflect the behavior of 

pure Ag.  However, the observed anomalies clearly coincide with the structural phase 

transitions of crystalline C60, as shown in Fig. 1-7.  The slope change at 100K is near the 

quenched disorder phase transition, and the anomalies at 240K and 261K correspond to 

the surface and bulk rotational ordering transitions, respectively.  The correlation 

between the resistance anomalies and the phase transitions suggests a strong coupling 

between the Ag film and the C60 crystal. 

        The clear relationship between the structural phase transitions of the C60 crystals and 

the resistivity anomalies in the metal films is the main result of this chapter.  To explain 

this relationship, I propose a simple model where the thin metallic film acts as a resistive 

strain gauge, and thus is sensitive to the unusual phase structural phase transitions 

(including lattice discontinuities) of the substrate crystal.  Although some features of the 

data are well accounted for by this model, others are not.  The most serious failing of the 

model is an inability to account for, even qualitatively, the sharp resistance dip near 260K.  

To some extent this ‘failing’ highlights the most interesting feature of the data, for the 

unexplained resistance dip at C60’s rotational ordering transition seems to indicate the 

presence of a truly novel interaction. 
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Figure  1-7 Comparison of the temperature dependent resistivity anomaly (top panel) and lattice 

constant (lower panel) of C60 crystals. 

        

        A key enabling feature of the strain gauge model is a differential thermal expansion 

Δα between the metallic overlayer and the substrate crystal.  In the range 100-300K but 

away from the 261K transition the linear thermal expansion coefficients of Ag and C60, 

though comparable, are not matched: 1.9x10-5/K vs. 2.1x10-5/K, respectively.  Below 



 
 

11

 
 
 
 
100K α for Ag decreases with decreasing temperature while for C60 α is relatively 

temperature independent.  At the rotational ordering transition the lattice parameter of C60 

changes abruptly by more than 0.3%.  Although the simplest geometric effect gives a 

contribution orders of magnitude too small to explain the observations, granularity could 

enhance the film’s sensitivity to geometric changes.  The network evident in Fig. 1-3(a) 

supports the granularity hypothesis.  Thus, differential thermal expansion could be a 

factor in driving the dρ/dT anomalies that are observed over the entire measurement 

range and are especially dramatic at the lattice parameter discontinuity. 

        The strain gauge picture might also explain the results of the thermal cycling 

measurements.  Fatigue created by mismatched thermal expansion coefficients is a 

problem well known in the semiconductor industry, and I observe qualitatively that 

repeated cycling often leads to macroscopic cracking of the sample. Viewing the film as a 

network of current paths in parallel, I hypothesize that thermal cycling creates 

microscopic fractures that break some paths.  In the data of Fig. 1-4(b), for instance, the 

residual resistance ratio ( ≡ R(300K)/R(T→0K)) is a constant ~ 2 for the four curves.  The 

assumption that thermal cycling cuts some current paths explains this observation (the 

resistance increases without changing the residual resistance ratio), for eliminating 

resistors from a parallel network would produce exactly this behavior.  If, on the contrary, 

thermal cycling were introducing defects, the residual resistance ratio would be expected 

to decrease while the resistance increased. 
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Figure  1-8 The data of Fig. 2(a) rescaled according to the strain gauge model. 

 
        Figure 1-8 shows the data from Fig. 1-4(b) rescaled according to this hypothesis.  

Between the normalization points of 40K and 230K the four curves overlap well, which 

confirms only that the data are reasonably linear in this temperature region.  However, 

even above the 260K discontinuity the same approximate scaling continues to hold.  This 

result implies that the relative magnitude of the discontinuity is an intrinsic property of 

the film: the resistivity of the silver film reflects changes in the lattice parameter of the 

substrate crystal.  (By hypothesis this resistivity cannot be calculated from the measured 

resistance, since the microscopic cracks caused by thermal cycling create substantial 

geometric uncertainty.)  The slow climb of the resistance from 20K to 230K, and the 
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jump from 230K to 260K, both reflect the corresponding thermal expansion of the 

substrate crystal. 

        Although the strain gauge picture provides a useful view of the observations, the 

model is incomplete and probably overlooks interesting physics.  The mechanism by 

which the resistive sensitivity of the film is amplified is not established.  While SEM 

characterization implicates film granularity, this feature alone does not guarantee 

amplification.  Indeed, with the exception of the platinum curve, the data presented show 

positive dR/dT at low temperature, demonstrating that the continuous limit (insulating 

islands in a conducting matrix) is appropriate here.  In this limit, away from the 

percolation threshold, extraordinary sensitivity to differential thermal expansion is not 

expected. 

        However, the biggest failing of the strain gauge model comes in the temperature 

range 240-260K, which this discussion has until now ignored.  The lattice constant of C60 

is thought to be a monotonically increasing function of temperature, which makes it 

difficult for this mechanism to explain the region of negative dR/dT seen in the range 

240-260K.  The appearance at 261K of a resistance lower than the residual resistance, 

also unanticipated by this simple model, is even more striking.  As illustrated by Fig. 1-4, 

the dip resistance remains relatively constant with thermal cycling, as compared with the 

resistance away from the rotational ordering transition.  The trivial explanation of 

macroscopic, temperature-dependent, nested currents has been tested with auxiliary 

measurements featuring rapid switching through different current/voltage four-probe 
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configurations, and no evidence for such spurious effects is seen.  Thus, at the rotational 

ordering transition a new interaction seems to dominate the conductance of the film.      

        A more complete understanding of these resistive anomalies, particularly the 261K 

dip, might reveal interesting phenomena.  Exotic superconductivity has been apparently 

excluded, as I have found that these anomalies are independent of magnetic field up to 

4.6 kG.  I have also searched for evidence of critical exponents near the rotational 

ordering transition, but the available data are inadequate for such analysis.  Charge 

transfer between various metallic films and C60 crystals has been widely reported [11,12], 

and two groups have reported anomalous conductance enhancements at room temperature 

in layered structures of metal films and C60 [11,13,14]. They suggest that charge transfer 

creates an additional conduction band in the interfacial monolayer of C60.  Structural 

transitions of the C60 crystal might perturb this two-dimensional channel, creating the 

resistance anomalies reported here.  It is also possible that the 261K anomaly is related to 

a proposed intermediate phase that occurs in narrow temperature range around 261K [15], 

or an unusual electron-phonon scattering effect.  Interestingly, conductance peaks have 

been observed at phase transitions in other exotic materials [9]. 

On a more speculative note, there is an analogy between the rotational transition of 

C60 crystal and the ferromagnetic transition of magnetic materials. The isotropic rotation 

of each C60 above 261K corresponds to a paramagnetic state, and the constrained 

spinning below 261K is analogous to a ferromagnetic state with anisotropic axes. These 

correspondences can be seen in the heat capacity of C60 crystals and magnetic materials 

(for example, Ni) near their transition temperatures [16]. Both show a sharp lambda-
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shape anomaly [17]. The divergent behavior of the heat capacity suggests that many 

degrees of freedom are involved for excitation, thus fluctuation effects should dominate 

near the phase transition temperature. Regarding the resistivity behavior for magnetic 

materials, some theoretical works find that fluctuations lead to divergence in resistivity or 

dρ/dT at Curie temperature [18,19]. However, the results show divergent behavior in 

conductivity near 261K. The qualitative discrepancy could indicate a more profound 

origin which is beyond the scope of this chapter. 

        In summary, I have measured the ρ(T) behavior of different metal films on C60 

crystals as a function of thermal cycling and film thicknesses.  I find features that 

correlate with structural phase transitions of C60 crystals, thus demonstrating that metallic 

films can be sensitive probes of the underlying phase transitions of C60 crystals.  Finally, 

I observe a dramatic resistivity dip near the rotational ordering transition of C60, which is 

unexplained by the simple model and may be evidence for a novel interaction. 
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Chapter 2 Introduction to carbon and 

boron-nitride nanotubes 

2.1 History of carbon nanotubes 

        In 1990, when Sumio Iijima was studying the C60 generated by the arc discharge 

method under high resolution TEM in NEC’s research laboratory, he found a needle-

shaped material [20].  This needle-shaped material is the material to which was later 

given the name "carbon nanotube" (CNT).  In the original paper of 1991, only 

multiwalled carbon nanotubes (MWCNTs) were observed.  Later, when people tried to 

encapsulate Fe particles into carbon nanotubes, they discovered that Fe particles can act 

as catalysts to make singlewalled carbon nanotubes (SWCNTs).  In 1993, Ijima and 

Ichihashi at NEC and Bethune et al. at IBM independently reported the preparation of 

SWCNTs [21,22].  The structure of CNTs was soon recognized as a graphene sheet rolled 

up into a tubular structure that has a diameter of nanometer scales. 

2.2 Electronic properties 

        R. Saito et al. showed that the rolling vector dictates the electronic band structure of 

SWCNTs [23].  As shown in Fig 2-1, the rolling vector can be decomposed into a 
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summation of two lattice vectors a1,a2, thus C = na1+ma2, where (n,m) are integers.  

Depending on (n,m), the structure of the SWCNTs can be armchair (n=m), zigzag (n or 

m=0), or chiral.  It is shown that when n-m = 3i (i = integer), the SWCNTs are metallic.  

Otherwise, they are semiconducting with the band gap varying from 1.5eV to 0.3eV for 

diameters 0.6nm to 3nm. 

 

Figure  2-1 CNT rolling vector can be decomposed into a summation of two lattice vector, or a index 

(n,m).  In this figure, we have a (9,1) CNT.  
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Figure  2-2 The (n,m) index dictates the electronic structure of a CNT. 

        Tight-binding calculations on the electronic behavior of MWCNTs suggest that if a 

MWCNT has a metallic shell, then that particular shell can retain its metallic character.  

Similarly, a combination of nonmetallic CNTs is not expected to become metallic as a 

result of the interlayer interactions [24]. 

        Experimentally, researchers have shown that CNTs exhibit high electron mobility 

[25], high current capacity [26], and induced superconductivity [27].  Furthermore, CNTs 

have been integrated in electronic circuits [28].  These extraordinary features make CNTs 

very attractive elements for applications. 

2.3 Mechanical properties 

        Due to the strong sp2 bonding, the mechanical properties of CNTs are also unique.  

Theoretical and experimental work has shown that the elastic modulus of carbon 
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nanotubes exceed 1TPa, which is higher than any other material known so far [29,30].  

Their measured tensile strength is 63GPa [31], much higher than that of steels (~0.4GPa).  

The high elastic modulus and low density make CNTs potential high frequency 

nanomechanical oscillators.  The McEuen’s group made a nanomechanical resonator 

based on CNTs [32].  Haibing Peng et al. also demonstrated utilizing CNTs as high 

frequency giga-hertz resonators [33].   

        On the other hand, the van der Waals force between walls of MWCNTs is extremely 

weak.  Thus it had been proposed to use MWCNTs as nanomechanical devices with 

ultra-low friction forces.  John Cumings demonstrated using MWCNTs as linear bearings 

and determined the friction force to be less than 10-14 N per atom [34].  The result was 

further investigated by Andras Kis et al. who performed cyclic telescoping measurements 

using an atomic force microscope (AFM) cantilever mounted inside a TEM [35].  Adam 

Fennimore et al. showed it is possible to make rotational actuators based on MWCNTs 

[36].  Theoretical calculations have suggested using these telescoping properties to build 

giga-hertz linear oscillators [37].  

        It is worthy to note that continuum mechanics still applies for the nano-structured 

materials.  It indicates that the common scaling law we encounter in macroscopic objects 

can still be used for predicting the mechanical properties of nanotubes. 
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2.4 Thermal properties 

        An excellent review of the thermal properties of CNTs can be found in James 

Hone’s review article [38].  I will briefly summarize the main results here. 

        For a single graphene sheet, the lowest lying three phonon modes are two 

longitudinal acoustic (LA) modes, and one in-plane transverse acoustic (TA) mode.  

After rolling a graphene sheet into a SWCNT, there are four, rather than three, acoustic 

modes: one LA mode, two TA modes, and a ‘twist’ mode.  The LA mode is analogous to 

the LA mode in graphene.  The two TA modes correspond to a combination of the in-

plane and out-of-plane TA modes in graphene.  The twist mode is analogous to the in-

plane TA mode.  These modes all show linear dispersion and high phonon velocities: 

vLA=24km/s, vTA=9km/s, and vtwist=15km/s for a (10,10) CNT [39]. 

        The reduction of dimensionality in nanotubes results in several pronounced peaks of 

the phonon density of states, known as van Hove singularities.  The splitting between the 

subbands of phonon modes is of order 

                                                          ~B
vE k

R
θΔ =                                                       (2.1) 

where R is the radius of the nanotube.  The splitting is estimated to be on the order of 

100K for a 1.4nm-diameter SWCNT.  For a (10,10) tube, it is estimated that the lowest 

subband enters at ~2.5meV (30K).  In the low temperature regime, the thermal properties 

are dominated by the acoustic modes, giving a linear temperature dependence for the 

specific heat: 
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where ρm is the mass per unit length.  One can also evaluate the electronic contribution to 

the total specific heat.  It is estimated that the electronic contribution is less than 1% 

down to T=0.  

        The heat capacity of mats of SWCNTs and MWCNTs has been measured by several 

groups.  Experimental deviations from the calculated specific heat of graphene and 

graphite have been observed in the low temperature measurements of mats of SWCNTs 

and MWCNTs [40,41].  The deviations were interpreted as the signatures of one-

dimensionality of CNTs.  However, since the inter-tube couplings, the inter-wall 

interactions, and the sample morphologies are unknown, the analysis based on simple 

models should not be taken too seriously. 

        Another interesting thermal property of CNTs is the thermal conductivity behavior.  

I will discuss various theoretical and experimental aspects of the thermal conductivity of 

CNTs in later chapters. 

2.5 Overview of carbon nanotube synthesis 

        CNTs can be synthesized by various methods.  Many of them have been conducted 

in the Zettl group.  I will briefly summarize the results of various methods.  A very good 

discussion of CNT synthesis can be found in [42,43]. 

Arc discharge 

       Arc discharge method can make very good quality CNTs. Both SWCNTs and 

MWCNTs can be synthesized by this method.  The arc-discharge chamber is filled with 
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some inert gas (He or N2).  Then a high current is passed through the graphite electrodes. 

A plasma is created, reaching a temperature higher than 10000°C, and a carbon ‘boule’ 

forms on the cathode. CNTs can be found inside the ‘boule’.  TEM imaging shows that 

these CNTs are highly crystalline with length 2~10µm, diameter 5~30nm. Willi 

Mickelson also made isotopically pure CNTs by this method.  However, the arc-

discharge method also produces many by-products, which becomes its major 

disadvantage.  This makes the filtering and purification process difficult.  Besides, it is 

difficult to control the plasma conditions while arcing, thus reproducibility is another 

problem. 

Laser ablation 

         Laser ablation method utilizes high-power laser pulses that cause localized spots on 

the graphite target to reach very high temperatures whereby they evaporate and react with 

each other in the region near the graphite target.  Then CNTs are carried by some inert 

gas and collected at a cold finger downstream.  CNTs synthesized by laser ablation have 

the same advantages and drawbacks as the arc-discharge method. 

Chemical vapor deposition 

        Chemical vapor deposition (CVD) methods so far have made the longest CNTs.  

CVD methods often involve catalysts, thus it is possible to control the location of CNT 

growth.  With correct choice of reaction gas, temperature, and flow rate, one can grow 

CNTs with lengths exceeding centimeters.  Various interesting structures, such as CNT 

“forests” and “bridges” have been demonstrated by employing this method.  However, 

the CNTs synthesized by this method are of poorer quality than those made by arc-
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discharge or laser-ablation.  Although it is possible to synthesize very long CNTs by this 

method, they are not always straight, and many of them exhibit defects.  Removing the 

unwanted catalyst particles is another challenge. 

        Although there are various difficulties in synthesizing good quality CNTs by CVD 

methods, these methods seem to be the most promising technique.  Kenny Jenson et al. 

observed in-situ re-growing of a CNT by reacting with Fe catalysts encapsulated inside a 

MWCNT [44].  Their in-situ TEM images demonstrated that it is possible to re-grow a 

highly crystalline CNT with catalysis reaction.  Thus if the reaction gas and the flow rate 

are controlled very well, it is possible to use CVD method to grow good quality CNTs. 

2.6 Boron-nitride nanotubes 

        After CNTs were discovered, people started looking for layered materials that may 

also form cylindrical structures.  Hexagonal boron-nitride (BN) is similar to graphite.  

Not only the sp2 bonding nature is similar to that of graphite, but also many physical 

properties are comparable to that of graphite.  Theoretically, it was first suggested that the 

hexagonal BN sheet can also form a stable cylindrical structure [45].  

        Carbon-containing nanotubes with stoichiometry of BC2N and BC3 were reported by 

Z. Weng-Sieh et al. [46] and O. Stephan et al. [47].  In 1995, Nasreen Chopra and co-

workers in the Zettl group used a carbon-free arc discharge method to synthesize pure 

boron-nitride nanotubes (BNNTs) [9].  The structure of a BNNT can be viewed as rolling 

up a hexagonal sheet into a cylindrical structure like that of CNTs.  Later it was 

demonstrated that BNNTs can be single-walled, double-walled, or multi-walled [48,49]. 
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2.7 Electronic and mechanical properties 

        Due to the ionic nature of the B-N bond, hexagonal BN has a 5.8eV band gap. 

Theoretical work suggests the band gap of BNNTs to be 4~5.5eV.  This band gap is 

almost independent of chirality, nanotube diameter, or number of walls [50]. Masa 

Ishigami measured a gap of ~3.8eV from a single BNNT using a scanning tunneling 

microscope (STM) [51].  Shaul Aloni in the Zettl group and R. Arenal et al. used EELS 

to determine the band gap of a single BNNT to be 5.8eV [52]. 

        BNNTs are predicted to exhibit mechanical properties similar to those of CNTs.  

Theoretical calculations suggest that the Young’s modulus of BNNTs is 0.7 times that of 

CNTs [53].  Nasreen Chopra et al. measured the elastic modulus of BNNTs to be 1.2TPa 

[54]. 

        Hexagonal BN has thermal properties comparable to that of graphite [55-57].  

Theoretical calculation suggests that hexagonal BN has a phonon dispersion relation 

similar to that of a graphene sheet [58].  Thus it has been suggested that BNNTs would 

have thermal conductivity comparable to that of CNTs [59].  However, these calculations 

do not consider the large isotope impurities found in the natural abundance boron.  The 

details of thermal transports of BNNTs will be discussed in later chapters. 

2.8 Overview of boron-nitride nanotube synthesis 

        Like CNTs, BNNTs can be synthesized by various methods. The Zettl group has a 

long history of synthesizing BNNTs.  Detailed synthesis methods can be found in the 

theses of former Zettl group members.  I will only briefly describe them in the following. 
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Arc discharge 

        Although the first successful synthesis of BNNTs was done by arc-discharge method, 

it suffered from its low yield in the beginning.  John Cumings later improved the method 

by mixing boron with conducting catalysts, such as nickel or cobalt.  Thus large quantity 

production of BNNTs became possible.  However, like the drawbacks in making CNTs 

by the arc-discharge method, many unwanted by-products also exist.  So additional 

purification processes are needed.  For BNNTs, these processes are even more elaborate 

than those of CNTs.  Because boron oxides, unlike carbon oxides, are solids and do not 

go away after burning in air.  John Cumings and Kevin Jones had tried to use a 

chromatography method to purify them but the results were not always successful.  

Substitution reaction CVD 

        A CVD-substitution method developed by Weiqiang Han uses MWCNTs as 

templates, B2O3 as starting materials, and NH3 or N2 as reaction gases.  The proposed 

reaction is as follows [60]: 

BB2O3 + 3C(nanotubes) +N2  2BN(nanotubes) + 3CO 

The resultant materials are B-C-N nanotubes. The B-C-N nanotubes can later be 

converted to pure BNNTs by oxidizing them in air at ~650°C.  Depending on the 

synthesis conditions, the yield of the BNNTs varies.  The B-C-N and BN nanotube mats 

made by this method were used for the thermal conductivity measurements described in 

chapter 5.  Unlike the CVD method for making CNTs, the CVD-made BNNTs are 

usually highly crystalline. However, BNNTs made by Weiqiang Han using the 

substitutional method are generally shorter than 3µm. 
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Magnesium oxide and boron oxide CVD 

        Tang et al. reported using B and MgO and heating them to 1300°C using an 

induction furnace [61].  Then they introduced ammonia gas to produce BNNTs.  David 

Okawa and co-workers have systematically investigated this approach and optimized the 

quality and the yield of BNNTs made by this method.  For this method, a mixture of ball 

milled B and MgO (1:1 molar ratio) was placed in an alumina boat with a silicon 

substrate laying face down on top of the boat.  The reaction vessel was placed in the hot 

zone of the furnace and heated to 1200°C under N2.  The gas was switched to ammonia 

and held at temperature for fifteen minutes before switching back to N2 and cooling to 

room temperature.  David Okawa also made various isotopically pure BNNTs using the 

11B(99.56% pure) source material obtained from Cambridge Isotope Inc.  The BNNTs 

made by this method are highly crystalline with diameters 10~50nm.  Most importantly, 

their length exceeds 5µm, which greatly facilitates the thermal transport measurements of 

individual BNNTs. 
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Chapter 3 Chemical functionalization 

of boron-nitride nanotubes 

3.1 Potassium and lithium doping of boron-nitride nanotubes 

        As described in chapter 2, the band gaps of CNTs depend on the chirality, diameter, 

and number of walls.  Although these properties make carbon nanotubes attractive, in 

practice they become the greatest obstacle for utilizing CNTs as electronic elements.  

Since so far no one can control the diameters or the chiralities of CNTs, it is difficult to 

utilize them as reliable electronic devices.   

        On the other hand, theoretical works have suggested that the band gaps of BNNTs 

are not sensitive to the diameter, chirality, or number of walls [45,50].  Furthermore, 

theories also suggest that the lowest conduction band of a BNNT exhibits a free-electron-

like dispersion relation [50].  Thus if BNNTs can be doped into conducting, their 

electronic properties would be uniform and interesting.  

        For traditional semiconductors like Si, Ge, or GaAs, doping requires replacing host 

atoms with alien dopants.  Although dopants introduce electrons or holes, they also create 

impurities in the lattice.  In general, increasing the doping concentration in traditional 

semiconductors can reduce their electronic mobility significantly.  For cylindrical-
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structured nanotubes, ideally, dopants can go into the hollow space of a nanotube and 

transfer charges.  Therefore, unlike traditional doping, the dopants neither replace the 

host atoms of the nanotube nor create lattice defects.  Furthermore, the hollow space of 

the nanotubes has large capacity to host the dopants.  In principle, the doping 

concentration can be varied by a larger scale without reducing the mobility.  All these 

advantages make doping in nanotubes a very interesting subject. 

        Alkaline elements like potassium and lithium tend to lose electrons easily.  So they 

are good electron donors.  Many researchers have studied alkaline doping on CNTs.  For 

example, R. S. Lee et al. observed that potassium-doped CNT mats had lower resistance 

than the pristine CNTs’ and their R(T) behavior changed [62].  M. Bockrath et al. 

measured electrical transports on individual potassium-doped CNTs and observed a 

reduction of the band gap [63].  Here I tried to use potassium and lithium to dope BNNT 

mats.  

        BNNTs were made by Weiqiang Han using the substitution process described in 

chapter 2.  The as-synthesized B-C-N nanotubes were converted into BNNTs by 

oxidizing them at 600°C.  The resulting BNNTs are shown in Fig. 3-1.  The BNNTs 

generally have length 2~3μm, which is comparable to the distance of the inter-digitated 

electrode shown in Fig. 3-2.  To allow the potassium or lithium to go into the hollow 

space of BNNTs, the end caps of the BNNTs should be opened.  Weiqiang Han has 

discovered that the above oxidation process also opens the caps of BNNTs [64].  In Fig. 

3-1, it can be seen that the end caps of BNNTs are opened after the oxidation treatment.  
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Figure  3-1 TEM images of BNNTs after the oxidation treatments (scale bar =10nm). 
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Figure  3-2 An inter-digitaled electrodes used for measuring resistance of BNNT mats. The distance 

between the electrodes is 2μm. 

        For potassium and lithium doping, I adapted the method that former group member 

Michael Fuhrer used for intercalating C60  with alkali metals [65].  The BNNT mats were 

dispersed on top of an inter-digitaled electrode shown in Fig. 3-2.  Then the specimen 

was mounted on the doping vessel with two wires connecting to it.  A pair of T-type 

thermocouple were used for monitoring the temperature.  A tantalum boat was inserted 

into the doping vessel to carry the potassium or lithium as will be described later.  The 

whole setup was transferred into the glove box.  For potassium, I heated it up in the glove 

box and then used a syringe to transfer the molten potassium into the tantalum boat.  For 

lithium, since it oxidizes slower than does potassium, I took a piece of lithium from the 

storage oil then quickly transferred it into the glove box.  Inside the glove box, the 

surface of the lithium was scratched so that the shining, un-oxidized surface was exposed.  

Then the lithium piece was transferred to the tantalum boat.  After inserting the tantalum 

boat, the other end of the doping vessel was connected to a closed vacuum valve.  So the 

whole setup was sealed with Ar.  When taking the doping vessel out of the glove box, it 

was quickly connected to a turbo-pump system and then pumped down the pressure 
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below 10-5 torr.  A hydrogen-oxygen torch was used for gradually pinching down and 

finally sealed the doping vessel while maintaining the vacuum.  In the mean time, the 

tantalum boat was carefully moved away from the torch so that the potassium or lithium 

would not evaporate.  Once the doping vessel was sealed, the potassium or lithium 

remained its shining color for many days.  To dope potassium or lithium into the BNNTs, 

the doping vessel was wrapped by a heating tape and heated to the desired temperature.  

A Keithley 182 voltage meter (input impedance > 10GΩ) and a Keithley 224 current 

source were used for measuring the sample resistance.  Another Keithley 182 voltage 

meter was used for measuring the thermocouple voltage. 

 

Figure  3-3 Resistance vs postassium doping time of a BNNT mat sample 1. 
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Figure  3-4 Resistance vs. potassium doping time of a BNNT mat sample2. 

        Figure 3-3 shows the resistance vs. potassium doping time on a BNNT mat sample. 

Initially, the sample resistance is more than 10GΩ.  After raising the temperature of the 

doping vessel, the sample resistance decreases for more than two orders of magnitudes.  

However, the sample resistance remains high and increases as the temperature decreases.  

Figure 3-4 shows the result of potassium doping on another BNNT mat sample, the 

sample resistance gradually increases even as the temperature is kept constant.  It might 

be due to some leaks in the doping vessel so that the potassium oxidizes gradually.   

        Since the vapor pressure of lithium is lower than that of potassium, a higher 

temperature is required to evaporate lithium.  Thus a quartz, instead of a glass doping 



 
 

33

 
 
 
 
vessel was used for the experiment.  However, a higher temperature made the insulation 

of the wires unreliable.  To improve the insulation of the wires, a thin layer of hexagonal 

BN was sprayed on the wires before twisting them.  A control experiment was done to 

ensure that the high temperature would not give erroneous results. Generally, for 

temperatures lower than 400°C, the insulating of the coating did not cause problems. 

Figure 3-5 shows the sample resistance vs. lithium doping time.  Except for the drop of 

the resistance at the beginning, the resistance of the lithium-doped sample generally 

increased faster than that of the potassium-doped samples.  In some cases, I found the 

quartz tube broke at high temperatures.  The resistance instability of the lithium-doped 

BNNTs might be due to the seal of the doping vessel becoming leaky at high 

temperatures so that the sample oxidized. 

 

Figure  3-5 Resistance vs. lithium doping time of a BNNT mat. 
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       It is interesting to ask whether it is possible to introduce holes into BNNTs.  Halide 

elements have high electron affinities, thus they are good hole-dopants.  Among various 

halide elements, iodine has the lowest electron affinity, but it is easier to handle and less 

toxic.  So iodine is chosen to dope BNNTs.  The experimental procedure is similar to the 

one used for potassium or lithium doping.  Figure 3-6 shows the results of iodine doping 

on BNNTs.  In contrast to the results of potassium or lithium doping, the iodine-doped 

BNNTs do not show any resistance change.  The result indicates that a stronger electron-

affinity element must be chosen to dope holes into BNNTs.  In fact, recent experiments 

on fluorine-doped BNNTs showed appreciable resistance decreases [66], suggesting that 

holes can be doped into BNNTs and modify their electronic structures. 

 

Figure  3-6 Resistance vs. iodine doping time of a BNNT mat sample. 
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        Figure 3-7 shows R(T) of various potassium-doped and lithium-doped BNNT mats. 

Generally, the resistance increases as the temperature decreases, suggesting that these 

alkaline-doped BNNTs are semiconductor-like.  I-V curves of some potassium-doped and 

lithium-doped BNNT mats are also measured.  As shown in Fig. 3-8, the I-V curve shows 

non-linear behavior at room temperature.  The origin of the non-linearity could be due to 

the intrinsic semiconductor behavior of the alkaline-doped BNNTs, or due to junction 

barriers between nanotubes so that they cost electrons’ energy to hop from one BNNT to 

another.  However, due to the complex sample geometry and the large sample resistance, 

further characterization is difficult using present results. 

 

Figure  3-7 Temperature dependent resistance curve of various alkaline-doped BNNT mats. 



 
 

36

 
 
 
 

 

Figure  3-8 Room temperature I-V curves of a lithium (triangle) and a potassium (square) doped 

BNNT mat samples. 

 
        In conclusion, the resistance of potassium-doped and the lithium-doped BNNTs 

decreases for more than two orders of magnitudes.  In contrast, the resistance of the 

iodine-doped BNNTs does not display any change.  The results demonstrate that it is 

possible to modify the electronic structure of BNNTs by alkaline-doping. 
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3.2 Encapsulation of potassium halide crystals within boron-

nitride nanotubes 

        Encapsulating of alien materials into nanotubes is of great interest due to its 

potential of modifying the intrinsic properties of nanotubes.  On the other hand, due to 

the confined space of the nanotube, the encapsulated materials may arrange themselves 

into exotic lattice structures that do not exist in ordinary bulk samples.  The modified 

structure may further change the electronic, mechanical or thermal properties of the 

encapsulated materials.  Among all chemical bonds, the van der Waals interaction is the 

weakest.  Thus it is easy to perturb the lattice structure of a van der Waals solid, such as a 

C60 crystal.  For example, Willi Mickelson et al. have filled C60 into BNNTs and 

observed various types of novel structures [67].  On the other hand, ionic bonds are 

normally three orders of magnitudes stronger than the van der Waals interaction.  Thus it 

is interesting to see whether the confinement effect can affect the lattice structure of ionic 

crystals.  Alkaline-halides compounds are the simplest ionic crystals and all of them have 

NaCl structures.  The monotonic increasing of the binding energy with respect to 

decreasing anion size makes them of fundamental interest for filling into BNNTs. 

        This work was done in collaboration with Weiqiang Han [68].  The BNNTs made by 

the substitutional process were sealed in different evacuated ampules together with 

different commercially available potassium halides in about 4:1 halide/BNNT mass ratio. 

The ampules were put into a furnace with temperatures from 670°C to 740°C for four 

hours. Then the ampules were broken open, and the resultant materials were 
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ultrasonically dispersed in methanol and dropped onto a holey carbon coated grid for 

TEM characterization. The TEM images were taken by Weiqiang Han using Philips 

CM200 FEG equipped with an energy-dispersive X-ray spectrometer (EDS). 

        Figure 3-9 shows a three-wall BNNT encapsulated with KCl crystals.  The EDS 

spectrum has confirmed that the encapsulated crystal is made by KCl.  The crystal 

structure can be indexed to rock salt KCl.  The inner diameter of the BNNT is found to be 

1.32nm.  Judging from the dark spots of in the image, the lattice constant along the axis 

of the BNNT of the encapsulated KCl crystal is found to be 3Å, which is less than its 

bulk value 3.15Å.  However, for the direction perpendicular to the nanotube axis, the 

lattice constant is 3.45 Å, which is larger than the bulk value 3.15Å.   

        Figure 3-10 shows a BNNT filled with KBr crystals.  The crystal structure can be 

indexed to rock salt KBr.  The lattice constant along the axis of the BNNT of the 

encapsulated KBr crystal is found to be 3.16Å, which is less than its bulk value 3.3Å.  

For the direction perpendicular to the nanotube axis, the lattice constant is 3.16 Å, which 

is also smaller than the bulk value 3.3Å.   

        Figure 3-11 shows a BNNT filled with KI crystals.  The crystal structure can be 

indexed to rock salt KI.  The lattice constant along the axis of the BNNT of the 

encapsulated KI crystal is found to be 3.5Å, which is less than its bulk value 3.6Å.  For 

the direction perpendicular to the nanotube axis, the lattice constant is 3.59 Å, which is 

comparable to the bulk value 3.6Å. 
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Figure  3-9 TEM image of a KCl-filled BNNT. 

 

Figure  3-10 TEM image of a KBr-filled BNNT. 

 

Figure  3-11 TEM image of a KI-filled BNNT. 
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Table  3-1 Summary for the lattice constants of various encapsulated potassium halide in BNNTs. 

Bulk sample, lattice constant Encapsulated sample, lattice constant 

parallel to BNNT axis  

Encapsulated sample, lattice constant 

perpendicular to BNNT axis 

KCl , 3.15Å 3.0Å (compressed, 4.8%) 3.45Å (expanded, 9.5%) 

KBr, 3.3Å 3.16Å (compressed, 4.2%) 3.16Å (compressed, 4.2%) 

KI, 3.6Å 3.5Å (compressed, 2.7%) 3.59Å (same) 

 

        Table 3-1 summarizes the result.  In general, the lattices of the encapsulated 

potassium halide crystals parallel to the BNNT axis are compressed and their distortion 

ratio decreases as the atomic size of the halide element increases.  On the other hand, the 

lattice of the encapsulated potassium halide crystals perpendicular to the BNNT axis can 

expand, compress, or remain unchanged.  The dramatic changes of the lattice distortion 

perpendicular to the BNNT axis suggest that the confinement effect still plays an 

important role in the ionic crystals.  Although the strong ionic bonding of potassium 

halides prevents severe lattice distortions or re-arrangements like the case of C60 

encapsulated in BNNTs, the strongly compressed or expanded lattices may imply novel 

properties unseen in bulk materials.  Actually, during the TEM imaging, Weiqiang Han 

observed in-situ cleaving of a KCl nanocrystal induced by electron beams [69], 

demonstrating a novel technique to engineer these nano-crystals inside TEM.   
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Chapter 4 Theory of thermal 

conductivity 

4.1 The Boltzmann equation 

        The Boltzmann equation describes collision processes with a non-equilibrium 

distribution function g(r, k, t) in a phase space.  In the absence of collisions g(r, k, t) is 

related by  

                                              ( , , ) ( , , )g r k t g r r t k k t t t= − Δ − Δ − Δ                                 (4.1) 

It follows that 

                                                          g gr k
t r k

g∂ ∂ ∂
= − −

∂ ∂ ∂
                                                (4.2) 

Ludwig Boltzmann (1844~1906) added an additional term into Eq. (4-2) to account for 

collisions: 

                                                      
coll

g g g gr k
t r tk

∂ ∂ ∂ ∂⎛ ⎞= − − + ⎜ ⎟∂ ∂ ∂⎝ ⎠∂
                                    (4.3) 

This is the Boltzmann equation.  It balances the total time derivative with the rate of 

transfers in and out of the g(r, k, t) due to scattering.  
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        However, the Boltzmann equation itself is difficult to solve.  Typically the 

Boltzmann equation can be simplified by assuming a static distribution, so ∂g/∂t = 0.  

Furthermore, one assumes only small deviations from equilibrium, such that 

                                             
0( , ) ( , )

coll

g g r k g r
t τ

∂ −⎛ ⎞ = −⎜ ⎟∂⎝ ⎠
k                                            (4.4) 

where g0= [exp(E/kBT)-1]-1. This is called the relaxation time approximation.  With this 

approximation we can integrate both sides of Eq. (4.4) with respect to time. 

                                         
( ') /

0( , ) ( ( '), ( '), ') '
t tt eg r k g r t k t t dt

τ

τ

− −

−∞
= ∫                                 (4.5) 

This can be integrated by parts to yield 
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∫

∫
                                 (4.6) 

Assuming that the particles do not undergo acceleration under a long-time scale larger 

than the relaxation time, then the second term of Eq. (4.6) vanishes. We have 

                                                        
0

0 gg g r
r

τ ∂
= −

∂
                                                       (4.7) 

from g0= [exp(E/kBT)-1]-1, we have 

                                                        
0 0g TE

r T
g
E

∂ ∇ ∂
=

∂ ∂
                                                     (4.8) 

so that 

                                                   
0

0 T gg g Er
T E

τ ∇ ∂
= − ⋅

∂
                                                 (4.9) 
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Thus we can calculate the thermal current 

                                                 
2 0

( , , )Uj dkErg r k t

E gdk rr T
T E

T

τ

κ

=

∂
= −

∂
⋅∇

= ∇

∫

∫                                       (4.10) 

where the integral is over the first Brillouin zone. 

        We can now express the thermal conductivity.  For cubic crystals, the phonon 

velocity averages to v2/3, and the integral now becomes 

                                                    

2 2

3
1
3

v Edk
T E

Cv

κ τ
0g∂

= −
∂

=

∫
                                               (4.11) 

where C is the heat capacity per unit volume, v is the average phonon velocity, and l is 

the phonon mean free path. 

       The thermal conductivity of the conducting electrons can be obtained in a similar 

way.  Thus we have 

                                                                1
3e e FC vκ = e                                                  (4.12) 

where Ce is the heat capacity per unit volume, vF is the Fermi velocity, and le is the 

eletron mean free path.      

        Thus we obtain the formula for thermal conductivity from a fundamental approach.  

In the derivation discussed above, we have assumed that the phonons undergo frequent 

collisions such that a well-defined temperature is established at each local point.  Under 
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some conditions, these assumptions or approximations may not hold anymore.  We will 

discuss these cases in later sessions. 

4.2 N-process and U-process 

        The Boltzmann equation justifies the phenomenological model of Eq. (4.11) using 

the phonon mean free path (l).  In principle, l is determined by two scattering processes, 

the phonon-phonon scattering and the scattering due to defects, isotope impurities, and 

boundaries.  If the force between atoms were purely harmonic, there would be no 

phonon-phonon collisions.  Generally, the anharmonic coupling strength increases with 

temperature.   Thus it is predicted that l is proportional to 1/T ~ 1/T2 at high temperatures.  

 

Figure  4-1 N-process and U-process 

        Peierls pointed out that for phonon-phonon scatterings whose resultant phonon 

momentum lies within the first Brillouin zone (N process), the scatterings only 

redistribute the phonon momentum but do not degrade the thermal conductance [70].  

Only for collisions whose final momentum lies outside the first Brillouin zone will back-

scattering events occur, thus reducing l.  This is called as the umklapp or U process.  In 

general, the phonon-phonon collisions can be expressed by 
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                                                            1 2 3K K K G+ = +                                             (4.13) 

where Ki’s are the phonon momentum.  When G = 0, it is called N process.  When G is a 

reciprocal lattice vector, it is called U process.  The difference between N process and U 

process can be seen in Fig. 4-1. 

        For U process to occur, it is necessary to have momenta of incident phonons larger 

than G/2. Thus U processes only happen at high temperatures when high energy phonons 

are excited.  At low temperatures, the number of suitable phonons decreases 

exponentially.  So the temperature dependent thermal conductivity of a material generally 

has a peak below which the phonon mean free path is not limited by phonon-phonon 

collisions.  

4.3 Thermal conductivity of mesoscopic materials and the 

Casimir limit 

        At low temperature, the phonon mean free path becomes so long that the phonon-

phonon collision events are rare.  So the thermal transport process is similar to a hollow 

space filled with electromagnetic radiation.  It is obvious that in this situation no 

localized thermal equilibrium can be established, although when a hot and a cold body 

are placed in such a space, heat will flow from the warmer to colder body.  

        H. B. G. Casimir analyzed the thermal conductivity at low temperature when the 

phonon mean free path is comparable to that of the specimen [71].  He noticed that under 

this condition, the quantity of the energy flow depends on the conditions of the crystal’s 

boundaries.  When the crystal’s boundaries are like perfect mirrors, the heat flow is 
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independent of the length of the sample.  Strictly speaking, no coefficient of heat 

conduction can be defined in this case.  Casimir analyzed a second case where the 

boundaries are like rough walls so that phonons are diffusively scattered.  He obtained 

the average phonon mean free path 

                                                              1.12 A=                                                   (4.14) 

which is known as the Casimir limit for the thermal conductivity of a sample with cross-

sectional area A. 

        The Casimir limit puts a constraint on the upper limit of the phonon mean free path. 

People often refer the Casimir limit as a result from boundary scatterings.  However, as 

emphasized earlier, the Casimir limit only applies to crystals with rough boundaries 

where diffusive scatterings occur.  When the boundaries are polished smoothly, phonons 

collide with the walls elastically, the Casimir limit will not hold.  

        Klitsner et al. did a series of low temperature thermal conductivity experiments on 

rods of Si [72].  The phonon transport in highly polished rods of Si, with cross-sectional 

area A=0.5×0.5cm2, was found to be ballistic in the temperature range of 0.05~1K.  More 

than 95% of the phonons would scatter elastically from the polished surfaces of the Si rod.  

The phonon mean free path was found to be 10~15cm, corresponding to the contact 

spacing.  After roughing the surfaces, the phonon mean free path was reduced to 0.48cm, 

corresponding to the Casimir limit for diffusive scattering. 

        Thermal conductivity of nanoscale rods of diameters 100~200nm were measured in 

Roukes’ and Cleland’s groups [73,74].  They found that the phonon mean free path 

reaches 3~10μm, exceeding the diameter of the rods.  Deyu Li et al. measured the 
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thermal conductivity of Si nanowires (SiNWs) using the suspended test fixture similar to 

the ones I used [75].  They found that the thermal conductivity decreases as the diameter 

of the SiNWs decreases from 115nm to 22nm.  They interpreted the reduction of the 

phonon mean free path due to the boundary scattering.  However, several issues may 

arise before reaching this conclusion.  First, the contact thermal resistance may increase 

as the diameters of the SiNWs decrease.  Since it is difficult to evaluate the influence of 

the contact thermal resistance of their devices, the measured thermal conductivity value is 

uncertain.  Second, to reduce the diameters of the SiNWs, one usually oxidizes the 

surface of the SiNWs then removes the SiO2 by wet etching.  It is not clear that how this 

oxidation-etching process affects the topography of the surface of the SiNW.  If the 

oxidation-etching process leaves rough surfaces, the phonon mean free path of the small-

diameter SiNWs will be constrained by the Casimir limit.  On the other hand, the as 

synthesized SiNWs usually have very smooth surfaces; thereby the phonon mean free 

path should be much larger than their diameters. 

4.4 Quantum of thermal conductance 

        When the phonon mean free path is much larger than the dimensions of the sample, 

the thermal transport enters into a ballistic phonon transport regime.  From the Landauer 

energy flux formula 

                                     
2 2

2 0 2
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ωω ω
π

∞
= ℑ

−
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where JQ is the energy flux, T is the transmission rate of phonons of frequency ω.  

Assuming T = 1, one can obtain the low temperature limit of the thermal conductance  

                  
0

0

22 2 2 2
0

( )

1 2di log( )
3 3 1

B
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k TB B
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k kTN T e
h h k T e

ω
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ωπ πκ
−

⎧ ⎫⎛ ⎞⎪ ⎪= + + +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪−⎩ ⎭

∑     (4.16) 

where N is the total number of acoustic phonon modes, dilog(x) is the dilogarithm 

integral, 

                                                     
1

logdi log( )
1

x tx dt
t

=
−∫ .                                               (4.17) 

 Thus Eq. (4.16) predicts a universal thermal conductance (G0) of a single phonon mode 

with perfect transimissivity. On the other hand, the high energy modes show a 

dependence on the intrinsic properties of the materials and on the geometrical parameters 

of the sample through the cutoff frequencies ω0.  

        When the temperature is lowered, all other optical phonons with finite cutoff 

frequencies vanish.  Thus for a quasi-one dimensional system at low temperatures, there 

are four acoustic phonon modes contributing to heat transport.  This prediction for the 

universal thermal conductance has been observed by Schwarb et al. [76]. 

        One thing we have ignored above is the dependence of phonon transmissivity on the 

sample geometry, such as the shape of the contacts and surface roughness etc.  

Calculations have shown that these geometric effects will affect the temperature range 

where the 4G0 can be observed [77].  When such imperfect transmissivity of phonons is 

present, one can only further lower the temperature then the recovery of 4G0 can occur. 
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4.5 Theoretical and experimental overview of nanotube 

thermal conductivity 

        Many theorists have calculated the room temperature thermal conductivity (κ(290K)) 

of CNTs.  Table 4-1 summarizes these results.  It can be seen that there is a two-orders-

of-magnitude discrepancy in the predicted value of κ(290K) of CNTs. 

         Molecular dynamics simulations suggest that the onset of the umklapp processes of 

a SWCNT to be around 120K like that of graphite [78-80].  However, so far no 

experimental data have shown a peak around 120K.  The discrepancy between theory and 

experiment is not clear yet. 

        Due to their nano-size diameters, SWCNTs have been predicted to exhibit quantum 

thermal conductance 4G0 as high as 15K [81].  There is additional electronic contribution 

4G0 if the SWCNT is a metallic quantum wire [81].  

        Experimentally, J. Hone et al. first measured κ of mats of SWCNTs [82].  However, 

the experimental measured value of κ is in the 0.1~1W/mK range.  Although he 

estimated the intrinsic value κ(290K) of SWCNTs to be in 1750~5800W/mK range, his 

assumption is not well-justified. 

        Measurements on κ of mats of MWCNTs were done by various groups [41,83].  

Experiments on CNT-polymer composite also showed improvements on the mechanical 

strength and the thermal conductivity [84].  Although these experiments did not give an 

absolute value of κ, these works indicated that CNTs are good thermal conductors. 
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Table  4-1 Summary for theoretical calculations on room temperature thermal conductivity of 

SWCNTs. 

Reference Room temperature value (W/mK) 

N. G. Mensah et al., Phys. Lett. A 329 (2004) >55000 (only electron thermal 

conductivity)  

J. X. Cao et al., PRB 69, 073407 (2004) 9000~4500  

W Zhang et al., Nanotechnology 15, 936 (2004) 8000~1000 (wall thickness=3.4Å, 

depends on chirality) 

S Berber et al., PRL 84, 4613 (2000) 6600 (wall thickness=3.4Å) 

J. Che et al., Nanotechnology 11, 65 (2000) 2800 (1A thick (10, 10) SWCNT) 

(~823 if wall thickness=3.4Å) 

A. Cummings et al., PRB 70, 115405 (2004) 2000 (wall thickness=3.4Å) 

M. A. Osman et al., Nanotechnology 12, 21

(2001)  

 2000 

M. Grujicic et al., J of Material Science 40, 1943

(2005) 

 1600 

E. G. Noya et al., PRB 70, 115416 (2004) 1500 (wall thickness=3.4Å) 

G. Zhang et al., J Chem Phys. 123 114714 (2005) 800 (wall thickness=1.44Å) 

(~1940 if wall thickness=3.4Å) 

S Maruyama, Physica B 323, 193 (2002) 500 (wall thickness=3.4Å) 
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        The first thermal conductivity measurement on individual MWCNTs was done by P. 

Kim et al. using devices made by the Majumdar group [85]. κ(290K) was determined to 

be more than 3000W/mK.  The diameter of the MWCNT investigated was determined to 

be 14±2nm using SEM imaging.  The uncertainty in measuring the diameter of their 

MWCNT was believed to cause the greatest error in their results. 

        T. Y. Choi et al. measured the κ of individual MWCNTs using the 3ω method. 

κ(290K) was determined to be 650~830W/mK [86].  However, they determined the outer 

and the inner diameters of the investigated MWCNT by judging the contrast of the SEM 

image, which again introduced large errors.  

        M. Fujii et al. adapted a similar method as I did in measuring the thermal 

conductivity of MWCNTs [87].  They picked up a MWCNT using a manipulator then 

examined it under TEM.  Then they put the MWCNT on a suspended micro-membrane 

and measured the thermal conductivity change before and after depositing the MWCNT 

on the membrane.  The highest κ(290K) was determined to be 2000W/mK.  They also 

found a diameter dependent κ(290K) relation. 

        E. Pop et al. employed indirect methods to measure κ by analyzing the nonlinear I-V 

curve of a suspended CNT [88].  They obtained κ(300K) = 3500W/mK for a 1.7nm 

diameter SWCNT.  This self-heating-self-sensing approach was similar to the 3ω method, 

but it involved more complicated analyses.  They determined the onset of umklapp 

process occurring at ~400K. 
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        H. Y. Chiu et al. employed an indirect method by analyzing the breakdown 

resistance of CNTs at high current bias [89].  They compared the breakdown I-V curves 

of CNTs on substrates and suspended CNTs.  They found that the suspended CNTs 

showed a characteristic difference.  For CNTs’ lengths less than 500nm, they found that 

the breakdown power became length-independent.  They interpreted their results as 

signatures of ballistic phonon transport and the power dissipation of a CNT was limited 

by quantum thermal conductance of the MWCNT.  However, adapting the quantum 

thermal transport formula in their analysis had ignored phonon-phonon scatterings at high 

temperatures, which is not a reasonable assumption. 

 

 

 

 

 



 
 

53

 
 
 
 

Chapter 5 Thermal conductivity of B-

C-N and BN nanotube mats 

5.1 Experimental methods 

        There are many methods to measure the thermal conductivity of a bulk material.  

The absolute method employs direct measurements of the power delivered to the sample, 

and the temperature across the specimen.  Usually, a resistive heater is attached to the end 

of a specimen and two pairs of thermocouples are attached to the sample to measure the 

temperature difference.  However, the absolute method involves tedious calibration 

procedures because the heat loss through the thermocouples and the heater wires, as well 

as the radiation loss to the environment need to be determined to high accuracy.  For 

small samples, the radiation loss from the heater can be very large.  Furthermore, to 

reduce the heat loss from the wires connected to the heater, it is required to use some 

resistive fine wires.  But the fine wires introduce uncertainties to the heater resistance.  

To accurately determine the resistance of the heater, a four-wire configuration is needed.  

But the two additional wires introduce more uncertainties due to heat loss.  How to 

balance the experimental accuracy and uncertainty is a delicate issue for the absolute 

method. 
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        A dynamical approach known as the 3ω method has become popular in recent years 

due to its superior efficiency in measuring thermal conductivity of thin films [90].  The 

3ω method is based on the idea of self-heating and self-sensing.  An ac current with 

frequency ω is applied to a suspended conducting sample.  Due to joule heating (P=I2R), 

the power dissipation fluctuates at a frequency of 2ω.  If the sample resistance changes as 

a simple function of temperature, then there is a corresponding resistance fluctuation at a 

frequency of 2ω.  Due to Ohm’s law (V=I(ω)R(2ω)), the temperature difference across 

the sample can be detected by a lock-in amplifier with reference frequency at 3ω.  

However, the 3ω method requires the sample to be conducting, which is not suitable for 

BNNTs.  Besides, it also requires the sample resistance to be sensitive to temperature.  

Moreover, the 3ω method involves complicated analysis of the experimental results.  In 

order to choose a proper working frequency, quantities like thermal diffusive length and 

relaxation time need to be estimated in advance. 

        A comparative method is chosen to measure the thermal conductivity of B-C-N 

nanotube and BNNT mats.  The method requires a heater/sample/reference material to be 

connected in series, so the heat flux is the same through the reference material and the 

sample.  The temperatures across the reference material and the sample are 

simultaneously measured.  The thermal conductance (K) of the sample is then: 

                                                          ref
sample ref

sample

T
K K

T
Δ

=
Δ

                                             (5.1) 



 
 

55

 
 
 
 
where ΔTref, ΔTsample are temperature differences across the reference and the sample, 

respectively.  The method has advantages that once the thermal conductance of the 

reference material is known, the thermal conductance of the sample can be measured very 

easily.  Besides, the heat loss due to the wires connecting to the heater will not affect the 

measurement.  The largest error is due to the heat loss through the thermocouples, but it 

can be largely eliminated by choosing constantan rod as the reference material.  Thus the 

number of the wires contributing to the heat loss is reduced. 

 

Figure  5-1 Schematic experimental setup for meausuring thermal conductivity of BNNT mats. 

        The experimental setup is shown in Fig. 5-1.  A silicon chip resistor ~2KΩ was 

attached to the end of the sample.  Because the sample needed to be removed after the 

measurement, I used GE varnish to glue together the heater/sample/reference assembly.  

The reference was mounted on the heat bath using stycast, which is known to have good 

thermal conductivity.  I used 0.5mil type E (Constantan/Chromel) thermocouples to 

measure the temperature difference across the sample.  The thermocouples should be as 

long as possible to eliminate the heat loss, but they should not be too long to have thermal 

contacts to the shield or heat bath.  The constantan rod was 20mil in diameter and 2cm 
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long.  Two 0.5 mil Chromel wires were attached to it using silver paint.  Mounting the 

two pairs of thermocouples on the sample was the most difficult part.  The thermocouples 

were first spark-bonded, then a layer of silver epoxy was applied to the junction.  This 

gave good electrical and thermal contact.  Then the thermocouples were glued on the 

sample surface using GE varnish.  GE varnish could be removed when transforming the 

B-C-N nanotube mats into BNNT mats.  It took some time to learn how to mount the 

thermocouples nicely on the sample surface.  Since the thermocouples were long and 

twisted, the tension tended to drive the junction away from the sample surface before the 

GE varnish dried.  I usually bent the thermocouple slightly above the desired location 

with a manipulator then quickly applied the GE varnish and lowered the manipulator 

until the junction attached to the sample firmly.  Ideally, the area of the junction should 

be as small as possible to improve temperature resolution.  But since the thermocouple 

only had sensitivity ~0.1K and the temperature across the sample was ~1K, a junction 

area within 1/10 of the sample size was acceptable.  

        The heat bath was made of a copper block with a temperature sensor attached near 

the reference material.  Another temperature sensor was attached near the bath heater so 

that the temperature controller could control the bath temperature without time delay.  

The radiation shield also had a heater and a temperature sensor on it.  During the 

measurement, the temperature of the heat bath and the radiation shield should be kept as 

close as possible to minimize the radiation loss.  In some measurements I employed two 

constantan rods: one before, one after the sample to estimate the heat loss through 

radiation and the thermocouples.  Two Keithley 182 nanovoltmeters were used to 
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measure the temperature difference across the sample.  Another Keithley 181 

nanovoltmeter was used to measure the temperature difference across the reference.  A 

good temperature control on the heat bath was necessary because when the temperature 

fluctuated, the steady state condition no longer held and it usually led to a jump in the κ(T) 

curve.  The whole sample space was pumped below 5 ×10-6 torr throughout the 

measurement. 

        The thermal conductivity of the constantan reference rod can be found in literature 

[91].  I also measured the thermal conductivity of a copper rod, but found that copper 

itself is not a good reference material.  Because the impurity level of copper greatly 

affects its low temperature thermal conductivity, and it is also very sensitive to the 

annealing conditions.  In the literature, the reported thermal conductivity data of copper 

also varies from one reference to another due to above reasons [92]. 

5.2 B-C-N and BN nanotube samples 

        The B-C-N nanotube and BNNT mats samples were made by Weiqiang Han.  B-C-

N nanotubes were synthesized by a substitution reaction using MWCNTs as a template.  

BB2O3 powder was placed in a crucible covered with CNTs.  The crucible was held in a 

flowing nitrogen atmosphere at 1600°C for 30mins.  The mats of B-C-N nanotubes were 

made by first pressing the samples, followed by annealing at 150°C in air.  B-C-N 

nanotubes were transformed into BNNTs by a subsequent oxidation treatment at 650°C.  

The microstructure of the nanotubes was characterized by high-resolution transmission 

electron microscopy. B-C-N nanotubes or BNNTs made by this method are 
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predominantly multi-walled with an average diameter 6~8nm [60].  Electron energy loss 

spectroscopy (EELS) shows that the carbon concentration is very low after transforming 

the B-C-N nanotubes into BNNTs.  This result demonstrates that the BNNTs synthesized 

by this method are free of carbon.   

        Since the synthesized B-C-N nanotubes are based on the substitution reaction, there 

are several possible structures.  As shown in Fig. 5-2, the first possible structure some of 

the carbon atoms of a CNT are replaced by boron or nitrogen atoms.  For the second 

possibility some of the fragments of a CNT are substituted by a BNNT.  For the third 

possibility the carbon layers and BN layers are separated along the radial direction like a 

coaxial cable. 

 

Figure  5-2 Three possible BCN nanotube structures 

        There are several reasons that made us to believe that the B-C-N nanotubes made by 

this method are highly phase separated along the radial direction like a coaxial cable.  
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        If the first possibility is true, I should see a lot of defects on the BNNTs after they 

are converted from B-C-N nanotubes.  But the TEM images do not show defective 

structures for these BNNTs.  So the first possibility is excluded. 

        If the second possibility is true, since the carbon fragments will be removed after 

oxidation, the length of the BNNTs should be much shorter than the original MWCNTs.  

But actually the TEM images show that the length of the BNNTs is roughly the same as 

that of the original MWCNTs.  Thus it excludes the second possibility. 

        Recent Raman and electron energy loss spectroscopy studies indicated that B-C-N 

nanotubes have strong phase separation between BN layers and carbon layers [93].  This 

result favors the third possibility. 

        The coaxial-cable-like structure of the B-C-N nanotubes enables us to estimate the 

intrinsic thermal conductivity of BNNTs more precisely than other nanotube mats 

measurements. 

5.3 Results 

        The whole measurement process was as follows.  First, I measured κ(T) of mats of 

B-C-N nanotubes.  Next, to estimate the carbon concentration in each sample, I used 

thermogravimetric analysis (TGA) to monitor the weight loss while heating the sample in 

oxygen at 650°C for ~30mins, as shown in Fig. 5-3.  This process had been demonstrated 

to completely remove the CNTs and transform the B-C-N nanotubes to pure BNNTs.  I 

found that this heating process did not affect the macroscopic geometry of the sample 

after burning.  Also note that the oxidation of BNNTs occurs at 800°C as shown in Fig. 
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5-3.  Finally, converted samples were mounted back on the thermal conductivity probe 

with the same thermocouple locations to minimize the geometrical uncertainties.  κ(T) of 

the mats of BNNTs was then measured.  

 

Figure  5-3 The B-C-N nanotube burning curve 

        Figures 5-4(a) and (b) show κ(T) of two samples before (B-C-N) and after (BN) the 

oxidation treatment. Both κ(T)’s of B-C-N nanotubes and BNNTs show increasing 

thermal conductivity with increasing temperature.  Note that the value κ(T) shown here is 

the measured thermal conductivity without any density correction adapted in Ref. [82] 

and Ref. [41].  A small slope change can be seen at ~100K for BNNTs.  The umklapp 

processes for hexagonal BN occurs at TU ~ 100K [56], which indicates that the slope 

change of κ(T) of BNNTs may be due to the umklapp processes in the mats.  Since each 

nanotube has different chirality, the non-uniformity of the unit cell from one nanotube to 

another is expected to lead to a wide distribution of TU in the mats.  This would result in a 
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Figure  5-4 Thermal conductivity vs. temperature for two different samples of nanotubes  (a) before 

(solid symbols, B-C-N) and (b) after (open symbols, BN) the oxidation treatment. Insets show the 

corresponding weight vs. temperature for each sample during the oxidation treatment. The weight 

ratio of carbon to BN is 0.30 and 0.50 in (a) and (b), respectively. 
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somewhat smeared umklapp signature in the κ(T) data.   Similar observations have been 

reported for κ(T) of mats of CNTs [41,82].  

        The insets of Fig. 5-4(a) and (b) show the weight vs. temperature monitored by TGA.  

Samples of Fig. 5-4(a) and (b) have a carbon to BN weight ratio 0.30 and 0.50, 

respectively.  Since the difference between the molecular weight of C2 and BN is small, 

the weight ratio can be approximated to the number ratio of carbon layers to BN layers in 

each B-C-N nanotube. 

 

Figure  5-5 Low temperature behavior of κ(T) for B-C-N and BN nanotubes shown in Fig. 1. All the 

curves are normalized and can be fitted to a T1.6 curve (solid line) below 70K. 
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        Figure 5-5 shows the low temperature behavior of κ(T) of B-C-N nanotubes and 

BNNTs.  All the curves are normalized and can be fitted to a T1.6 dependent curve for T < 

70K.  Since at low temperature κ(T) is dominated by the heat capacity, the fact that the 

κ(T) deviates from a linear temperature dependent behavior reflects the intrinsic 

dimensionality of most large diameter nanotubes.  Similar dimensionality effects on the 

low temperature κ(T) have been observed for SWCNTs and MWCNTs [41,82]. 

 

Figure  5-6 Temperature dependent resistivity of sample A (solid squares) and its corresponding 

Lorenz number (open circles). The Lorenz number derived from the free electron gas is also shown 

for comparison (dash lines). 
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        Figure 5-6 shows the temperature dependent electrical resistivity of sample A and its 

corresponding Lorenz number L = κσ/T.  The Lorenz number gives a good estimation of 

the electronic contribution to the total thermal conductivity.  Comparing with the value 

derived from the free election gas (L0 = 2.45×10-8 W-ohm/K2), the measured L is three 

orders of magnitude larger than L0.  Therefore, the thermal conductivity of B-C-N 

nanotubes is dominated by phonons for temperature below 300K.  This result is also 

consistent with the experiment on SWCNT mats [94]. 

        Of prime interest is the magnitude of the intrinsic thermal conductivity of BNNTs.  

Although previous experimental results on κ(T) of mats of CNTs reflect the intrinsic 

dimensionality of nanotubes at low temperature, the traditional experimental methods 

only give a lower limit of the magnitude of the intrinsic κ(T) of a single nanotube.  For 

example, the uncorrected κ(290K) of SWCNT mats is only 0.7W/mK which is believed 

to be lower than the intrinsic value by a factor of 2500~8300 [82].  Besides, even if the 

measured κ(T)’s are corrected for the theoretical density of a close-packed bundle, the 

density correction factor in the reported κ(T)’s of mats are highly uncertain due to the 

difficulty in determining the actual microscopic sample geometry.  For example, the 

corrected κ(290K) of MWCNT mats is only 25W/mK [41], while that of magnetically 

aligned SWCNT films is 250W/mK.  However, these values are still one to two orders of 

magnitudes smaller than that of an isolated MWCNT measured by a micro-fabricated 

device (3000W/mK) [85].  Moreover, the electrical conductivity assumption used in Ref. 

[82] does not apply for insulating BNNTs.  In the following paragraphs, I will use a novel 

analysis method to constrain the value of κ(T) of an individual, multi-walled BNNT. 
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        To estimate κ(T) of a single BN nanotube, I employ an analysis method that 

necessitates the following justifiable assumptions: 

(1). For a single B-C-N nanotube, the BN layers and carbon layers have parallel 

contributions to the total thermal conductance. 

(2). Except for the carbon layers being removed from each B-C-N nanotube, the 

microscopic sample geometry does not change after the oxidation treatment. 

The first assumption can be justified by the highly anisotropic thermal conductivity of 

graphite or hexagonal BN (c-axis vs. a-b plane).  The weak van der Waals force implies 

that the intra-tube or inter-tube interactions have negligible contribution to the total 

thermal conductivity of B-C-N nanotubes in the axial direction.  The second assumption 

relies on the structure of the outermost layer of B-C-N nanotubes.  If the outermost layer 

is a BN layer, I expect that the microscopic geometry will not change after the oxidation 

treatment.  If the outermost layer contains a carbon layer, the inter-tube interaction 

becomes weaker after the oxidation treatment (in which case the following analysis will 

underestimate the thermal conductivity of a BNNT). 

        The following analysis is based on the inequality:                                                                            

                                                                                                                                        (5.2)   ,  0A m A if A B m
B m B

+
< > >

+
Since the measured thermal conductivity not only has contributions from nanotubes in the 

axial direction but also is limited by junctions across nanotubes, I adapt Matthiessen’s 

rule for thermal conductance: 

                                                                                                                                         (5.3) 
1 1 1

mats tube junK Kλ
= +
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where λmats is the measured thermal conductance from the mats, Ktube and Kjun represent 

the sum of the thermal conductance from a single nanotube in the axial direction and 

across the nanotube junctions, respectively.  Because the thermal conductance of a B-C-N 

nanotube is larger than that of its BN layers, Eqs. (5.2) and (5.3) give an upper limit of 

the thermal conductivity of BNNTs: 

 

 

                                                                                                                                        (5.4) 

1 11 1

1 1 1 1  =

where the subscripts of λ’s and K’s denote the thermal conductance contribution from B-

C-N nanotubes, BNNTs, and CNTs, respectively. The subscripts of κ’s are the thermal 

conductivity of BNNTs and CNTs. x denotes the number ratio of carbon layers to BN 

layers in each B-C-N nanotube. Since my nanotubes have large diameters, the ratio of the 

cross sectional area of carbon to BN layers in each B-C-N nanotube is approximately x.  

Similarly, Eqs. (5.2) and (5.3) also constrain the lower limit of κBN: 

 

                                                              

                                                                                                                                         (5.5) 

I emphasize that κBN and κC represent the ensemble-averaged thermal conductivity of an 

individual multi-walled nanotube, not the mats of the BNNT and CNT, respectively. 

        From Eqs. (5.4) and (5.5), I determine κBN at 290K to be 0<κBN<0.32κC and 

0.04κC<κBN<0.54κC for samples A and B, respectively.  A self-consistent constraint 

further narrows the window down to 0.04κC<κBN<0.32κC.  Since MWCNTs have been 
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shown to exhibit very high thermal conductivity (~3000W/mK at 290K), my result 

suggests that κ(290K) of an individual nanotube also lies in the range of 120W/mK ~ 

960W/mK.  Thus κ(T) of an individual BNNT is one to two orders of magnitudes larger 

than that of the mat samples. 

        The total thermal conductivity of a nanotube can be written as κ(T)=∑Cvl , where C, 

v, and l are respectively the specific heat, group velocity, and phonon mean-free-path, and 

the sum is over all phonon states.  Since currently there are no available data for heat 

capacity of BNNTs, I assume the ratio of heat capacity of hexagonal BN to graphite to be 

the same as that of BNNTs to CNTs.  Choosing v = 10km/s estimated by theory [38,58], 

we have l = 40 ~ 320nm for BNNTs, which is comparable to l ~ 500nm for an isolated 

MWCNT, and is only a fraction of the average length (~2μm) of the BNNTs.  

        My results suggest that although κ(290K) of BNNTs is lower than that of CNTs, it is 

still higher than that of most other nano-scaled structures.  For example, Si or Si/Ge 

nanowires exhibit lower thermal conductivity than their bulk values [95,96].  In these 

nanowires, suppressions of the phonon transport from boundary scattering, or alloy 

scattering overwhelm the enhancement due to reduced dimensionality.  My results 

suggest that the tubular structure is the crucial factor for enhancing thermal conductivity 

of nano-scaled structures. 

        There are several reasons why BNNTs exhibit lower thermal conductivity than 

CNTs.  First, theoretical calculations suggest a softer phonon mode in all branches of 

phonon dispersion curves for BNNTs than for CNTs [58].  Second, calculations also 

suggest the bulk modulus to be lower for BNNTs than for CNTs.  Third, since the natural 
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abundance of boron is 19.9% 10B and 80.1% 11B, in contrast with that of carbon (98.9% 

12C, 1.1% 13C), the effect of isotope disorder is much more severe for BNNTs than for 

CNTs.  Theoretical calculations have suggested a larger enhancement factor of thermal 

conductivity (κ(isotopically pure)/κ(natural abundance)) for cubic BN (125%) than that 

of diamond (23%) [97].  Because the disorder-induced localization effect is more 

pronounced in one dimension, it is expected that such an enhancement factor to be much 

higher for BNNTs.  Therefore, BNNTs can be as good thermal conductors as CNTs if 

made isotopically pure. 
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Chapter 6 Experimental methods of 

measuring thermal conductivity of 

individual nanotubes 

6.1 Device 

        Microfabricated thermal devices were first developed by Li Shi and later by Deyu Li 

in the Majumdar group in the Mechanical Engineering department of UC Berkeley.  As 

shown in figure 6-1, the device has two adjacent 14μm × 25μm silicon nitride (SiNx) 

membranes suspended with five 0.5μm-thick, 420μm-long and 2μm-wide silicon nitride 

beams.  A 30nm-thick and 300nm-wide platinum resistance thermometer coil is patterned 

on each membrane.  Four of the Pt electrodes on each membrane are used for four-wire 

resistance measurements and one for electrical resistance or thermopower measurements.  

The gap between the two membranes varies from 2.5μm to 5μm.  Nanowire or nanotube 

samples are put on top of the electrodes for thermal transport measurement.  Further 

details of the microfabricated thermal device can be found in Ref. [98]. 
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Figure  6-1 SEM images of the thermal device. From top to bottom: low magnification to high 

magnification. 
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        Adam Fennimore and I further improved the thermal device by making it TEM 

transparent, thus it gave us the ability to characterize the structure of the measured 

nanotube.  The procedures for making TEM-transparent thermal device are as follows. 

        The idea is to make a hole just beneath the sample so that it can be observed in a 

TEM.  The suspended structure has exposed Si beneath it and a 0.5μm-thick SiNx 

membrane on the back side of the chip.  To remove the SiNx membrane, one can use the 

reactive ion etching (RIE).  Since it is not necessary to remove all of the SiNx on the back 

side, I simply scratched the back side of the device using a diamond scratch.  Then the 

devices were cleaved to fit the sample holder of the TEM.  Later the devices were put 

into the tetramethylammonium hydroxide (TMAH, ~10%, 85°C) solution and etched for 

~2.5 to 3 hours.  To remove the residues of TMAH, the devices were rinsed with water.  

The suspended structures are usually strong enough and do not collapse.  After etching, it 

is easy to see a hole just beneath the sample location. 

6.2 Sample preparation and manipulation 

        Another challenge in measuring thermal conductivity of nano-scale materials was to 

put the nano-scale materials at the desired position.  Andrei Afanasiev and I had tried 

many different approaches.  One common method employed putting the nanotubes in 

isopropanol then dispersed them on the device.  This method had been adapted for 

measuring thermal conductivity of Si nanowires and Si/Ge superlattice nanowires in the 

Majumdar group [95,96].  But considering the limited number of devices and low 

successful rate, this method was not suitable for nanotubes.  Andrei Afanasiev also tried 
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to apply a voltage across the electrodes to align the nanotubes.  But it always ended up 

with nanotube bundles instead of a single nanotube deposited across the gap.  As shown 

in Fig. 6-2(a) and (b), the solution deposition method is basically a random process that 

always produces samples containing bundles of nanotubes and is not suitable for my 

measurement. 

 

Figure  6-2 BNNT devices made by solution deposition method—the results usually contain bundles of 

nanotubes. 

        Another method employed a sharp tip to pick up the sample and put it on the desired 

location.  Philip Kim had used this method to prepare his MWCNT samples [98].  He 

employed a probe station and a high-resolution dark-field optical microscope to place 

MWCNTs across the gap.  However, this process was very tedious and difficult to control.   

        In the lab, I employed a pizeo-driven manipulator to prepare the samples in-situ 

inside the SEM of the Zettl group.  A pizeo-driven manipulator made by Attocube 

Systems was assembled by Tom Yuzvinsky to manipulate nanostructure materials.  The 

manipulation of nanotubes using Attocube involved several procedures, described in the 

following. 
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        Sharp tungsten tips are crucial for manipulating nanotubes.  They could be prepared 

by using the same method as making STM tips.  I found a method that can repeatedly 

make very sharp tips.  2N NaOH solution, 10mil tungsten wire were used for etching.  

Generally, a biased voltage of 5V and a termination current of 10mA were good to make 

very sharp tips.  However, the tip end might start to become blunt after the first few tips 

were made.  So it is necessary to look at the shape of the tip under an optical microscope 

after each etching.  If the tip started to become blunt, then reduce the voltage by 0.1~0.2V.  

Then the tip would become sharp again.  When finished, the tip was dipped into hot water 

(~80°C) to remove the residue NaOH crystals sticking to the tip.   

        BNNTs were prepared by David Okawa and co-workers using magnesium oxide and 

boron CVD synthesis methods.  Since the minimum distance of the gap of the thermal 

device is ~2.5μm, the length of the nanotube is critical to my experiments.  Thanks to 

David Okawa’s efforts, many multiwalled BNNTs with lengths exceeding 5μm are now 

available.  Nanotube samples for Attocube manipulation were prepared by dispersing the 

nanotube-isopropanol solution on a hot Si chip.  The evaporation of isopropanol drove 

the nanotube to the edges of the Si chip.  When the solution dried, many nanotubes could 

be found hanging on the edge of the Si chip.  These were the best locations to pick up a 

nanotube. 

        Another method to pick up a nanotube employed TEM grids obtained from Ted 

Pella, Inc.  These TEM grids were made of thin and porous metallic films.  Nanotubes 

were dispersed on them using the solution deposition method.  Once a good nanotube 

was located, the tungsten tip can approach it and break the underlying porous films if 
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necessary (shown in Fig. 6-3).  This method is especially useful for arc-grown CNTs, for 

which long nanotubes were not as common as BNNTs. 

 

Figure  6-3 a CNT picked up by a tungsten tip. 

The underlying image shows the TEM grid 

described in (3). 

        After touching the nanotube with the tungsten tip, trimethyl cyclopentadienyl 

platinum (C9H16Pt) was deposited on the joint to strengthen the bonding.  Then the 

nanotube was moved to the desired location (“2” in Fig. 6-4).  After depositing the 

nanotube on the device, one end of the nanotube was anchored to one side of the 

electrode by depositing C9H16Pt on it (“3” in Fig. 6-4).  Then the nanotube was released 

by cutting it with a focused electron beam.  Finally, the other end of the nanotube was 

anchored to the other side of the electrode by depositing C9H16Pt on it (“4” Fig. 6-4). 

        The nanotube was then transferred to a TEM stage, where its structure could be 

determined.  Figure 6-5(a) shows a SEM image and the corresponding low resolution 

TEM image of a BNNT (shown in the inset of Fig. 6-5(a)).  Due to vibrations of the 

suspended nanotube, a high resolution image can usually be taken only at the edge of the 

nanotube where it is strongly anchored.  But this is where the C9H16Pt contamination is 

most serious.  For TEM imaging, finding a good spot to look at can be time-consuming.  
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Figures 6-5(b) and (c) show the high resolution TEM image of a BNNT and its 

diffraction pattern.  Since I tend to select the longest nanotubes during the Attocube 

manipulation, the nanotubes prepared on the devices are usually thick (30nm~40nm) and 

long (>5μm). 

 

Figure  6-4 The procedures of using Attocube manipulator for preparing a BNNT device. 1. Pick up a 

BNNT from the edge of a Si chip. 2. Move to the thermal device. 3. Deposit C9H16Pt so that the BNNT 

is anchored to one of the electrodes. 4. Cut the BNNT using focused electron beam and deposit 

C9H16Pt on the other side of the BNNT then remove the tungsten tip. 
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Figure  6-5(a). An SEM image of the microfabricated test fixture with a BNNT on it (scale bar = 

10μm). The inset shows the corresponding TEM image of the same device (scale bar = 1μm). (b). A 

high-resolution TEM image of the BNNT (scale bar = 5nm). (c). The corresponding electron 

diffraction pattern of the BNNT. 
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6.3 Measurement scheme 

        For κ(T) measurements, the bath temperature was controlled by a Lakeshore 340 

temperature controller.  The sample was mounted inside a high vacuum home-made 

probe.  After the system reached a steady state, a known power (P) was slowly ramped on 

the heater pad.  The resistance changes of the heater and sensor pads were simultaneously 

measured.  The schematic diagram of the measurement is shown in Fig. 6-6.  The 

ramping current generates Joule heat on the heater.  Part of the heat raises the temperature 

on the heater, while the other part of the heat flows through the sample and raises the 

temperature on the sensor.  Under equilibrium condition, the total heat generated will 

eventually dissipate to the environment.  Thus the part of the heat flowing through the 

beams of the heater is 

                                                              h hQ K T= Δ                                                     (6.1) 

where Qh is the heat flowing through the beams of the heater to the environment, Kh is the 

total thermal conductance of the beams connected to the heater, and ΔTh is the 

temperature difference between the heater pad and the environment.   

        The other part of the heat flowing through the sample eventually dissipates to the 

environment via the beams of the sensor; 

                                              ( )s sample h s s sQ K T T K T= Δ − Δ = Δ                                         (6.2) 

where Qs is the heat flowing through the beams on the sensor to the environment, Kh is 

the total thermal conductance of the beams connected to the sensor, ΔTs is the 
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temperature difference between the heater pad and the environment, and Ksample is the 

thermal conductance of the sample.  

 

Figure  6-6 Schematic diagram of heat flow of the thermal device. 

 
        From conservation of energy, we have 

                                                 h s h h sP Q Q K T K Ts= + = Δ + Δ                                       (6.3) 

Assuming that the heater and the sensor pads are symmetric, ie. Kh=Ks, the heat that 

flows through the sample is  

                                                 s
sample s

h sT
TQ Q P

T
Δ
+ Δ                                            (6.4)                    

 = =
Δ

Thus the thermal conductance of the sample can be determined to be 

                                             s
sample

h s h s

TPK
T T T T

⎛ ⎞Δ
= ⎜Δ − Δ Δ + Δ⎝ ⎠

⎟                                         (6.5)
 

It is important to note the resistance used for calculating the power P = I2R should be the 

total resistance on the heating side, i.e. the summation of the resistance of the heater pad 

and the beams.  The linear resistance vs. temperature (R vs. T) relation of the Pt film 
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resistors (Fig. 6-7) enables us to measure the temperature changes of the heater and 

sensor pads.  The thermal conductivity κ can then be evaluated by incorporating the 

nanotube length and the annular area between inner and outer nanotube radius, as 

determined from TEM imaging. 

6.4 Measurement sensitivity 

        The sensitivity of the measurement affects the determination of ΔTh, ΔTs, and the P 

in Eq. (6.5).  I now discuss them as follows.  

Voltage meter sensitivity: I use two HP34401A multimeters to measure the voltage drop 

on the heater and sensor.  Generally, the voltage fluctuation is ±50nV.  

Current source sensitivity: I use Keithley 263 and Keithley 220 current source to supply 

dc current to the heater and sensor.  In the source range of 100μA, the accuracy is ~1nA.  

R vs. T slope.  It is used when converting resistance changes of the heater and sensor into 

temperature changes.  In general, the error introduced by the R vs. T slope is less than 1%.  

However, as shown in Fig. 6-7, the linear R vs. T relation breaks down for T < 20K.  At 

~15K, the resistance saturates due to impurity or vacancy scattering.  Thus the device 

only works for T > 15K.   

The temperature resolution.  The bath temperature is controlled by a Lakeshore 340 

temperature controller.  If the system’s bath temperature is not stable, it gives jumps in 

the κ(T) curve. Although it takes long time to gain the experience for tuning the PID 

parameters, once it is set, the temperature fluctuation is less than 10mK for T > 60K and 

less than 5mK for T < 60K. 
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Figure  6-7 Temperature dependence resistance of Pt film electrodes on the sensor and heater 

 

Figure  6-8 ΔTh vs. ΔTs of a blank device and a device with a BNNT on it. 
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        A blank device (with no nanotube present) is also used to determine the background 

heat leakage.  Figure 6-8 shows the relation of the ΔTh vs. ΔTs of a blank device and a 

device with a BNNT on it.  The background gives an equivalent thermal conductance 

2.8×10-12W/K at room temperature, which is slightly larger than Li Shi’s estimate [98].  

However, as I will discuss below, the errors due to radiation loss at room temperature are 

in the 10-10 W/K range.  Thus for thermal conductance of the sample below 10-10W/K, a 

more complex analysis is needed to precisely determine the experimental result. 

 

6.5 Measurement errors 

        Several factors introduce errors to the measurement.   

Air convection.  One measurement error is due to heat loss via air convection.  The heat 

loss due to air convection can give an equivalent thermal conductance Kair.  It follows 

that Kair = κairAeq/Deq, where κair is the thermal conductivity of the residual air molecules 

in the evacuated cryostat, Aeq is the equivalent surface area of the membrane, and Deq is 

the equivalent distance between the heater and sensor.  For a vacuum pressure less than 

10-5 torr, the mean free path of air molecules is more than 1m and is much larger than Deq.  

Under such condition, the heat loss due to air convection follows κair=CairvDeq/3, so 
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where Cair is the heat capacity of air molecules, v is the velocity of air molecules.  From 

Eq. (6.6), it can be estimated the effective thermal conductance due to air convection is 

less than 10-12W/K at 300K, well below the measurement sensitivity. 

        Experimentally, I have measured the thermal conductance due to air convection by 

varying the vacuum pressure.  No apparent heat loss via air convection is observed when 

the vacuum pressure is below 10-4 torr.  Since the vacuum pressure is always kept below 

5×10-6 torr, the systematic error due to air convection is negligible.  

Radiation loss.  The heat loss due to radiation can be estimated as  

                                                                                                 (6.7) 4 44 (rad eq h sP A Tεσ=

where σ = 5.7×10-8 W/m2K4, ε is the object’s emissivity, and Aeq is the equivalent surface 

area between the heater and sensor.  Li Shi gave an estimate of Aeq to be 12μm2.  It will 

give an equivalent thermal conductance less than Krad ~ 7×10-11W/K at 300K.  The error 

due to radiation becomes larger when measuring samples of low thermal conductance. 

Because a large heating power is always needed to obtain a detectable signal on the 

sensor, Krad is larger than 7×10-11W/K at 300K. 

Temperature distribution along the heater beam.  Because the temperature distribution is 

not uniform throughout the heater beams, strictly speaking, Eq. (6.5) only holds for 

small  ΔTh.  For a typical sample with 10-8W/K and ΔTh ~10K, the error in using Eq. (6.5) 

is ~13%. 

Asymmetry. The error due to asymmetry of the heater and sensor was overlooked in 

earlier experiments using the same devices.  In fact, the error due to the asymmetry is 
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large and can not be neglected.  When deriving Eq. (6.5), I have assumed that the heater 

and sensor are symmetric, ie. Kh = Ks.  In practice, they are not perfectly symmetric, so I 

need to introduce an asymmetric factor ε, so that Kh = Ks(1+ε).  The asymmetry will 

results in an asymmetry of temperature changes when switching the heater and sensor 

sides.  It follows that 

                                                        
'

s s

s

T T
T

ε Δ − Δ
=

Δ
                                                          (6.8) 

where ΔTs is the temperature change on the sensor when applying currents on the heater, 

as defined earlier.  After switching the role of heater and sensor, ΔTs
’ is the temperature 

change on the new “sensor” when the heating current flows on the old “sensor”.  So the 

asymmetry of the temperature changes on the sensors can be used for measuring the 

asymmetry of Kh and Ks.  I find ε to be around 10%, so there can be a 10% error in 

determining the sample thermal conductance. 

Sample geometry.  In previous experiment, Phillip Kim et al. used SEM imaging to 

determine the diameter of the nanotube to be 14±2nm [85].  But considering the 

resolution of SEM and the additional charging effect when imaging a CNT, it is actually 

difficult to achieve such a high accuracy.  For example, figure 6-9 shows two SEM 

images obtained by Dr. Marky Llaguno in the Majumdar’s group using a Joel SEM in 

Berkeley’s Microlab.  Although there are several CNTs bridging across the electrode, 

they are barely visible.  I took the TEM image of the same device and found that they are 

MWCNTs with diameters of 20nm.  Thus using SEM images to determine the diameter 

of a MWCNT can cause large errors.  Another experiment even used an SEM image to 
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estimate the inner diameter of a CNT without considering that the electron beam size is 

much larger than that [86].  I believe that these methods all introduced very large errors 

in determining the geometrical factors of nanotubes.  Making the device TEM accessible 

greatly reduces the error due to sample geometry.  The resolution of a TEM is better than 

1Å so that error due to geometrical factors becomes negligible. 

Contact thermal resistance.  It was recognized in previous experiments that the 

contribution of the contact thermal resistance is difficult to evaluate.  A common 

approach is minimizing its contribution by annealing the contacts.  But the value of the 

contact thermal resistance is still unknown.  I will show a better method to estimate the 

contact resistance in chapter 12.  Generally, for a nanotube with thermal conductance in 

the 10-8W/K range, the contact thermal resistance contribution is less than 7% of the total 

thermal resistance.  

 

Figure  6-9(a) and (b) SEM images of two as-grown CNT devices made by Marky Llaguno using a  

Joel SEM in the Microlab at UC Berkeley. 
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6.6 AC method 

        In the earlier section, I introduced a dc-method to measure the thermal conductivity 

of individual nanotubes.  In principle, an ac-method will also work for such 

measurements.  Basically, a function generator with frequency ω is used to supply current 

to the heater.  Due to Joule heating P=I2R, the temperature will fluctuate at a frequency 

of 2ω.  Correspondingly, if a dc-current is supplied to the sensor, its resistance will 

fluctuate at a frequency of 2ω.  So the resistance change at the sensor can be determined 

by a lock-in amplifier locking at the frequency of 2ω.  

        This method is reminiscent of the 3ω method commonly used for measuring thermal 

conductivity of thin films.  But it has several advantages over the 3ω method.  In practice, 

a function generator sourcing a signal of sinωt also generates higher harmonics, 2ω, 3ω, 

etc.  Although one can use low-pass filters to reduce these unwanted signals, they become 

an annoying source of error when the detection level is much lower than the output 

voltage.  Actually, people who use the 3ω method always build a Wheaston bridge to 

balance out the unwanted signals.  The method I used here separates the heating and 

sensing channel, thus eliminating the problem.  In addition, the sensing signal level of the 

lock-in amplifier scales with the dc current of the sensor.  Thus it is easy to increase the 

detection level without over-heating the heater. 

        The thermal conductance of the sample can be obtained using Eq. (6.5): 
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But now ΔTh and ΔTs are obtained by employing lock-in amplifiers to lock frequencies of 

ω at the heater and 2ω at the sensor. 

        Figure 6-11 shows the results of κ(T) of a BNNT obtained by employing dc and ac 

methods.  The overlap of the two curves demonstrates that both methods give consistent 

results. 

 

Figure  6-10 Thermal conductance of a BNNT measured by DC (solid squares) and AC (open circles) 

method. 
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6.7 Improvements 

        The thermal devices that I used in this thesis were made by Deyu Li in the 

Majumdar group.  Fabrication of the thermal device involves a lot of procedures, 

including repeated patterning, aligning, photo-lithography, thin-film deposition, and 

etching.  So when designing a new thermal device, it is desired to simplify the fabrication 

procedures and at the same time improve its flexibility and sensitivity.  In principle, the 

simplest thermal device can be made by a single suspended beam.  One only needs to 

compare the heat loss before and after connecting the sample to the device, and the 

sample thermal conductance can be extracted by a self-heating-self-sensing method.  In 

fact, researchers have used this method to construct a scanning thermal microscope that 

can measure the temperature profile of a diamond’s surface [99]. 

       Renkun Chen in the Majumdar group and I designed a new device that not only 

greatly simplified the fabrication procedure but also improved the sensitivity of the 

device.  Figure 6-11 shows our design.  It consists of two suspended beams; one is a 

heater and the other one is a sensor.  There is a large pad at the center part of the beam for 

connecting samples.  The beam is made by 200nm thick, 800μm long SiNx film.  Because 

of the reduction of the total beam number and the thickness of SiNx, the sensitivity is 

improved by a factor of ~6, reaching ~10-11 W/K at room temperature.  The device can be 

TEM-transparent and is also suitable for bending/telescoping experiments which I will 

describe in later chapters.  The thin film resistors can be made from other metals/alloys so 

that the device has the ability to measure thermal conductivity of a material below 15K.  
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The small gap between the center pads and the large gap between the beams also make 

sample preparation (like solution-deposition of SiNWs on the device) much easier.    

        One of the disadvantages of the new device is that it has no independent beam for 

measuring thermopower of a sample.  Another disadvantage is that for conductive 

samples, one needs to be cautious so that no current flows through the sample when 

applying current to the heater.  It can be solved by connecting a large resistor at the 

sensor.  With a higher sensitivity thermal device, we will be able to approach the 

quantum limit of thermal conductance of nano-scale materials.  

 

 

 

Figure  6-11 An improved design of the thermal device (not to scale). 
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Chapter 7 Thermal transport 

measurements on individual 

nanotubes 

7.1 Temperature dependence and structures of boron nitride 

nanotubes 

        The behavior of κ(Τ) of nanotubes is of fundamental interest.  Theoretical 

calculations on CNTs have suggested that the onset of umklapp processes (TU), which 

denote the occurrence of phonon-phonon back-scatterings, should appear at 100~400K 

[39,78,79,100].  Experimentally, J. Hone et al. studied the κ(Τ) of mats of SWCNTs and 

found that κ(Τ) increases almost linearly with increasing temperature up to 350K [82].  

Similar results were observed for mats of MWCNTs.  P. Kim et al. studied κ(Τ) of an 

individual MWCNT and found that κ(Τ) of an isolated bundle of CNTs increases 

monotonically with increasing temperature while κ(Τ) of the individual MWCNT shows 

a peak at 350K [85].  The Dai group used an indirect method based on fitting the 
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nonlinear I-V curve of a CNT and extracted the κ(Τ) at high temperatures [88].  They 

found that TU ~ 400K for a SWCNT. 

        For BNNTs, theoretical calculations suggest that their TU should be similar to that of 

CNTs, ie. varying from 120K to 400K [59,101].  However, although κ for hexagonal BN 

shows a peak at 120K, my measurements on mats of B-C-N nanotubes and BNNTs only 

display a change in slope at 120K.  The discrepancies between theoretical predictions and 

experimental results are still not clear.  Here I will describe experimental results on κ(Τ) 

of individual multiwall BNNTs. 

 

 

Figure  7-1 Temperature dependent thermal conductance of two BNNTs showing two distinct 

behaviors. (a) shows monotonic increasing thermal conductance with increasing temperature. (b) 

displays a peak indicating the onset of umklapp processes.  
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Figure  7-2 Representative diffraction patterns of BNNTs. One of them shows zigzag structure (a). 

The other one shows a mixed structures of armchair and zigzag (b). 

 

        Two distinct temperature dependencies of κ(Τ) are observed for over 20 individual 

BNNT samples.  As shown in Fig. 7-1(a), the first kind of κ(Τ) behavior shows a 

monotonic increase of thermal conductivity with increasing temperature.  In contrast, the 

second kind of κ(Τ) curve displays a peak at 200K (Fig. 7-1(b)), suggesting the onset of 

umklapp processes.  However, eighteen samples show monotonic increase in κ(Τ)  while 

only two of them display a peak.  For CVD-synthesized BNNTs, it has been shown that 

80% of the samples exhibit zigzag structures and only 20% of them show mixed 

structures [102].  From the population point of view, it is suggestive that there might be a 

correlation between the behavior of κ(Τ) and BNNT structures.  However, after 
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comparing the diffraction patterns of each BNNT with their κ(Τ), no clear correlations 

are established.  Indeed, some of the BNNTs whose κ(Τ)  increases monotonically 

exhibit zigzag structures.  However, some of them also display diffraction patterns of 

mixed structures.  So the effort to try to correlate κ(Τ) behavior of BNNTs with their 

diffraction patterns is not successful. 

        Although the correlation between BNNT structure and κ(Τ) behavior is not 

established, the observation of a peak on some κ(Τ) curves demonstrates the presence of 

umklapp process in BNNTs.  Notably, the peak in κ(Τ) occurs at TU~200K, which is 

higher than that of hexagonal BN.  For κ(Τ) displaying monotonically increasing, their 

TU’s are probably higher than 350K.  The wide distribution of the TU’s may be due to 

structural differences in the nanotubes.  More detailed studies are needed to establish the 

correlation between BNNT structure and κ(Τ) behavior.   

7.2 Thermopower of carbon nanotubes 

        The thermopower of CNT mats has been investigated by former Zettl group 

members [75,103,104].  One of the most important discoveries is that the thermopower of 

CNTs is sensitive to the presence of oxygen [75,103].  When measuring the thermopower 

of as-prepared CNTs, the thermopower showed positive values.  After baking the sample 

in vacuum, the thermopower became negative.  Thermopower measurements of 

individual MWCNTs were first carried out by P. Kim et al. [105].  At that time, they 

were not aware of the oxygen-absorption effect and their thermopower showed positive 

values.   
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        Although some of the MWCNT samples did show negative thermopower values at 

room temperature, temperature dependence of thermopower was successfully measured 

on only one MWCNT device (shown in Fig. 7-3).  The MWCNT has an outer diameter of 

9.6nm and an inner diameter of 7.2nm.  At room temperature, the thermopower remained 

positive after pumping in vacuum for a long time.  It is not clear why continuous 

pumping did not change the thermopower value.  It is possible that the coating of C9H16Pt 

molecules prohibits the desorption of oxygen molecules or that C9H16Pt functionalizes 

the surface and thus effectively dope the MWCNT, keeping the thermopower value 

positive.  Notably, the value of the thermopower is low, in the range of μV/K, which is 

comparable to the typical thermopower of a metal. 

 

Figure  7-3 Temperature dependence of thermopower of individual carbon nanotube. 
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Figure  7-4 Temperature dependence of resistance and thermal conductance of the MWCNT device 

shown in Fig. 7-3. 

 

Figure  7-5 Figure of merit (ZT) of the MWCNT obtained from Fig. 7-3 and Fig. 7-4. 
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        It is interesting to see whether MWCNTs can be used as thermoelectric refrigerators.  

To evaluate the possibility, it is important to determine the figure of merit (ZT), defined 

as: 

                                                         
2 2S T S TZT

RKρκ
= =                                                     (7.1)                       

where S is the thermopower measured in μV/K, ρ is the electrical resistivity, R is the 

resistance.  A material exhibiting ZT >2 will be of commercial interest, ZT >3 will have 

efficiency competing with that of an ordinary refrigerator.  Figure 7-4 shows the 

temperature dependence of resistance and thermal conductance of the MWCNT.  The 

corresponding ZT behavior is plotted in Fig. 7-5.  The ZT of the MWCNT is very small.  

The result is consistent with Li Shi et al.’s earlier report [98]. 
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Chapter 8 Isotope effects on the 

thermal conductivity of boron-

nitride nanotubes 

8.1 Phonon scattering from point defects  

        A phenomenological model on the effect of point defect scattering on the thermal 

conductivity of materials, sometimes refers to as Klemens-Callaway model, can be 

derived from a perturbative approach on the Hamiltonian for lattice vibrations of a crystal: 

                        
2 2

†
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= + Φ − +∑ ∑∑ ∑∑                (8.1) 

with local atomic mass M, Φ the interactions between atoms, and ΔM is the mass deficit 

associated with the lattice atoms of mass M.  The scattering due to the last term causes 

phonons to transit from an initial state to a final state.  According to Fermi’s golden rule: 

                                               
22 ˆ (i f f i )f H i E Eπ δ→Γ = Δ −                                  (8.2) 

The transition rate for phonon scattering then can be evaluated as: 
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At low temperatures, we can use the Debye form for the density of states 
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and summing over all scattering sites, with fractional density ci. The phonon relaxation 

time can be determined to be 
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At very low temperatures kBT<<ћω, the phonon relaxation time approaches: B
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As expected, the ω4 is similar to the Rayleigh scattering of light where the wavelength is 

much larger than the scattering center.  

        As can be seen in the derivation, Klemens-Callaway model only applies for low 

temperature when phonon-phonon scatterings are negligible.  At high temperatures, the 

phonon transport becomes complicated and many of the approximations do not hold 

anymore.  However, the proportionality of the scattering rate to (ΔM/M)2 still holds even 

at high temperatures. Thus the Klemens-Callaway model is still useful for analyzing 

experimental data at high temperatures. 
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8.2 Isotope effect on boron-nitride nanotubes 

        Isotope effect on the κ of materials is of fundamental interest.  Table 8-1 

summarizes the isotope effect on the κ(290Κ) of various materials.  The κ  isotope effect, 

large in bulk diamond [106], silicon [107], and germanium [108], remains unexplored for 

low-dimensional systems.  Boron has larger natural isotopic disorder (19.9% 10B and 

80.1% 11B) than does carbon (98.9% 12C and 1.1% 13C), suggesting that an enhancement 

of κ due to isotope-enrichment could be large in BNNTs. 

 

Table  8-1 Isotope effect on the room temperature thermal conductivity of various materials. 

Material Nature isotope abundance Thermal conductivity 

enhancement factor at 

room temperature 

Diamond (98.9% 12C, 1.1% 13C) 35% 

Germanium (20.52% 70Ge, 27.43% 71Ge, 7.76% 

72Ge, 36.54% 74Ge, 7.76% 76Ge) 

30% 

GaAs (60.2% 69Ga, 39.8% 71Ga) 5% 

Si (92.2% 28Si, 4.7% 29Si, 3.1% 30Si) 10% 

BNNT (18.98% 10B, 81.02% 11B) 50% (this work) 

Cubic BN (18.98% 10B, 81.02% 11B) 125% (theory) 
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        Controlled isotope concentration of multiwall BNNTs were synthesized by David 

Okawa.  BNNT samples have typical outer diameter 30~40nm and length ~10µm.   

Isotopic percentages were controlled using commercially available boron isotopes 

(99.56% 11B, Cambridge Isotope Laboratories, Inc.)i.  CNTs with diameters ranging from 

10nm to 33nm were prepared by Henry Garcia using conventional arc methods.   

        Fig. 8-1 shows κ(T) for an isotopically impure (natural abundance) BNNT, an 

isotopically pure 11BN nanotube, and a CNT, all with similar outer diameters.  For all 

materials, κ increases with increasing temperature with no sign of saturation up to 

300~350K.  Isotopic enrichment is seen to have a dramatic effect on the thermal 

conductivity of BNNTs, with an enhancement of approximately 50% throughout the 

measured temperature range.  Furthermore, the overlap of the data sets for the 

isotopically enriched BNNT and CNT is striking; it reveals similarities of the intrinsic 

phonon dispersion relations, and demonstrates that the thermal conductivity of an 

isotopically pure BNNT is virtually identical to that of a CNT.  These results are 

consistent with theoretical calculations that suggest similar phonon dispersion relations 

between hexagonal BN and graphene. 

 

 
i The isotope disorder of nitrogen is much smaller (<0.4%) and can be neglected here. 
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Figure  8-1 The κ(T) of a CNT (open circle), a BNNT (solid triangle) and an isotopically pure BNNT 

(solid square) with similar outer diameters. 

8.3 Diameter dependence 

        Previous experiments on CNTs suggest that the thermal conductivity may depend 

strongly on nanotube outer diameter.  To verify this effect for CNTs and to investigate it 

for BNNTs, I have systematically measured κ(290K) for BNNTs and CNTs with 

different diameters.  As shown in Fig. 8-2, for BNNTs in the range 30nm~40nm κ 

increases with decreasing outer diameter.  A similar diameter-dependence is also 

observed for CNTs, measured over the broader diameter range 33nm to 10nm.  For large 

outer diameter (dout ~ 35nm) CNTs κ ~ 300W/mK, while for small outer diameter (dout ~ 

10nm) CNTs κ ~ 1100W/mK.  My observed diameter-dependence of κ is qualitatively 

similar to, though less pronounced, that reported in Ref. [87].  The origin of this diameter 

dependence is unclear.  It has been suggested that, since in conventional thermal 
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conductivity experiments heat is injected from the contacts into the nanotube via the 

outermost shell and the coupling is much weaker along the c-axis than in the a-b plane of 

graphite or hexagonal BN, it is possible that the outermost shell dominates the thermal 

transport.  However, when plotting the thermal conductance data with respect to 2πdout, I 

do not observe a clear correlation between them, making such a non-uniform heat flow 

explanation unlikely.  Alternatively, theoretical studies have suggested that inter-layer 

phonon scattering can significantly reduce the thermal conductivity of graphite, and 

similar inter-shell scattering mechanisms might be expected for multiwall nanotubes.  

From TEM imaging I find that nanotubes with dout ~10nm generally have ~10 shells, 

while nanotubes with dout ~ 30~40nm generally have 60~90 shells.  Thus the increasing 

shell number with increasing dout supports the inter-shell scattering picture. 

 

 

Figure  8-2 The κ(290K) vs. outer diameter of various BNNTs (solid triangles) and CNTs (solid stars). 

Data from Ref. [87] are also shown for comparison (open circles). 
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8.4 Discussion 

        The thermal conductivity can be used to estimate the phonon mean free path using 

the expression κ(T)=∑Cvl, where C, v, and l are respectively the specific heat, group 

velocity, and phonon mean-free-path, and the sum is over all phonon states.  Since 

currently there are no available data for heat capacity of BNNTs, I assume the ratio of 

heat capacity of hexagonal BN to graphite to be the same as that of BNNTs to CNTs.  

Choosing v = 10km/s estimated by theory and following the diameter-dependence of κ in 

Fig. 8-2, I estimate that the room temperature phonon mean-free path would reach 200nm 

for isotopically pure BNNTs with diameter 10nm, comparable to l = 500nm determined 

from previous experiments on an isolated CNT with a similar diameter.  

        The isotope enhancement factor of 50% for BNNTs, though dramatic, is smaller 

than might be anticipated from simple models.  First, natural abundance boron has 

significantly greater isotopic disorder (19.9%) than natural abundance carbon (1.1%), yet 

the isotope enhancement experimentally observed for diamond is also 50%.  Indeed, 

theoretical work has predicted that for cubic BN crystals, the isotopic enhancement 

should be 125%.  Second, the one-dimensional structure of nanotubes should further 

increase the isotope enhancement factor by promoting phonon localization due to isotope 

scattering.  Third, it has been suggested that the isotope effect can change the phonon 

scattering time (τ) by 
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where ω is the frequency, v is the average sound velocity, ΔM is the mass deficit 

associated with the lattice atoms of mass M and atomic spacing a. Since 11B is lighter 

than 12C, the isotope enhancement factor of BNNTs may be expected to be larger than 

that of CNTs.  

        On the other hand, the observed strong diameter-dependence of κ may strongly 

influence the isotope enhancement factor.  For large-diameter nanotubes with many walls, 

for which inter-shell phonon scattering dominates the phonon transport, isotopic disorder 

effects play only a secondary role and hence the isotope enhancement factor would be 

severely depressed.  Only for small-diameter nanotubes with few walls, would the 

phonon mean-free-path be limited by isotope or impurity scattering along the nanotube 

axis.  Thus, the isotope enhancement factor of 50% here observed for large-diameter 

BNNTs may well represent only a lower limit for BNNTs in general. 
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Chapter 9 Robust phonon transports 

in nanotubes 

9.1 Robust against electron irradiation 

        The electrical current distribution of a MWCNT has been an interesting subject.  

Collins et al. used electrical breakdown method to remove the walls of sections of a 

MWCNT and found that each wall contributes equal amounts of current [109].  Tom 

Yuzvinsky et al. used a similar method with additional in-situ TEM imaging and 

concluded that current uniformly distributes across the entire cross section [110].  On the 

other hand, several experiments observed the Aharonov-Bohm effect in MWCNTs and 

demonstrated that the current only flows in the outer wall [111,112].  The origin of the 

controversy is still not clear, but it may suggest some interesting unknown phenomena.  

In contrast with electrical transport, so far no experiment has investigated the heat 

distribution of a multiwall nanotube.  Previous thermal transport measurements of 

individual MWCNTs and BNNTs revealed an unusual diameter-dependence of thermal 

conductivity, suggesting that inter-wall scatterings limit the phonon mean free path [87].  

However, they do not give information of how the heat flow is distributed along the 

radial direction of the nanotubes.  To unravel the heat distribution of a multiwall 
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nanotube, here I experimentally measure the thermal conductivity change of a BNNT 

while cutting it using an electron beam. 

        Figure 9-1(a) and (b) show low-magnification TEM images of a BNNT (Sample 1) 

and a BNNT bundle (Sample 2) spanning the gap of the electrodes.  The inset of Fig. 9-

1(a) and (b) show the corresponding SEM images.  In-situ thermal conductance 

measurement was done every two minutes while using the line-scan mode of the SEM to 

cut the BNNT.  Precision cutting of MWCNTs using an electron beam has been 

demonstrated by Tom Yuzvinsky et al. [113].  Generally, they found that the cutting time 

does not necessarily increase with increasing electron acceleration voltage, but a higher 

current density definitely shortens the cutting time.  Here I use an acceleration voltage of 

2KV with beam currents 128pA and 615pA to cut Sample 1 and Sample 2, respectively. 

 

Figure  9-1 Low-magnification TEM images of two BNNTs on thermal devices (scale bar = 0.5μm). 

Insets show the corresponding SEM images (scale bar = 2μm). 
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Figure  9-2. Thermal conductance vs. cutting time for Sample 1 and Sample 2. 

 
       The results of thermal conductance vs. cutting time of Sample 1 and Sample 2 are 

shown in Fig. 9-2(a) and (b), respectively.  Surprisingly, despite that the electron beam 

constantly irradiates the BNNTs, the thermal conductance decreases step by step rather 

than continuously.  Notably, the number of the steps does not equal to the number of 

walls of the BNNT.  For example, Sample 1 has 68 walls but only six steps are observed 

in Fig. 9-2(a).  For Sample 1, despite the initial drop, its thermal conductance remains 

nearly constant for a long time then shows step-like decrease.  For sample 2, a larger 

beam current was used, thus the cutting time is much shorter than that of sample 1.   

        More interestingly, the thermal conductance change in each step is nearly the same 

for each case.  Each step in Fig. 9-2(a) and (b) represents a decrease of thermal 

conductance of 4.7×10-8 W/K and 3×10-9 W/K, respectively.  The result is similar to the 

electrical breakdown experiments in MWCNTs.  However, unlike previous experiments 

on MWCNTs in which large sections of walls were burnt out, here the irradiation area is 

much smaller and localized.  It is important to note that the thermal conductance 
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measurement resolution is much higher than the magnitude of each step so the results are 

not due to experimental artifacts.   

        Fig. 9-3 shows the results of the finite element analyses of a model simulating the 

cutting process.  As expected, even if a large anisotropy of thermal conductance is 

introduced to the model, the thermal conductance still decreases continuously.  Thus the 

thermal conductance of a continuous media will not show a step-like decrease if there is 

no corresponding step-like changes in the sample geometry. 

 

Figure  9-3. Results from finite element simulation of the cutting process. Different thermal 

conductivity anisotropy ratios (defined as the ratio of the thermal conductivity along the nanotube 

axis to that of the radial direction) are introduced.  As expected, no step-like decrease can be 

observed in this continuum model. 
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        To get more insight to the structural change of BNNTs under electron beam 

irradiation, I have done in-situ TEM imaging of BNNTs under 100KV electron beam 

irradiation.  Figure 9-4(a) to (d) show a series of structural changes of a BNNT under 

intense electron beam irradiation.  The walls of the BNNT were straight and regular at the 

beginning (Fig. 9-4(a)).  After focusing the electron beam and irradiating the BNNT for 

10mins, the outer and inner walls were damaged and became wavy (Fig 9-4(b)).  After 

additional 5mins of irradiation, ~6 outer-walls were destroyed and an end cap was formed.  

Interestingly, end caps always form at the ends of 6~11 wall-structures, as shown in Fig. 

9-4(c).  Onion-like and fullerene-like structures were also observed after an extended 

period irradiation (Fig. 9-4(d)).       

        Since the formation of the end caps opens a gap and thus blocks the heat flow, it 

explains the sudden decrease of the thermal conductance.  Besides, the fact that the end 

caps always form at 6~11 wall-structures also explain the number of steps in Fig. 9-2(a) 

and (b).  For example, Sample 1 has 68 walls and thus there are (68/11)~6 steps in Fig. 9-

2(a). The good agreement between the steps of thermal conductance and observed 

structural change suggests that the heat flow is uniformly distributed across the entire 

cross section.  Furthermore, it is interesting to note that although the walls of the BNNT 

become wavy after irradiation, they do not affect the total thermal conductance.  Thus the 

thermal conductance of BNNTs is not affected by the wavy structures induced by 

electron beam irradiation.  We will see more clearly in the next section that the thermal 

conductance can endure severe structural distortion when bending the nanotubes. 
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Figure  9-4. A time sequence of TEM images of a BNNT under intense electron beam irradiation.  
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        In summary, I have observed step-like decrease of the thermal conductance of 

BNNTs when irradiating them with intense electron beams.  TEM imaging of BNNTs 

under electron irradiation suggests that the formation of end caps containing 6~11 walls 

is responsible for the observed uniform step-like changes of thermal conductance.  The 

results suggest that the heat flow is uniformly distributed across the entire cross section of 

the BNNT.  Furthermore, the thermal conductance of BNNTs is insensitive to the wavy 

structures induced by electron beam irradiation.  Electron beam induced structural defects 

are very common for ordinary materials and especially for biological samples.  BNNTs 

are robust phonon waveguides which are insensitive to low-density electron irradiation so 

they can be an ideal protection layer for sensitive chemicals or biological molecules. 

 

9.2 Robust against structural deformation 

        For in-situ bending vs. electrical/thermal measurement, a sharpened tungsten tip 

mounted on a pizeo-driven manipulator inside an SEM was used to push one of the 

resistance/thermopower beams near the end of the suspended device (shown in the Fig. 9-

5).  This would bend the nanotube but also minimize the heat loss through the tungsten 

tip.  I have found that the heat loss through the tungsten tip is negligible. The resistance 

and thermopower can be measured simultaneously, with careful subtraction of the 

contribution of the Pt films.  All the measurements were done at room temperature. 
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Figure  9-5 An SEM image of the microfabricated test fixture with a BNNT bonded with C9H16Pt on 

the electrodes (scale bar = 5μm). The inset shows the experimental configuration when using the 

manipulator to push the device without affecting the heat profile (scale bar = 50μm). 

 

        The upper part of Fig. 9-6 shows a series of representative SEM images with two 

cyclic bendings of CNT sample 1.  The corresponding changes of the electrical resistance, 

thermopower, and thermal conductivity are shown in the lower part of Fig. 9-6.  Their 

values are normalized to the initial quantities of 44KΩ, -42μV/K, and 1050W/mK, 

respectively.  The resistance shows a cyclic 20% modulation against deformation.  It 

reaches maximum when the bending angle is largest, indicating a band-gap opening 

under deformation.  Since the total conductance of a multiwall CNT is dominated by the  
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metallic channels, Fig. 9-6(b) indicates that there is a metal to semiconducting transition 

when bending metallic tubes.  The result is consistent with previous experiments [114].  

It is also consistent with theoretical preditions that suggest a band-gap opening when 

bending  metallic CNTs [115].  

        The total thermopower (S) of a multiwall CNT can be expressed by a two band 

model 

                                               metal metal semi semi

metal semi metal semi

G S G SS
G G G G

= +
+ +

                                       (9.1) 

where the G’s are conductance of the metallic and semiconducting channels, respectively. 

And 

                                                 

2 2 1
3

( 1) 2
( 1) 2

F

metalB
metal

metal E

GB
semi

B

dGk TS
e G dE

Ek cS
e c k T

π−
=

⎛ ⎞− −
= +⎜ ⎟+ ⎝ ⎠

                                     (9.2) 

where EF is the Fermi energy, and c denotes the mobility ratio of electron bands to hole 

bands.  For metallic channels we have nearly electron-hole symmetry, thus the first term 

in Eq. (9.1) vanishes [104].  So the total thermopower of a multiwall CNT is dominated 

by the semiconducting channels.  As Eq. (9.2) suggests, a band-gap-closing will decrease 

the value of |Ssemi|.  Thus Fig. 9-6(c) indicates that there is a semiconducting to metal 

transition when bending a semiconducting CNT, which agrees with the theoretical 

predictions [115-117].  Previous experiments have shown that the thermopower of CNTs 

is sensitive to oxygen absorption, molecular collisions and gate voltages 

[75,104,118,119]; here I show that it is also sensitive to mechanical deformation. 
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        In contrast, although the thermal conductivity curve shows a 10% fluctuation in Fig. 

9-6(d), there is no clear correlation between the thermal conductivity and the bending 

angles.  It is especially dramatic at the two extremes where the bending angles 

(determined by the projective images) are larger than 90° and 130°, respectively.  Since 

the nanotubes generally move out of the projection plane (as clearly seen in the 15th 

frame of Fig. 9-6(a) and also in the 13th frame of Fig. 9-7) and the height difference 

between the heater and sensor is smaller than 100nm, the real bending angles should be 

larger than the projective angles.  The thermal conductivity fluctuation may be due to 

perturbations in the contacts under large strain.  Applying the Wiedemann-Franz law to 

Fig. 9-6(d), I can estimate that the electronic contribution to the total thermal 

conductivity is less than 1%.  The result is consistent with previous theoretical and 

experimental results [78,82,120]. 

        Although it has been shown that CNTs are remarkably flexible and resilient [29], the 

robustness of the thermal conductivity against deformation is still surprising.  A ripple-

like structure has been observed when bending a multiwall CNT [121].  Generally, the 

“wavelength” of the ripple is ~10nm for a radius of curvature of~400nm and it decreases 

as the bending angle increases.  With a radius of curvature of ~260nm as in the 15th 

frame in Fig. 9-6(a), one would expect that these ripples would scatter phonons 

efficiently because the phonon mean free path (~200nm) is much longer than the 

wavelength of the ripple.  Thus it is surprising that the thermal conductivity of the CNT 

remains unperturbed when the bending angle is larger than 130°. 
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Figure  9-6 Upper part: a series of representative SEM images of CNT sample 2 undergoing one cycle 

of bending (scale bar = 2μm).  Lower part: a series of representative SEM images of CNT sample 3 

undergoing the third cycle of bending (scale bar = 2μm).  The number in each frame denotes the time 

sequence in each sample, respectively.  Middle panel: The thermal conductivity change of CNT 

sample 2 (open triangles) and CNT sample 3 (solid circles).  The inset of the middle panel shows the 

TEM image after the defect was created in CNT sample 3 (scale bar = 50nm) 
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        Figure 9-7 shows two CNTs under cyclic deformation.  The thermal conductivity is 

normalized to the initial values of 290W/mK and 305W/mK for CNT samples 2 and 3, 

respectively.  At the extremes, the CNTs are bent at angles larger than 125° and 140°, 

respectively. Unlike Fig. 9-6, here the two CNTs are buckled locally so their radii of 

curvature are smaller (~70nm and ~90nm, for CNT samples 2 and 3, respectively).  

Remarkably, the thermal conductivity remains unchanged when the radius of curvature is 

comparable to their phonon mean free path (~50nm).  As shown in the last data point of 

CNT sample 3, the thermal conductivity starts to decrease only when some permanent 

defects are created by suddenly releasing the device under strain.  The TEM image in the 

inset of Fig. 9-7 clearly displays such defects.  

        To investigate whether this unique property is universal, I have extended my study 

to BNNTs.  BNNTs are known to have comparable Young’s modulus, phonon dispersion 

relation and thermal conductivity as those of CNTs, but because of their large band gap, 

their thermal properties are purely phononic.  I have also found that, like CNTs, the 

thermal conductivity of BNNTs does not change until permanent defects are created. 

        Although I can qualitatively explain the observed correlation of the resistance and 

thermopower of CNTs under deformation, it is difficult to understand the robustness of 

the thermal conductivity of CNTs and BNNTs from a traditional point of view.  In reality, 

most materials under strain will create defects or dislocations and thus reduce their 

thermal conductivity.  So it is surprising that CNTs or BNNTs do not create permanent 

defects when bending the nanotubes at angles larger than 140°.  More surprisingly, their 

phonon mean free path exceeds the wavelength created by the ensuing ripple-structures.   
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       The unusual robustness of nanotubes makes one wonder what would happen to the 

phonon transport when the nanotubes are extremely deformed.  Theoretically, even if no 

defects or dislocations are present; the thermal conductivity of an object will start to 

decrease when its radius of curvature is smaller than the phonon mean free path.  Thus 

the phonon mean free path sets an ultimate limit to the minimum radius of curvature 

beyond which the thermal conductivity starts to decrease. The robustness of phonon 

transports of CNTs or BNNTs does not violate, though it is close to, this ultimate limit.  

For an ordinary electromagnetic waveguide, a slight deformation will create mismatching 

of modes, thus results in a significant power loss.  For an optical fiber, the minimum 

radius of curvature for bending is set by the relative refraction index, and is usually much 

larger than the wavelength of light.  Here I show that nanotubes can be bent to a radius of 

curvature comparable to the phonon mean free path without losing its high thermal 

conductivity properties.  Therefore, nanotubes not only can be sensitive 

nanoelectromechanical devices, but also extremely good and robust broad-band phonon 

waveguides. 
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Chapter 10  Tuning the thermal 

conductance of nanotubes 

10.1 Introduction and experimental procedures 

        Unlike electrical resistivity which can vary by more than 1012 from insulators to 

metals, thermal conductivity varies by less than 104 from the best thermal conductors to 

the best thermal insulators.  In addition, unlike typical field-effect transistors which can 

change on-off resistances by more than 106, no devices have been shown to exhibit 

tunable thermal conductance.  This lack of variability and tunability of phonon transport 

in materials is the main obstacle for heat management and further processing of phonons 

as information carriers. 

        Multiwall carbon nanotubes (MWCNTs) comprise concentric cylindrical shells or 

layers of strongly sp2-bonded carbon atoms, whereas the interlayer interaction is 

predominantly van der Waals [21].  The large disparity between the strength of the sp2 

bonding and the van der Waals interactions has enabled people to construct various 

nanoelectromechanical devices based on MWCNTs.  For example, Cumings and Zettl 

built linear bearings and rheostats by telescopically extending the MWCNTs [34,122].  

The friction force was determined to be less than 10-14 N per atom.  Fennimore et al. 
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made rotational actuators based on MWCNTs [36].  Jensen et al. demonstrated tunable 

resonators based on telescoping MWCNTs. Theoretical calculations have suggested that 

these telescoping properties can be used as giga-Hertz linear oscillators [37].  Here I 

demonstrate that the thermal conductance of a MWCNT can also be controllably and 

reversibly tuned by sliding the outer shells with respect to the inner cores.  The thermal 

conductivity shows a ten-fold decrease after extending the length of a MWCNT by 

190nm.  Thus I have made MWCNTs as nano-scale thermal rheostats. 

 

 

 

Figure  10-1 Schematic diagram of 

experimental procedures.  (a) the outermost 

layers of a MWCNT were anchored to the 

electrodes and then the middle section of the 

MWCNT was partially cut using the electron 

beam of an SEM.  (b) the outer-layers of the 

MWCNT were removed under electron beam 

irradiation.  (c) a manipulator was used to 

pull the suspended electrodes so that the 

released outer-layers slide away from each 

other. 

         

        Figure 10-1 shows the schematic diagram of the experimental procedures.  In Fig. 

10-1(a), the outermost layers of a MWCNT were anchored to the electrodes and then the 

middle section of the MWCNT was partially cut using the electron beam of an SEM.  

Previous experiments have shown that the presence of H2O molecules facilitate the 
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cutting time [113].  But to avoid contamination, I did not introduce H2O molecules and 

the chamber vacuum was taken below 5×10-6 mbar before turning on the electron beam.  

Under electron beam irradiation, parts of the outer-layers of the MWCNT were removed 

as shown in Fig. 10-1(b).  Thus the released outer-layer sections were weakly bonded to 

the inner cores via van der Waals interactions.  In Fig. 10-1(c), I use a manipulator to pull 

the suspended electrodes so that the released outer-layers slide away from each other, 

effectively increasing the length of the MWCNT.  The position of the manipulator was 

carefully chosen so that it would not perturb the heat profile of the thermal conductivity 

test fixture. 

          From TEM imaging, the MWCNT investigated has outer diameter = 9.6nm, inner 

diameter = 7.2nm and length = 2.73μm.  The upper part of Fig. 10-2 shows a series of 

representative SEM images of a MWCNT undergoing the cyclic sliding processes.  The 

increasing length of the visible thin section of the MWCNT suggests that the outer-layers 

slide against the inner cores and also excludes the presence of the axial strain in the 

MWCNT.  The thermal conductivity of the original MWCNT was measured to be 

1100W/mK.  After electron beam irradiation, the thermal conductivity reduces to 

380W/mK, equivalent to K = 4.4×10-9 W/K.  The lower panel of Fig. 10-2 shows the 

measured K at different time frames.  K is normalized to its initial value of 4.4×10-9W/K.  

Notably, the minimum of K is only 15% of the initial value.  Furthermore, the sliding 

process is fully reversible, as shown in Fig. 10-2, K returns to its initial value after the 

MWCNT is restored to its original shape.  I do, however, observe hysteresis behavior 

after a few cycles of the sliding process.  TEM imaging shows a thin layer of amorphous 
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material coating the surface of the MWCNT, possibly causing the hysteresis.  Ideally, as 

it has been demonstrated in previous experiments [34], the sliding motion can go many 

cycles without wearing.  Thus the performance of the MWCNT thermal device can be 

improved if operated in a cleaner environment. 

 

 

Figure  10-2 Upper part: a series of representative SEM images of the MWCNT undergoing cyclic 

sliding processes.  The number in each frame denotes the time sequence number (scale bar = 2μm).  

Lower panel: the thermal conductance vs. time during sliding. The thermal conductance is 

normalized to the initial value of 4.4×10-9W/K. 
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10.2 Analysis and Discussions 

        Figure 10-3 shows the normalized thermal resistance (1/K) with respect to the 

distance between the electrodes.  At the beginning, increasing the distance between the 

electrodes only straightens the MWCNT but does not affect its thermal resistance.  This 

is consistent with the experimental results in chapter 9 showing that MWCNTs can 

sustain high thermal conductivity at very large bending angles.  Notably, when the outer 

shells of the MWCNT start to slide with respect to the inner core, the thermal resistance 

increases dramatically.  Due to the limited data points available, I can not constrain a 

specific fitting curve here.  For comparison purposes, previous electrical resistance 

measurements on telescopically extended MWCNTs have found an exponential form for 

the electrical resistance behavior 

                                                       0
2( ) exp( )

e

xR x R l=                                                (10.1) 

where x is the sliding distance, le = 1000~1500nm is the electronic localization length 

[122].  If I adapt the same formula to fit the data in Fig. 10-3, I find that the phononic 

localization length lph = 87nm, which is much shorter than le.  The result suggests that for 

MWCNTs K is more sensitive to telescopic modulation than the electrical resistance. 

        The change of K does not scale with the extended length of the MWCNT, so the 

observed phenomenon is not like stretching a rubber band.  Besides, a thermal diffusive 

model based on the geometry of the investigated MWCNT predicts that K only decreases 
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Figure  10-3 (Color) The normalized thermal resistance (1/K) vs. the distance between the electrodes 

during sliding.  The curve is fit using Eq. (10.1).  Insets: the two-dimensional projection of the 

temperature profiles of an effective model before (upper inset) and after (lower inset) sliding.  The 

model has the same outer to inner diameter ratio as that of the MWCNT investigated, but has a 

much shorter length.  The simulation of the lower inset gives a reduction of thermal conductance of 

84% from its original configuration (upper inset). 

 
 by 23% after extending by 190nm, which is much smaller than the observed value (85%).  

To quantitatively understand the origin of the large change of K, I have built an effective 

model based on the finite element analysis method.  As shown in the insets of Fig. 10-3, 

the two-dimensional projection of the model has the same outer to inner diameter ratio as 

the investigated MWCNT, but its length is much shorter than that of the MWCNT.  
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Based on the results of the thermal conductivity of graphite, an anisotropic factor of 100 

is introduced into the model [38].  In the lower inset of Fig. 10-3, I find that the model 

can give a decrease in K of 84% after sliding, which quantitatively agrees with the 

observed value.   

        The effective model has the following implications.  First, as shown in the insets of 

Fig. 10-3, the most resistive part of the extended MWCNT occurs at the overlap between 

the outer shell and inner core, where a large phonon scattering angle is needed to transfer 

heat.  Second, the phonon transport in the rest of the MWCNT is nearly ballistic, as 

evidenced by the large contrast between the length of the model and that of the MWCNT.  

In fact, I can estimate the phonon mean free path in the rest part of the MWCNT to be 

370nm from the model.  Third, if no anisotropy is assumed, the model can only give a 

decrease of K of 67% in the lower inset of Fig. 10-3, thus the large anisotropy of the 

thermal conductivity between the axial and the radial directions also plays an important 

role.  

        In summary, I have controllably and reversibly tuned the thermal conductance of a 

MWCNT by sliding the outer shells with respect to their inner cores.  The thermal 

conductance of the MWCNT decreases by 85% after extending the length by 190nm.  An 

effective thermal diffusive model suggests that the phonon transport of the telescopically 

extended MWCNT is limited by the region where the outer shells and inner cores overlap, 

while it is nearly ballistic in the rest of the MWCNT. 
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Chapter 11  A thermal rectifier and 

evidence for solitons 

11.1 Introduction and experimental procedures 

        Solitons are non-perturbative results of non-linear systems.  They are localized, 

particle-like entities that can collide with each other without changing shape.  The soliton 

phenomena were first discovered by John Scott Russell in 1834 when he observed a 

solitary water wave propagating along Edinburgh’s Union Canal without decay [123].  

Later solitons were found in many physical phenomena ranging from optical fibers to 

tsunami waves [124,125].  While significant effort has been devoted to the search for 

solitons in the electronic transport of one-dimensional conductors, evidence of solitons in 

thermal conduction has remained elusive [126].  In Chapter 9, the considerable robustness 

of the thermal conductivity of nanotubes under severe deformation has suggested the 

existence of solitons in nanotubes.  Here I present evidence for solitons in the thermal 

transport of carbon nanotubes (CNTs) and boron-nitride nanotubes (BNNTs).  The idea is 

based not on a specific soliton model, but on a general asymmetric result of solitons’ 

solutions when propagating in a one-dimensional inhomogeneous media.  Solitons are the 

only wave phenomena that can give asymmetric thermal conductivity in such a system.  
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The making of a thermal rectifier in a nanotube with an inhomogeneous mass distribution 

gives the strongest evidence for solitons in nanotubes. 

        Nanotubes are nearly one-dimensional materials whose structure can be viewed as a 

cylindrically rolled graphene or BN sheet.  The electronic contribution to the total 

thermal conductivity of CNTs has been shown to be less than 1% [120].  On the other 

hand, BNNTs are wide band gap insulators, so the thermal transport is exclusively due to 

lattice contributions.  This makes BNNTs ideal materials for investigating one-

dimensional heat transfer phenomena. 

        Figure 11-1(a) shows an SEM image of a multiwall CNT connected to the electrodes 

and Fig. 11-1(b) shows the corresponding low magnification transmission electron 

microscopy (TEM) image.  A symmetrical measurement performed by switching the 

heater and senor was conducted before engineering the nanotube.  Although the heater 

and senor were made to be symmetric, a small asymmetry (<10%) was observed.  The 

asymmetry may be due to the fabrication process of the test fixture, the wire bonding, or 

even the intrinsic properties of the nanotube.  The background asymmetry was 

normalized to one so I could compare the net thermal rectification effect before and after 

I engineered the nanotube.  C9H16Pt was then deposited on one side of the nanotube, as 

shown in the TEM image in Fig. 11-1(c).  After asymmetrically coating C9H16Pt onto the 

nanotube, the thermal conductance of the nanotube was again tested in both directions.  

The thermal rectification of the nanotube is defined as follows: 

                                           
100%LR RL

LR

K KRectification
K
−

= ×                                       (11.1) 
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Figure  11-1 (a) The SEM image of a CNT connected to the electrodes (scale bar = 5μm).  (b) The 

corresponding low magnification TEM image of (a).  (c) The TEM image of the same CNT after 

depositing C9H16Pt. 
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where KLR and KRL are the thermal conductance of the nanotube when heat flows from 

left to right and right to left, respectively.   

        Figure 11-2 shows the structure of C9H16Pt molecule.  Irradiating electron beams on 

C9H16Pt molecules transforms them from gas form to solid polymers.  Thus depositing 

C9H16Pt on a nanotube has two effects on the thermal conductance.  As shown in Fig. 11-

3(a), when the bonding between C9H16Pt molecules is strong, the total conductance will 

increase due to parallel contributions from the nanotube and the C9H16Pt molecules.  On 

the other hand, when the bonding between C9H16Pt is weak, it locally increases the 

effective mass of the nanotube as shown in Fig. 11-3(b).  The former case can be 

excluded by measuring the thermal conductivity of C9H16Pt bridging across the 

electrodes.  The thermal conductivity of C9H16Pt is less than 1% of that of nanotubes and 

can thus be neglected here.  Thus the low thermal conductivity and weak bonding of 

C9H16Pt molecules ensure that the mass effects dominate.  Furthermore, the molecular 

weight of C9H16Pt (~319 g/mole) is much larger than that of (C-C)5 or (BN)5 (~120 

g/mole) of similar sizes, suggesting that depositing C9H16Pt can efficiently change the 

mass distribution of a nanotube. 

 

 

 

Figure  11-2 The structure of 

Trimethyl(methylcyclopentadienyl)platinum(I

V) (or named Trimethyl [(1,2,3,4,5-ETA.)-1 

Methyl-2, 4-Cyclopentadien-1-yl] Platinum) 
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Figure  11-3 A schematic description of the effect of depositing C9H16Pt on nanotubes.  (a) When the 

bonding between C9H16Pt is strong, depositing C9H16Pt contributes an additional thermal 

conductance. (b) When the bonding between C9H16Pt is weak, depositing C9H16Pt changes the 

effective mass of the nanotube. 

 

        Figure 11-4(a) to (c) show three BNNTs deposited with C9H16Pt.  At room 

temperature, the rectifications are measured to be 7%, 4%, and -3% (the minus sign is 

due to the definition from Eq. (11.1)), respectively.  The CNT in Fig. 11-1(c) shows 

rectification of -2%.  The arrows in Fig. 11-4 denote the direction of heat flow in which a 

higher thermal conductance is observed.  All the results show consistently that a higher 

thermal conductance is observed when heat flows from a heavy region (more C9H16Pt is 

deposited) to a light region (less C9H16Pt is deposited).  The observed rectification effect 

is larger than the measurement uncertainties (~1%).  Since for BNNTs, electrons do not 

contribute to the thermal transport, here it is clearly demonstrated that the observed 

rectification effects are due to lattice contributions.  I have found that depositing more 
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C9H16Pt does not necessarily increase the rectification effect, which is possibly due to 

stronger interconnection between C9H16Pt molecules.  When the interconnection of 

C9H16Pt molecules becomes strong, the effect of deposition shifts from Fig. 11-3(b) to 

Fig. 11-3(a), thus reduces the rectification effect due to mass inhomogeneity. 

 

 

 

Figure  11-4 (a) to (c) SEM images of three 

different BNNTs after depositing C9H16Pt.  

The rectification measured is 7%, 4%, -3% 

(see Eq. (11.1) for the definition of 

rectification)).  The arrows in each figure 

denote the direction of heat flow where the 

thermal conductance is higher than that of the 

opposite direction. 

 

11.2 Evidence for solitons 

        Now I attempt to describe my results in light of various established models.  It is 

worthy to note that although asymmetric results such as light waves propagating across 
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media of different refraction indexes are very common in two or three dimensions, there 

is no corresponding asymmetry in one-dimensional systems.  In one dimension, the 

reflectivity (R) and the reflection coefficient (r) of a wave propagating across different 

media follows 

                                                         
2

2 i t

i t

k kR r
k k

⎛ ⎞−
= = ⎜ +⎝ ⎠

⎟                                                (11.2) 

where ki and kt are the wave numbers of incident waves and transmitted waves, 

respectively.  The square in Eq. (11.2) makes the reflectivity the same irrespective of the 

direction of incident waves.  Since phonons are quanta of waves, the above result 

demonstrates that no thermal rectification can be observed for ordinary wave transport.  

        An asymmetric result will show in a collision process involving two particles of 

different masses.  As the elementary kinetic theory shows, for an incident particle of mass 

m1 and incident velocity vi colliding with another particle of mass m2 will result in a final 

velocity (Vf): 

                                                         1 2

1 2
f i

m mV
m m

v−
=

+
                                                      (11.3) 

The incident particle will reflect back if m2 > m1, and continue forward if m2 < m1.  

However, for ordinary thermal conductors no mass transfer is involved, so the above case 

does not apply in my experiment. 

        Nonlinear perturbative effects such as umklapp processes only decrease the total 

thermal conductance of the nanotube.  But no thermal rectification effect can be expected. 
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        An asymmetric geometrical shape of a sample can introduce asymmetric boundary 

scatterings of phonons.  Thus the thermal conductance can be reduced in one direction 

while increased in another direction.  In this scenario, thermal conductance is higher 

when heat flows from a narrow region to a wide region.  However, the phonon 

rectification observed in my experiments displays an opposite directionality.  As shown 

in Fig. 11-4(a) to (c), the thermal conductance is higher when heat flows from a wide 

(heavy) region to a narrow (light) region.  Therefore, the effect due to asymmetric shape 

is excluded.  Qualitatively, the sp2 bonds in nanotubes are much stronger than the bonds 

between C9H16Pt molecules, so the phonons should be mainly confined within the 

nanotubes and thus one would not expect the phonons to feel a significant geometrical 

asymmetry or see the resulting thermal rectification.         

         Finally, I turn to soliton models.  Calculating the reflection and transmission 

coefficients of a soliton propagating across a discontinuous media is not a trivial problem.   

For the limited models that analytical or numerical results can be obtained, the 

asymmetry of the heat flow is a general feature.  For example, T. Iizuka and M. Wadati 

obtained the reflection amplitude for Korteweg-de Veries (KdV) equation [127]: 
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                   (11.4)  

where m1 and m2 are the mass of lattice of incident and transmitted waves, respectively.  

The most significant result of Eq. (11.4) is the asymmetry with respect to m2/m1 = 1.  It 
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gives a direction of the thermal rectification consistent with my results.  If I use Eq. (11.4) 

to analyze the result, it gives rectification > 7% when m2/m1 > 2, which lies within the 

molecular weight ratio of C9H16Pt to (C-C)5 or (BN)5.  However, currently I only know 

the solitons contribute > 7% to the total thermal conductance, and it is not clear whether 

the KdV model can apply for nanotubes.  Other models, such as nonlinear Schrödinger 

equation [127], sine-Gordon model [128] or φ4 model [129] also give asymmetric results 

though they are more complicated.  Quantitative results can only be compared after a 

soliton model for nanotubes is established.  Therefore, I emphasize that the strongest 

evidence for the existence of the solitons in nanotubes is due to the observed asymmetry, 

which is not possible in other linear or non-linear perturbative systems. 

        Theoretical works have suggested stable solitons in nanotubes [130,131].  Studies on 

the soliton-defect interactions suggest that heat energy can be localized on a few bonds of 

defects.  Thus solitons can explain the “self-healing” effect when biasing carbon 

nanotubes at high currents [110,132].  In addition, in Chapter 10 I have shown that the 

thermal conductivity of nanotubes remains unperturbed even when the wavelength of the 

“wiggle” structures induced by deforming a nanotube is much smaller than the phonon 

mean free path.  More surprisingly, the robustness of thermal transport of nanotubes 

approaches the ultimate limit in which the bending radius of curvature is comparable to 

the phonon mean free path.  All these findings have challenged current understandings of 

the thermal transport of nanotubes.  Since solitons can propagate at a constant velocity 

without being degraded by lattice perturbation, it naturally explains the robustness of 

thermal transport.  Among these supports, the strongest evidence comes from the 
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observed rectification effect, which is due to a fundamental asymmetry of solitons’ 

solutions. 

        A unique by-product of the result is the invention of a thermal rectifier.  What are 

the potential applications of thermal rectifiers?  They can be used for nanoscale devices 

to macroscopic objects where the thermal insulation is needed in one direction while 

remains good thermal contacts to the environment in another direction.  For example, 

ultra-sensitive nanoscale bolometers or calorimeters require the heat energy be confined 

in the sensing area so that large signals can be obtained; while they also need the devices 

to have good thermal contacts to the base temperature such that good sensitivity can be 

maintained [133-135].  Low energy buildings need to reduce the heat loss in winter or 

power consumption in summer [136,137].  More importantly, with the invention of 

thermal rectifiers, phonons should no longer be considered as unwanted by-products of 

electronics.  Phonons, like electrons, are information carriers, and should be processed 

accordingly.  In the past, people have relied on semiconductor or superconductor devices 

to read out thermal signals.  Now it is possible to process the thermal signals in advance 

and convert them into electronic signals later.  The invention of a thermal rectifier will 

pave the way for the field of phononics. 
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Chapter 12  Breakdown of Fourier’s 

law in one-dimensional thermal 

conductors 

12.1 Background and experimental results 

        In analogy to Ohms’ law for electrical conductors, Fourier’s law is an empirical rule 

of heat transfer.  Although Fourier’s law is well-established for ordinary thermal 

conductors, efforts for providing a rigorous theoretical ground have failed [138].  Since 

Peierls tried to explain Fourier’s law based on kinetic gas models, the presence of 

anomalous heat conduction in one-dimension has been a puzzle [70].  Recently, this 

subject has attracted renewed interests due to progress in simulation power.  Although it 

has been proven that Fourier’s law is violated for harmonic chains and integrable systems 

[139], the criteria when Fourier’s law holds is poorly understood [138].  Contradictory 

results have appeared in different models in the past decade.  Theoretically, the criteria 

for Fourier’s law have changed from impurities effects to local temperature gradients 

[140,141]; from on-site external potentials to momentum conservation [142,143]; from 

anharmonicity to the onset of chaos etc [75,144].  The violation of Fourier’s law seems to 



 
 

136

 
 
 
 
be commonplace in these models; while the criteria for Fourier’s law remains a mystery 

[145].  Recently it is argued that for momentum-conserving systems, Fourier’s law is 

violated and the thermal conductivity (κ) diverges with the size of the system (L) as κ ~ 

L0.33 [143].  However, existing numerical results do not support a universal constant [75].  

Despite these theoretical works, no experimental data are available for comparison.  The 

lack of experimental data is mainly due to elaborate fabrication processes required to 

measure the κ for one-dimensional materials, with the ability to physically vary the size 

of the investigated object being even more difficult.  Here I present a method that can 

effectively change the length of a nanotube while measuring its κ.  Thus I can 

experimentally check the validity of Fourier’s law in one-dimensional materials.   

        Boron-nitride nanotubes (BNNTs) are nearly one-dimensional materials with 

excellent mechanical and thermal properties.  Due to their wide band gap, the thermal 

conductance of BNNTs is exclusively due to lattice contributions.  This property makes 

BNNTs ideal materials for investigating one-dimensional thermal transport. 

        Figure 12-1(a) shows the device with two “walls” of C9H16Pt deposited on it.  A 

BNNT was anchored to the electrodes using C9H16Pt deposition.  The height of the 

C9H16Pt “wall” ensured that the BNNT was suspended, as shown in Fig. 12-1(b).  I then 

measured the thermal conductance of the BNNT.  This process was repeated by a series 

of depositions, thus the suspended segment of the BNNT was reduced, as shown in Fig. 

12-2(a) (Sample 1).  Figure 12-2(b) shows another BNNT device with four depositions 

(Sample 2). 
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Figure  12-1 (a) A blank device with two “walls” of C9H16Pt deposited on the electrodes.  (b) The same 

device with a BNNT (Sample 1) connected to it (scale bar = 2μm). 
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Figure  12-2 (a) Sample 1, a BNNT with five sequential depositions of C9H16Pt. (b) Sample 2, a BNNT 

with four sequential C9H16Pt depositions (scale bar = 2μm). 
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        As shown in the inset of Fig. 12-3(a), I model the thermal resistance of the nanotube 

to be equivalent to a series of resistors Rs connected to each other, with contact resistance 

Rc(n) (n = sequence number) representing each C9H16Pt deposition connected parallelly 

to the whole circuit (Model A).  Since the deposition condition was kept the same, I 

assume that each Rc(n) can be normalized by their size and obtain the same contact 

resistance per unit length (Rc).  I also modify Fourier’s law by introducing an exponent β 

so that κ ~ Lβ.  A computer program is employed to analyze the result.  For a given β, the 

program searches the parameter space spanned by Rs and Rc to find the minimum 

deviation to the experimental value.  The deviation (σ) is defined as follows: 

  

 

 

Figure  12-3 Inset: the circuit Model A for 

data analysis. (a) Thermal conductance vs. 

length between contacts for Sample 1.  (b) 

Thermal conductance vs. length between 

contacts for Sample 2.  The experimental 

results are shown in solid squares with error 

bars.  The analyzed results are shown in open 

circles (β=0) and open stars (β=0.6 and 0.7 for 

Sample 1 and Sample 2, respectively).
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where m = 5 and 4 for Sample 1 and Sample 2, respectively.  Rmea(n) and Rcal(n) are the 

measured thermal resistance and the calculated result at each sequence, respectively.     

        Figure 12-3(a) and (b) shows the results of Sample 1 and Sample 2.  It is clear that 

the largest deviation occurs when I adapt Fourier’s law (β=0) in my fitting.  Surprisingly, 

the best fit occurs when β=0.6~0.7, which is close to the result of ballistic transport (β=1).  

From the best fit, I find that the thermal conductance of the BNNTs are 1.3×10-8W/K and 

1.7×10-8W/K at the first sequence of Sample 1 and Sample 2, respectively.  The Rc 

contributes less than 7% and 3% to the total resistance of Sample 1 and Sample 2, 

respectively.  Figure 12-4 shows the variation of σ with respect to β.  Apparently, σ’s of 

both samples show the largest deviation to Fourier’s law (β=0).  The samples show 

consistently that best fit occurs at β=0.6~0.7, which indicates the exponent is universal 

for BNNTs.  

 

 

 

Figure  12-4 Calculated deviation (σ) with 

respected to β for the results of Sample 1 

(solid square) and Sample 2 (open circle) 

using Model A (shown in the inset). 
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Figure  12-5 Calculated deviation (σ) with 

respect to β for the results of Sample 1 (solid 

circles) and Sample 2 (open triangles) using 

Model B (shown in the inset).  Model B 

assumes that the resistors are shorted to each 

other under the contacts. 

One may ask the fidelity of Model A to the real system.  I understand the difficulty in 

modeling the resistor network beneath the contacts.  For Model A, I assumed that there 

are potential drops between each contact.  However, since the contacts are large and act 

like a heat bath, the potential drop in the nanotube can be smaller than expected in Model 

A.  So I have tried an extreme model where the potential drop between the contacts is 

zero (Model B).  As shown in the inset of Fig. 12-5, Model B assumes that the resistors 

under the contacts are shorted to each other.  Figure 12-5 shows the variation of σ with 

respect to β.  Surprisingly, the minimums of σ occurs at β=0.8~0.9, and the maximum of 

σ occurs at β=0.  Thus both models consistently suggest that Fourier’s law is violated.  

Furthermore, my results do not support recent theoretical suggestions that β=0.33 for 

momentum-conserving one-dimensional chains [143].  Both models show better fits at 

larger β indicating that κ diverges with increasing L much faster than expected. 
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12.2 Discussions 

        Theoretically, it was once thought that the introduction of disorder could make 

Fourier’s law hold in one-dimensional systems, but it was later found that disorder only 

yields a finite temperature gradient in a sample but still leads to a divergence of κ with 

β=0.5 [146].  In my samples, the natural-abundance boron has large isotopic disorder 

(19.9%10B and 80.1% 11B) and thus should have dramatic effects on κ.  Indeed, I have 

shown in Chapter 8 that the isotope enhancement of κ to be over 50% by measuring κ of 

isotopically pure 11BNNT.  However, it is worthy to note that although isotopic disorder 

dramatically affects the value of κ, it does not change the divergence of κ in favor of 

Fourier’s law.  

        Ballistic phonon transport can lead to β=1.  To check whether the observed heat 

transport is ballistic, I adapt the traditional formula to estimate the phonon mean free path,  

                                                                κ = ∑Cvl                                                                (12.2) 

where C, v, and l are respectively the specific heat, group velocity, and phonon mean-

free-path, and the sum is over all phonon states.  I obtain l ~20nm, which is much smaller 

than the length of the BNNTs.  So the ballistic condition is not satisfied in either BNNT 

sample. 

        It is worthy to note that the ballistic phonon transport is not a necessary condition 

for violating Fourier’s law [138].  Many one-dimensional models are shown to have 

anomalous heat transfer without satisfying ballistic conditions [75,143,144,147,148].  

Calculations on single-wall carbon nanotubes have suggested β=0.3~0.4 [149].  However, 
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it should be noted that many earlier works and their analyses on the thermal transport of 

nanotubes were based on the traditional phonon transport model [38,149], and 

overlooked the non-perturbative nonlinear effect contributing to the heat transfer.   

        In chapter 9, I have provided evidence for the existence of solitons in nanotubes.  

First, I found that the thermal conductivity of nanotubes is surprisingly robust under 

severe structural deformation.  Using Eq. (12.2) to estimate the phonon mean free path of 

the nanotube, I found that it exceeded the size of the “wiggle” structures induced by 

deformation.  This unusual robustness challenges current understandings of the thermal 

transport of nanotubes.  Since solitons can propagate through barriers without changing 

shape, the result indicates the presence of solitons in nanotubes.  In chapter 11, I have 

made thermal rectifiers with efficiencies up to 7% by engineering the mass distribution 

along the nanotubes.  The observed asymmetry of thermal transport is deeply rooted in 

the solutions of soliton models and is impossible to find in other linear or non-linear 

perturbative wave equations.   

        Ideally, solitons can freely propagate along the BNNT, thus it leads to β=1.  

However, calculations have shown that solitons in nanotubes are accompanied by phonon 

emission [131].  The accompanied phonon emission leads to a finite soliton lifetime and 

results in a deviation from β=1.  So the observed β=0.6~0.9 is qualitatively consistent 

with the soliton picture. 

        The origin of the anomalous heat conduction in one-dimensional systems has been 

debated for many decades.  In the past, theorists were misguided by the only existing 

experimental result: Fourier’s law of bulk materials.  Many models, even unrealistic ones, 
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have been adapted to explain the discrepancy between the theories and Fourier’s law.  

Here I provide the first experimental evidence showing that Fourier’s law is violated in 

BNNTs.  My results confirm theorists’ consensus that the breakdown of Fourier’s law is 

generally independent of ballistic conditions or disorder effects.  But the observed 

β=0.6~0.9 differs from some theoretical suggestions that β=0.3~0.4.  Instead, it is 

consistent with the soliton model of nanotubes.    Moreover, these studies can go beyond 

solely academic interest and provide stepping points for new solutions to thermal 

management problems on nano-scaled materials.  Rectification of thermal transport is just 

one possibility [150,151]. 
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Chapter 13  Prospects of phononics 

        With the relentless pursuit of the performance of microelectronics, the thermal 

management problem has become a major challenge.  According to 2005 International 

Technology Roadmap for Semiconductors, the thermal management problem has become 

a major obstacle in further improving the device performance. Due to the shrinking size, 

the problem is further magnified as the localized heat flux is targeted to reach 500 W/cm2 

in the next few years.  This localized heat flux is the same as the one seen in the rocket 

nozzles of the space shuttle, but with the added challenge that the microprocessor must 

remain below 90°C and operate for many years. 

        What are the possible solutions?  One solution is searching for thermoelectric 

devices with higher efficiency.  Researchers’ interests have been triggered due to recent 

successes in enhancing the figures of merit (ZT) in low-dimensional thermoelectric 

devices.  A thermoelectric device with ZT larger than 3 will compete with the 

performance of a commercial refrigerator, while at the same time having the advantages 

of being light-weight and compact [152].  For this approach, one wishes to find materials 

exhibiting large thermopower, high electrical conductivity, but low thermal conductivity.  

A usual approach is fabricating a low-dimensional superlattice of a known thermoelectric 

material [153,154].  Due to increasing boundary scatterings of phonons, κ of two-

dimensional superlattices is reduced, thus enhancing its ZT.  However, despite that 
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enormous efforts have been devoted into optimizing thermoelectric device, so far a 

material with ZT greater than 3 has not been found at reasonable temperatures.  

        Another solution is to find materials exhibiting high thermal conductivity.  However, 

very few materials are known to exhibit high κ at reduced dimensions. Traditional 

semiconductors like Si show a dramatic suppression of κ at the nano-scale [75].  

Insulators used in microelectronic manufacture like Si3N4, SiO2, and Al2O3 are all poor 

thermal conductors in traditional polycrystalline forms. 

        The experimental works shown in this thesis can provide the solution to the thermal 

management problem.  In chapter 8, I have demonstrated that CNTs and BNNTs are 

excellent thermal conductors and their thermal conductivity increases as the diameter 

decreases.  For nanotube diameters less than 10nm, their thermal conductivity above 

room temperature can even exceed that of diamond, the best thermal conductor known so 

far.  More importantly, in chapter 12 I have shown the thermal conductivity of nanotubes 

diverges with its length.  The violation of Fourier’s law in nanotubes can solve the 

current thermal management problem with a fundamentally different approach.  Imagine 

that an infinitely long nanotube will have infinite thermal conductivity! 

        We can proceed further and utilize the special properties of nanotubes described in 

this thesis with new prospects.  In the past century, people have relied heavily on 

electrons to carry information, process signals and record data.  Phonons, on the contrary, 

are generally considered as unwanted by-products.  In fact, the traditional thermal 

management in microelectronics focuses entirely on how to efficiently dissipate heat to 

the environment.  Now, with the advancement of nanotechnology, we can take a different 
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perspective.  Phonons, like electrons, carry information, and should be utilized 

accordingly.  In this thesis, I have demonstrated several basic elements of phononics 

based on CNTs and BNNTs.  In analogy to the conducting wires in integrated circuits, I 

have constructed a phonon waveguide that can be bent to large angles without degrading 

its thermal conductivity.  I have also invented a thermal rectifier, which serves as a 

thermal diode for heat flow.  I have built a nanotube device with a tunable thermal 

conductance, essentially a phonon transistor.  Combining these novel phononic elements 

with existing calorimeters or bolometers may give us unprecedented energy sensitivity 

that has not yet been achieved by modern electronics.  In the future, we might use 

phononic sensors to detect thermal signals, then send them through phonon waveguides, 

amplify them using phonon transistors, process them by phonon rectifiers; finally, record 

them and read them using calorimeters or bolometers.  The field of phononics is now 

emerging. 
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